
Fast and Transparent Recovery for Continuous Availability of
Cluster-based Servers

Rosalia Christodoulopoulou
Department of Computer Science, University of

Toronto, Canada
roza@cs.toronto.edu

Kaloian Manassiev
Department of Computer Science, University of

Toronto, Canada
kaloianm@cs.toronto.edu

Angelos Bilas
Department of Computer Science, University of Crete,

Greece
bilas@csd.uoc.gr

Cristiana Amza
Department of Electrical and Computer Engineering,

University of Toronto, Canada
amza@eecg.toronto.edu

Abstract
Recently there has been renewed interest in building reliable
servers that support continuous application operation. Besides
maintaining system state consistent after a failure, one of the main
challenges in achieving continuous operation is to provide fast re-
configuration. The complexity of the failure reconfiguration mech-
anisms employed and their overheads depend on the type of plat-
form that is being used as a server and the types of applications that
need to be supported. In this paper we focus on providing support
for shared-memory applications running on clusters of commod-
ity nodes and interconnects. Achieving continuous operation for
shared memory applications on clusters presents two main chal-
lenges. (a) The fault tolerance mechanisms employed should be
transparent to applications and should have low overhead dur-
ing failure-free execution. (b) When failures occur, reconfiguration
should occur with minimum application disruption without requir-
ing the full recovery of the failed node.

In this work we examine in detail the latter, i.e., (b), the fail-
ure reconfiguration path. We use a previously developed system [8]
that achieves (a) by using dynamic replication of data to the memo-
ries of multiple nodes of the system during execution. We examine
in detail how the runtime system can achieve minimum application
interruption, when failures occur. We present the design and imple-
mentation of FineFRC (Fine-grained Failure Reconfiguration on
Clusters), a runtime system for achieving continuous operation of
shared memory applications on commodity clusters without requir-
ing application instrumentation or human intervention. We present
results using a working, 16-processor system that achieves sub-
second failure reconfiguration times.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Distributed program-
ming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29–31, 2006, New York, New York, USA.
Copyright c© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

General Terms Measurement,Performance,Experimentation

Keywords fault tolerance, fast failure reconfiguration, distributed
shared memory, scalability, availability

1. Introduction
With the continued growth and use of the Internet, ranging from
on-line multiplayer games to on-line transaction processing, it
becomes challenging to meet expectations and requirements for
server scaling and virtually perfect availability. For instance, in
many cases, central servers that serve more and more online cus-
tomers are required to operate continuously (24x7) with availability
of at least 99.999%. These trends have prompted a departure from
the traditional “treat failures as the unusual case” philosophy and
researchers are encouraged to focus on tools and techniques to im-
prove the performance of the recovery path, since failures should
be treated as a fact of life.

Our goal is to completely hide component failures from appli-
cations that run on scalable servers. Although a range of different
architectures are currently used as server systems, in this work we
focus on providing support for generic shared-memory applications
running on clusters of commodity nodes and interconnects. In order
to provide applications with the illusion of continuous availability
in this setup, there are two main challenges: (a) During failure-free
execution, the system should be able to gather and maintain all re-
quired state transparently and with low overhead. (b) When failures
occur, server recovery and reconfiguration should be both transpar-
ent and fast.

Our previous work [8] deals with (a) by supporting dynamic
replication of all in-memory data to multiple nodes. In this previous
work, we report overheads of implementing fault tolerance schemes
during normal operation, but not the delays during recovery from a
failure. Thus, similar to most other research work in this area, our
previous work has focused on various techniques for minimizing
the overheads during failure-free execution. Most of these previous
research efforts follow two alternative approaches: (i) disk logging
and periodic checkpointing mechanisms [13, 10, 27] and (ii) fast,
in-memory failover techniques [1, 31]. In the former approach, fast
recovery is limited by reloading the previous consistent checkpoint
from disk and replaying the logs. In the latter approach, although
the backup maintains a copy of the application state, consistency is
not strictly enforced. Hence, the backup is either idle during failure



free system execution [1, 31] or could execute a different set of
applications/tasks.

The recovery path has received far less attention, mainly be-
cause handling failures is in practice complex, involving many cor-
ner cases. In particular, implementing and evaluating a recovery
scheme is challenging for shared memory applications that share
information at fine granularities and time intervals. Thus, in prac-
tice, failure reconfiguration for many approaches is not completely
automated and requires some type of human intervention.

Our previous work [8] presents a fault tolerance approach that
achieves low overhead by using dynamic replication of applica-
tion and system state during system operation. Our approach can
be summarized as follows. We transparently capture all in-memory
application state modifications by means of a shared virtual mem-
ory system, GeNIMA [5] and we maintain consistency of the in-
memory state through dynamic replication on multiple nodes. All
nodes in a cluster are used for running a single copy of the server
application. To achieve low recovery overhead, we checkpoint sys-
tem and application state at each system node. Checkpoints are
taken in a coordinated manner between threads in each system
node, but asynchonously across the nodes in the cluster in order
to preserve scalability. Each node behaves as two virtual nodes, a
primary and a backup. Each primary stores its checkpoint informa-
tion into the memory of its corresponding backup node.

In this work, we present FineFRC (Fine-grained Failure Re-
configuration on Clusters), a system that builds on our previous
work [8] and automatically reconfigures itself upon failures in the
above context of shared memory applications on commodity clus-
ters. FineFRC provides support for transparently recovering all in-
memory state at low overhead. Our system is able to recover and
reconfigure itself after any number of successive, single-node fail-
ures, under a fail-stop model. The recovery path involves mostly
restarting the failed threads on a backup node from their last re-
spective checkpoint saved in the backup’s memory. The restarted
threads see the consistent, in-memory state on the backup corre-
sponding to the last checkpoint taken on the failed node. Fast recov-
ery relies on the fact that our checkpointing mechanism maintains
system state consistent at fine-grain intervals. Overall, the features
of FineFRC are:

• It provides transparent support for shared memory applications
running on commodity clusters of SMPs interconnected with
low-latency, high-bandwidth interconnects.

• It supports multithreading within each cluster node, thus taking
advantage of multiple per-node CPUs.

• There is no static division of nodes in primaries and secon-
daries, resulting in better system utilization for a single appli-
cation.

• It achieves fast failure reconfiguration through fine-grained in-
memory state replication and reconstruction.

The main challenge in our approach stems from the require-
ment for atomic updates to global shared memory state. This re-
quirement is hard to enforce if fast reconfiguration upon failures
is also desired. Specifically, the absence of the detailed recovery
logs used in traditional recoverable systems [4] is profitable for fast
failure reconfiguration reasons. On the other hand, this complicates
the design of the recovery phases for automatically reconstituting
state consistency after a failure. In our work, we first examine in
detail the recovery path in the system. We present the data struc-
tures, mechanisms, and actions required for recovering from fail-
ures. We build a working prototype that is able to recover from
failures injected into the system while running generic applications.
We run experiments on a 16-processor (8-node) system. This is,
to the best of our knowledge, the first 16-processor prototype of a

shared memory cluster that supports transparent system reconfig-
uration upon failures and is being demonstrated experimentally to
provide fast recovery times. Finally, we use our prototype to mea-
sure the overheads associated with the recovery path.

In our evaluation we consider providing reliability and fast re-
configuration on recovery for two very different types of cluster
servers: A generic compute server cluster, e.g., as used in Grid/-
parallel computing for scientific applications and an in-memory
transaction processing server cluster. As benchmarks for these ar-
chitectures, we consider five Splash benchmarks for the compute
server [14, 30] and the Vista transaction server [20] running the
Vista benchmark suite for the in-memory transactional processing
server. Our experimental results show that:

1. The average failure reconfiguration time is minimal (sub-
second) for a range of experiments where we inject faults at
different stages of server execution, including worst case sce-
narios.

2. Avoiding extensive application or system data undo or redo
upon recovery is key for providing fast recovery.

3. The overhead of dynamic data replication and checkpointing
during failure-free execution is 38% on average across all ex-
periments we perform.

The rest of this paper is organized as follows: Section 2 presents
the necessary background, focusing on the baseline distributed
shared memory protocol and fault-tolerance enhancements that we
build on for supporting transparent system recovery. Section 3
presents our system design and implementation for achieving sub-
second recovery times. Sections 4 and 5 present our experimental
setup, evaluation methodology, and results. Section 6 presents re-
lated work. Finally, we draw our conclusions in Section 7.

2. Protocol Background
In this section, we present the necessary background on our base-
line distributed shared memory system, GeNIMA [5], and the
failure-free case of the dynamic data replication scheme we use.
A more detailed description of the latter can be found in [8].

2.1 GeNIMA

The base protocol we use is the GeNIMA [5] shared virtual mem-
ory system. GeNIMA is an invalidate-based protocol using lazy re-
lease consistency (LRC) for shared-memory accesses [15]. LRC
centers around using synchronization operations present in the ap-
plication (e.g., lock acquire and release pairs) in order to optimize
update data transfers between processors for consistency main-
tainance. Application execution in each SMP node is partitioned
into time intervals, deliniated by consecutive release operations
that may be executed by any application threads in an SMP node.
During each time interval all local page updates are recorded into
a common update-list. When acquiring a synchronization object
from a remote node, the local processor also fetches the list of up-
dates which are needed for this synchronization step and invali-
dates the corresponding pages. A subsequent access to an invali-
dated page triggers a page fault that results in fetching the latest
version of the page from its pre-assigned home node. Pages are
fetched in their entirety.

One of the most important features of GeNIMA is its close in-
tegration with the system area network to reduce communication
overheads. The most relevant techniques that we use in implement-
ing our protocol are:

1. Automatic detection of writes to memory pages through mem-
ory protection violations [19].



2. Creation of diffs, which are encodings of the modifications
to application state performed during a particular time inter-
val [16].

3. Propagation of these updates for each shared memory page to a
preset home node at the end of an interval [32].

2.2 Fine–grained Consistent Replication for Fault Tolerance

In our previous work [8], we extend the base GeNIMA protocol
with fault tolerance mechanisms. These previous techniques build
and maintain consistent replicas of system and application state
during normal execution. In this section, we discuss the main de-
sign points of our approach.

We maintain two copies of (1) thread execution state, (2) appli-
cation data state, and (3) protocol state for each node. Checkpoints
of node state are initiated by our run-time system transparently to
the application, whenever application updates of the node need to
be made visible for consistency reasons to other nodes. Thus, the
checkpoint interval at a node is the same as the consistency inter-
val in the shared virtual memory protocol in our system. While the
checkpoint interval is expected to be fine grained for most shared
memory applications, extra checkpoints can be taken periodically
if needed (e.g., for applications where consistency actions may not
be necessary). Each checkpoint contains two phases: First, the ex-
ecution state of each thread is saved remotely in the memory of
the backup node. Second, the incremental data modifications since
the previous checkpoint are sent out in the form of diffs. The two
checkpoint phases should be conceptually atomic.

In order to allow the shared application data state to survive
single node failures, we maintain application data replicas. The two
issues related to replication of application state are (i) placement of
the replicas and (ii) the way they are updated at checkpoints.

Each shared page is replicated at two distinct nodes called the
primary and secondary home; if one copy of the page becomes in-
accessible or corrupted due to a failure, then the other one can be
used to allow the computation to continue. Shared page modifica-
tions performed by a node are propagated to both homes of the
respective page, during regular consistency operations. The prop-
agation of updates (diffs) is performed in two steps: first, all of
the updates are propagated to the secondary homes and then to the
primary homes. The two-phase scheme of update propagation en-
sures that all of the updates performed locally by a node within a
given interval are replicated atomically. Because modifications are
considered globally performed only after the first phase has been
completed, the secondary home copy of a page is also called the
tentative copy, while the primary home copy is called the commit-
ted copy.

A final, but simpler to manage, type of state is protocol state.
Information about system resources such as shared locks, if any, is
maintained in a similar fashion as application state. In particular,
each runtime system resource, e.g., lock, is assigned a primary and
a backup owner.

3. Achieving Fast Failure Reconfiguration
In this section, we present our approach for achieving sub-second
recovery times. On-line reconfiguration in case of failures is based
on the following principles: i) We ensure that during a checkpoint
both application data state and local thread compute state are atom-
ically replicated in the distributed memory of the cluster. (ii) After
recovery, the in-memory state of the backup is consistent with the
one in the failed primary and (iii) The failed threads are restarted on
the backup node, so that the computation continues and completes
successfully.

We assume that nodes are subject to fail-stop failures and we
rely on the underlying communication layer to resolve transient

node 0

table of context buffers

context A
node 1,thread 1

context A
node 1,thread 2

context A
node n−1,thread 2

node n−1,thread 2
context B

node 1,thread 2
context B

node 1,thread 1
context B

Figure 1. Example of exported address space for checkpointed
thread contexts on node 0, assuming n nodes with two compute
threads per node.

network failures. Next, we describe each of these mechanisms
followed by the description of the recovery path.

3.1 Thread State Checkpointing

Each active thread on the checkpointing node saves their local
execution state remotely onto the memory of the backup node. A
consistent snapshot of all thread state is needed to ensure atomicity
of the compute checkpoint and data checkpoint, since the effects
of each thread’s execution have already been incorporated in the
memory used by the application within the node.

A single thread’s state consists of two pieces of data, the thread’s
execution context and its stack. A node’s execution checkpoint
consists of the saved context and stack of all of the compute threads
running locally on that node, the checkpoint timestamp and other
book-keeping information to assist recovery. Upon the end of a
consistency interval in a node, the system creates a new checkpoint.
Consistency intervals are deliniated either a) with a remote lock
release performed by any of the local threads or b) with a global
barrier. The data structures required for maintaining thread state
replicas consistent are:

Context Buffers: During initialization, each node exports an ad-
dress space, called context buffer, where a remote thread can
save its checkpointed execution context. While initially each
node serves as the backup node for only one other node, in the
case of multiple successive failures, the maximum number of
contexts for which a node can serve as a backup, corresponds
to the number of compute threads on all nodes but one, itself
(see Figure 1). Thus, to handle multiple successive failures, a
node statically allocates space for up to as many contexts as the
number of compute threads on all nodes but one. Each remote
thread uses two context buffers, alternating bewteen them when
saving its context, in order to handle the case of failure while
checkpointing.

Stack Buffers: Similarly to contexts, during initialization, each
node allocates a portion of its address space, called stack buffer,
where remote threads can save their checkpointed stack.

Checkpoint Timestamp: Each checkpoint is assigned a timestamp.
The timestamp contains the consistency status of shared mem-
ory at each node and a checkpoint counter. The consistency sta-
tus indicates how many updates by other nodes have been incor-
porated to this node’s shared data and how many checkpoints
this node has performed.



tdiffs 1 TS
save

diffs 2chkpt

Figure 3. Checkpoint phases: thread state checkpointing (chkpt),
diff propagation to secondary page homes (diffs 1), saving of
checkpoint timestamp on backup node (save TS), diff propagation
to primary page homes (diffs 2).

To checkpoint the state of each thread, we create in each sys-
tem node a special thread, the checkpoint thread. The checkpoint
thread is, in general, suspended and is only resumed when a local
checkpoint is triggered. The checkpoint thread’s primary role is to
save the execution contexts and the stacks of the compute threads
remotely on the backup node and coordinate the checkpointing ac-
tions. The separate checkpoint thread is required because the exe-
cution of the compute threads needs to be temporarily interrupted
while their stacks are being saved.

Any of the regular compute threads can trigger a checkpoint by
signaling the checkpoint thread (see Figure 2). At that point, the
checkpoint thread resumes and in turn signals all of the compute
threads to save their execution context (structure sigcontext )
and suspend execution. Then, the checkpoint thread performs the
following operations:

1. It commits all updates sent by other nodes so that they become
part of the checkpointed application state.

2. It saves the stack of each compute thread remotely, at the corre-
sponding stack buffer on the backup node.

3. It saves the context of each compute thread remotely, at the
corresponding context buffer on the backup node, along with
the stack size, the checkpoint timestamp, and a checkpoint-
related thread-specific data structure.

Finally, the update propagation phase of the application state
is further split in two sub-phases corresponding to sending the
local diffs first all to secondary homes and then to primary homes
(see Figure 3). In between the two phases of update propagation,
the thread that initiated the checkpoint (leader thread) saves the
checkpoint timestamp on the backup node. This timestamp is used
to identify the status of update propagation at the point of failure
and determine the appropriate actions for recovery.

3.2 Ensuring Atomicity of a Checkpoint

Next, we describe how the two checkpoint phases i.e., thread state
and application state checkpointing are made atomic. The execu-
tion of all compute threads in a node is interrupted while the local
updates are committed and the thread stacks are saved remotely.
This guarantees that there are no updates intervening between the
local commit of updates and saving the thread contexts and stacks
by the checkpoint thread.

Application data updates are sent directly to the backup node
from the pages within which they occur, without any extra buffer-
ing. This is achieved with the remote DMA capabilities of the un-
derlying communication layer and is important for reducing proto-
col overhead. For this reason and to ensure consistency, we need to
disallow further modifications to the respective pages until the diff
propagation phase is complete. For the same reason, the primary
home of a page cannot write directly to the page it hosts, but only
to a working copy of the page. Its changes are committed to the
permanent page replica hosted locally, by means of diffs, as for all
other nodes.

Finally, we use the saved checkpoint timestamp (Figure 3) to
determine whether or not a checkpoint has been interrupted by a
failure and if yes, which of the two checkpoints on the backup node

is the last valid checkpoint to be used for restarting the threads, as
discussed next.

3.3 Failure Recovery Path

A node failure is detected by some system node during communica-
tion with the failed node. After a failure has been detected, recovery
takes place. First, the backup node identifies the execution point at
which the failure occurred and the first valid checkpoint taken be-
fore the failure. A valid checkpoint is an atomically taken check-
point, i.e., not interrupted by a failure. If a failure occurs during diff
propagation in our checkpointing scheme, then, upon recovery, our
system uses the second page replica to restore consistency among
the two home replicas of the affected pages. Usually a checkpoint
is much shorter than the interval between checkpoints. Hence, the
probability of a failure occurring during the time a checkpoint is
taken is low. In this unlikely case, recovery may involve undoing
or reapplying partially propagated diffs, depending on whether the
failure occurs during the first or second part of diff propagation re-
spectively.

In contrast, in the general case where a failure does not occur
during diff propagation, recovery is fast and only consists of re-
configuration action, reassigning new page and lock homes where
necessary, and resuming the failed threads on the backup node. Re-
configuration actions and any necessary restoration of shared mem-
ory consistency in the case of failure during checkpointing, are per-
formed by all nodes in a distributed fashion. Subsequently, the com-
pute threads that used to run on the failed node are resumed on the
backup node where their execution state and stack had been saved.
Execution is resumed at the point where the last valid checkpoint
was originally created by the failed node. Next, we discuss in detail
the process of failure detection and then the recovery procedure.

3.3.1 Failure Detection and Diagnosis

A failure is eventually detected by some thread in one of the
following situations:

• In an internal barrier, where a thread reaches an internal barrier
and waits for some local thread which is behind because it has
already detected a failure and is participating in the recovery
process.

• In a read/write operation, where a thread fails to perform a
remote read/write operation on the failed node, or awaits for
a specific data item that never gets updated.

• While spinning on a condition variable, where a thread that is
waiting for too long checks if any associated remote node has
failed, or whether a local recovery process due to the failure of
a remote node has already been initiated.

After the failure of a node F is detected, simple recovery actions
are executed on all nodes as follows:

1. On each node, all local threads reach an internal barrier.

2. The backup node of F , F ′, determines the valid checkpoint of
F that will drive recovery.

3. All of the nodes synchronize at a global barrier.

4. Each node runs the recovery handler, which reconstructs appli-
cation and protocol state.

5. The backup node resumes locally the threads that were running
on the failed node.

6. All of the nodes synchronize at a global barrier and resume
normal execution henceforth. Next we discuss in more detail
the steps that require further explanation.



�����
�����
�����

�����
�����
�����

�����������
�����������
�����������
�����������

�������
�������
�������

�������
�������
�������

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�


�
�
�
�
�
�
�
�
�
�
�
�


barrier
internal

save
context

trigger

chkpt

chkpt

save
sigcontext

<suspended> <suspended>
repeat for T2

commit
updates

stack
save

internal
barrier

t

���
���
���
���

thread
chkpt 

T1

T2

wait time
Figure 2. Checkpointing scheme for thread execution state.

After detecting a failure, the backup node for the failed node
performs failure diagnosis in Step 2. The backup node identifies the
execution point at which the failure occurred. Then, it determines
which checkpoint among the two saved thread execution check-
points must be used for recovery.

We distinguish two different types of failures. A failure of node
F may occur before or after F has fully propagated at least to one
set of home nodes the local updates of the interval in which the
latest checkpoint was taken.

• In the former case (before propagation), recovery is based on
the older checkpoint and the failed threads resume execution
from the beginning of the interval in which the latest checkpoint
was taken.

• In the latter case (after propagation), recovery is based on the
latest checkpoint: the failed threads resume execution from the
beginning of the interval that immediately follows the latest
checkpoint.

The problem of identifying which consistency point to use for
recovery is equivalent to the problem of deciding whether the
checkpoint was completed atomically or was interrupted due to a
failure. Our system uses the checkpoint timestamp saved by the
failed node on its backup in between the two phases of update prop-
agation to resolve this problem. More specifically, the backup node
reads this timestamp and compares it with the timestamp of the lat-
est checkpoint. If the two timestamps match, then the latest check-
point is used for recovery; otherwise, the failure occurred while the
update propagation was in progress and the old checkpoint is used
instead.

3.3.2 Failure Recovery Procedure

After a failure has been diagnosed, recovery takes place in Step
4. Recovery mainly consists of two actions: a) shared memory
reconfiguration and, if necessary, restoration of consistency and
b) protocol state, namely lock, reconfiguration. Both actions are
performed by all nodes in a distributed fashion.

The first action requires that shared pages affected by the failure
are reconfigured: for each page whose primary or secondary home
used to be the failed node F, a new primary or secondary home is
assigned according to a primary-backup mapping scheme. Next,
consistency is restored among the two home copies of updated
shared pages through the following operations: Every node reads
the checkpoint timestamp T which was saved by the failed node
F on its backup node F ′ in between the two phases of update
propagation. This timestamp indicates the latest updates that were
successfully propagated by F to at least the first set of their homes

tdiffs 1 TS
save

diffs 2chkpt

Figure 4. Threads resume execution from last checkpoint.

and are considered permanent. Any other updates with timestamp
greater than T , must have been sent by F on a later unsuccessful
attempt and must be undone.

Each node examines the updates it received from F by exam-
ining the timestamps of shared pages. For pages with timestamp
greater than T , there is a possible inconsistency between the sec-
ondary home copy of the page (corrupted copy) and the primary
home copy (valid copy). Consistency is restored by having the pri-
mary home of every such page overwrite the secondary home copy
of the page with its own valid home copy. For pages with times-
tamp less or equal to T , there is a possible inconsistency between
the secondary home copy of the page (updated copy) and the pri-
mary home copy (partially updated or stale copy). Consistency is
restored by having the secondary home of every such page over-
write the primary home copy of the page with its own updated home
copy.

In this section, we discuss the reconfiguration of the protocol
state. The most important part of protocol state is locks. For each
lock whose primary or secondary home used to be the failed node
F, a new primary or secondary home is assigned according to a
predefined primary-backup mapping scheme. If a node becomes the
new primary or secondary home for a lock, it copies the associated
lock data structures from the secondary or primary home of the
lock, respectively.

Finally, in Steps 5 and 6 the compute threads that used to run
on the failed node resume execution on the backup node. Figure 4
depicts how the failed threads resume execution on the backup
node. The leader thread that had initiated the checkpoint resumes
immediately at the point of the last successful checkpoint, skips
the propagation phase, which had been successfully completed
before the failure, and continues execution. The rest of the threads
resume execution at the point where each thread was originally
checkpointed, which for all threads except the leader thread is not
apriori determined.

4. Experimental Setup
In this section we describe the platform and benchmarks we use in
our experiments.



VMMC Operation Overhead

1-word send (one-way lat) 8µs
1-word fetch (round-trip lat) 22µs
4 KByte send (one-way lat) 52µs
4 KByte fetch (round-trip lat) 81µs
Maximum ping-pong bandwidth 118 MBy/s
Maximum fetch bandwidth 118 MBy/s
Notification 18µs
Remote lock acquire 53.8µs
Local lock acquire 12.7µs
Remote lock release 7.4µs

Table 1. Basic costs for the VMMC communication layer.

Application Problem Size
FFT 1M points

LU-contiguous 1024 × 1024 matrix
WaterNsquared 4096 molecules
WaterSpatialFL 4096 molecules

WaterSpatial 4096 molecules
RadixLocal 4M keys

Table 2. Applications and problem sizes used for our performance
evaluation.

4.1 Platform

We perform all experiments on an 8-node (16-processor) cluster
equipped with 400MHz, 2-way Pentium-II SMP nodes running
Linux and interconnected with the Myrinet SAN [6]. Cross-node
communication is based on a user–level communication library,
Virtual Memory Mapped Communication (VMMC) [11].

VMMC provides direct data transfer between the sender’s and
receiver’s virtual address spaces. More specifically, VMMC pro-
vides remote deposit and remote fetch operations. These operations
allow for data transferred between two nodes to be fetched from and
deposited to specified virtual addresses in the host’s main memory
without interrupting the remote host processor or copying between
communication buffers. These features dramatically reduce latency
compared to traditional TCP/IP based implementations. VMMC
also tolerates transient network errors by using packet retransmis-
sion, and guarantees FIFO message delivery. Table 1 shows the cost
of basic communication operations on our cluster. Noticeably, the
communication layer provides a one way, end–to–end latency of
around 8µs.

4.2 Compute Server Benchmarks

For our performance evaluation of a compute server running scien-
tific applications, we use the SPLASH-2 [30, 14] application suite.
The specific applications and problem sizes that we use are (Ta-
ble 2): FFT (1M points), LU-contiguous (1024×1024 matrix), Wa-
terNsquared (4096 molecules), WaterSpatialFL (4096 molecules),
WaterSpatial (4096 molecules), and RadixLocal (4M keys).

4.3 In-memory Transactional Server Benchmarks

Vista is a lightweight in-memory transaction processing server [20].
To the best of our knowledge, Vista is the fastest open-source
transaction system available. As such, it provides a good “stress
test” for a cluster-based server. It has also been used by previous
studies on fault tolerance and availability [1, 20].

Vista achieves high performance by avoiding disk I/O. Instead,
it relies on the presence of a reliable memory system [7] layer to
achieve persistence. Besides avoiding disk I/O, the assumption of
the reliable memory underneath allows considerable simplification

0 1

Debit-Credit

0

1000

2000

3000

4000

5000

T
im

e 
(m

s)
 Checkpointing

Ptcl processing

Diffs

Synch Time

Data wait 

Compute 

0 1

Order-Entry

0

5000

10000

15000

 

Figure 6. Execution time breakdown for Vista on 4 system nodes,
for both the unreliable (left bar) and the reliable (right bar) proto-
cols.

in the implementation of transaction semantics [20]. The original
Vista system, relies on the Rio file-system [7] to protect main
memory against its two common causes of failure, power failures
and operating system crashes.

In contrast, our cluster server does not rely on the presence of
the specialized Rio file system. Instead, we implement the recov-
erable and highly available memory layer using our techniques for
data replication, remote checkpointing, and resuming of threads.
Because Vista does not store its data on disk, but rather keeps its
data structures and database tables in memory, in the original sys-
tem, the data remains safe when the machine fails, but it is unavail-
able until the machine recovers. FineFRC uses data replication to
provide both reliability and data availability.

In our experiments, we use the Debit-Credit and Order-Entry
benchmarks provided with Vista [20]. These benchmarks are vari-
ants of the widely used TPC-B and TPC-C benchmarks. Debit-
Credit (TPC-B) models banking transactions [33]. The database
consists of a number of branches, tellers, and accounts. Each trans-
action updates the balance in a random account and the balances in
the corresponding branch and teller. Each transaction also appends
a history record to an audit trail. The Debit-Credit benchmark dif-
fers from TPC-B primarily in that it stores the audit trail in a 2
Mbytes circular buffer in order to keep it in memory.

Order-Entry (TPC-C) models the activities of a wholesale sup-
plier who receives orders, payments, and deliveries [34]. The
database consists of a number of warehouses, districts, customers,
orders, and items. In both Debit-Credit and Order-Entry we issue
transactions sequentially and as fast as possible. They do not per-
form any terminal I/O in order to isolate the performance of the
underlying transaction system. Both benchmarks exhibit very fine
grained transactions (on the order of tens of µs on our system)
and write little data (on the order of tens to hundreds of bytes per
transaction).

5. Experimental Results
We first examine overall execution results for the reliable versus
the unreliable system, respectively, highlighting overheads during
failure-free execution. Then, we examine recovery times.

5.1 Failure-free Overheads

Figures 5 and 6 present a comparison of the execution time for the
unreliable and reliable protocols for the Splash and Vista bench-
marks, with one and two compute threads per node.

We present a breakdown of the execution time in six basic com-
ponents: compute time, data wait time, synchronization time, the
time to create and transfer diffs to home nodes, protocol processing
and checkpointing time. This breakdown shows the relative impact
of different protocol aspects on system performance for the reliable
protocol versus the unreliable one. Synchronization time includes



0 1

FFT

0

500

1000

1500

2000

T
im

e 
(m

s)
 Checkpointing

Ptcl processing

Diffs

Synch Time

Data wait 

Compute 

0 1

LU

0

500

1000

1500

2000

 

0 1

WaterNsq

0

10000

20000

30000

 

0 1

WaterSpFL

0

1000

2000

3000

4000

 

0 1

Radix

0

500

1000

1500

 

0 1

WaterSp

0

2000

4000

6000

8000

10000

 

Figure 5. Execution time breakdown for SPLASH-2 on 8 system nodes, for both the unreliable (left bar) and the reliable (right bar) protocols.

both intra- and inter-node synchronization. Diff time includes the
time necessary for computing and sending diffs during all check-
points. The checkpoint overhead includes the checkpoint trigger
overhead due to signaling between the compute threads and the
checkpoint thread, the per-thread cost of saving the thread context
locally and the time necessary for the checkpoint thread to save the
contexts and stacks remotely. Protocol time consists of the remain-
ing execution time.

Comparing the overall execution time of the two protocols
across all graphs, we see that the main source of overhead com-
pared to the base system is an increase in the synchronization and
diff portion time, while the overheads due to thread state check-
pointing are negligible. For the diff portion, the increase comes
from the need to propagate diffs to two sets of homes and due to
the additional diff creation by the home nodes themselves (Sec-
tion 3.2). For the synchronization portion, the increase comes from
the need to coordinate thread actions during checkpoints, such
as disallowing concurrent writes to the specific pages involved in
the checkpoint, and other synchronization needed for maintaining
atomicity of protocol state.

The overhead in FFT is relatively high, compared with all other
applications and configurations. The busy-waiting nature of barri-
ers in GeNIMA and the large number of diff flushes during barriers
in FFT create contention between protocol and application actions
in the two-thread configuration (Section 5.2): diffs for roughly a
thousand application pages need to be sent because the barrier con-
stitutes a consistency point, hence a checkpoint.

Overall, overheads of reliability actions taken during failure-
free execution are 38% on average for all applications consid-
ered. Across both application suites, checkpoints occur with high
frequency ranging from 2 checkpoints per second to 124 check-
points per second in the Splash benchmarks and above 800 check-
points per second in the Vista benchmarks, obviating the need for
protocol-induced periodic checkpoints. In the Splash benchmarks,
checkpoints are driven by consistency actions due to the high level
of data sharing inherent in the applications. In the Vista bench-
marks, while actual sharing is low, transactions are very fine-grain,
on the order of a few to tens of µs, and each transaction’s commit
automatically triggers a checkpoint.

5.2 Recovery Time

The recovery overhead depends on a number of parameters that can
be classified as static and dynamic. The static parameters are fixed
for a particular run and are: the application pattern, the problem
size, and the number of nodes. The first two determine the number
of locks and shared pages used. The third affects synchronization
time as well as the distribution of shared data (pages and locks) to
homes.

There are two main dynamic parameters which depend on the
exact point at which a failure occurs: the number of updates that

need to be undone during the recovery and the home distribution of
the corresponding updated pages.

The worst-case scenario (in a single run) for the number of
updates that need to be undone is when the failure occurs in the
interval with the greatest number of updates and immediately after
all of the diffs have been sent to the first set of homes, but exactly
before the write of the checkpoint timestamp that indicates the
end of the first phase of diff propagation. This means that, during
recovery, the largest possible number of updates need to be undone.

Moreover, the home distribution of the updated pages affects
the overall time to undo updates at each individual node, since the
restoration of a corrupted copy might be done using a local copy
operation or a remote write depending on the primary home place-
ment. Thus, we are interested in the measurement of the recovery
time in two different failure cases: one that happens during diff
propagation, whose extreme scenario we mentioned above, and an-
other that happens at any other point in the execution, when recov-
ery consists only of reconfiguration actions and the resumption of
failed threads on the backup node. This time should be invariable
across different failure cases.

To examine the cost of recovery we inject failures at represen-
tative points during system operation and measure the cost of each
recovery action. Tables 3 and 4 present the recovery cost in sev-
eral representative cases. For the Splash benchmarks, the faults are
injected as follows: in WaterNsquared, during barrier synchroniza-
tion, in FFT during diff propagation and, in LU during diff propa-
gation. FFT and LU are also the applications that require the largest
amounts of update data movement during checkpoints, so we can
consider the respective recovery times as worst case scenarios. For
the Vista benchmarks, the failures are injected at a random point
during execution outside of synchronization operations and check-
points. The runs are performed on a 4-node (8-processor) system.

The overhead is broken into the following components: inter-
node synchronization, recovery actions performed exclusively by
the backup node, reconfiguration of homes for system locks, initial-
ization/restoration of lock-related data structures, reconfiguration
of page homes and initialization/restoration of orphan/corrupted
home pages, and resumption of failed threads on the backup node.
The final row shows the number of pages that need to be restored
in the given recovery session.

Overall, recovery overhead is fairly low, and in all cases includ-
ing the worst case scenarios in FFT and LU, we measure it to be
below 600 msec.

6. Related Work
There is a large body of previous work in fault tolerance in a num-
ber of research areas. A survey of rollback-recovery protocols for
message passing systems is presented in [12]. More relevant for our
work is the survey of recoverable distributed shared virtual mem-



Application: WaterNsquared FFT LU
Recovery Action Cost (ms) Cost (ms) Cost (ms)
Internode synch 20.307 0.013 0.091
Backup processing 0.043 0.037 0.102
Reconfigure locks 0.114 0.004 0.085
Reconfigure pages 0.104 162.813 53.366
Resume threads 0.393 399.778 399.692
Total 20.961 562.645 453.336

Restored pages 0 1024 98

Table 3. Indicative examples of recovery cost for the Splash
benchmarks.

Application: Debit-Credit Order-Entry
Recovery Action Cost (ms) Cost (ms)
Internode synch 3.121 90.962
Backup processing 0.074 0.050
Reconfigure locks 193.971 195.000
Reconfigure pages 0.158 78.690
Resume threads 0.080 0.108
Total 197.404 364.81

Restored pages 0 0

Table 4. Indicative examples of recovery cost for the Vista bench-
marks.

ory systems presented in [21]. Previous work that has examined
various aspects of recovery in software shared memory systems in-
cludes [27, 10, 31, 17, 1, 18, 26]. In all these cases, the focus has
been on protocol extensions for logging and checkpointing that en-
able coarse-grain system recovery. Also, most studies do not ex-
amine the recovery path and do not provide results for recovery
overheads. In our work, we demonstrate how systems can support
continuous operation with below-second recovery times through
dynamic replication of system state.

Our work is based on the system presented in [8]. Our previ-
ous work has focused on the failure free execution. In this work we
examine in detail the recovery actions, we build a working proto-
type that recovers from failures, and provide measurements of the
recovery and reconfiguration time.

A good taxonomy of various systems is presented in [24]. Based
on this taxonomy the scheme we use is a backward error re-
covery scheme that uses replication to distinct volatile memories
for storage protection, performs uncoordinated checkpoints across
nodes and coordinated inside each node, and achieves separation
of checkpoint and working data with full duplication but by incre-
mental propagation of modifications.

Our approach shares similarities with the Tandem NonStop ar-
chitecture and the Guardian operating system [3]. Both approaches
use independent components operating asynchronously, where any
failed component can be replaced by another component. Further-
more, both systems can tolerate a single failure. However, the two
approaches target different platforms. The NonStop architecture in-
volves special hardware components including ECC memory. In
contrast, our system is implemented with commodity components
and uses runtime support to maintain two consistent copies of sys-
tem state during execution.

Recently, there has been more work on techniques that allow
hardware shared memory servers to transparently recover from
faults [25, 24]. The emphasis in these cases is placed on the failure-
free case and available results are based mostly on simulation. The
proposed approaches are log-based and require modifications to the
host processors.

Previous work in fast failover [31, 1] has addressed issues re-
lated to maintaining low-overhead backups of in-memory state.
However, in these cases, the primary and backup nodes are not able
to support a single copy of the same multithreaded application. Our
work uses the same fail-over concept, however, allows the primary
and backup nodes to transparently share application state, signifi-
cantly broadening the range of server applications that can benefit.

Recent work in virtualization layers [2, 28] aims at providing
higher level abstractions on top of hardware platforms. Although
this work has mostly targeted single-node systems, it is currently
being extended with migration capabilities towards multi-node sys-
tems for tolerating system faults. The issues that arise in fast fail-
over techniques for this purpose are similar to many of the issues
discussed in our work. Zap [23] is a system that allows sub-second
migration of a group of processes from a Linux system to another.
The main technique is to provide a virtualization layer that com-
pletely decouples process state from the underlying system. Al-
though Zap and FineFRC share the same goal, the approaches dif-
fer. In particular, Zap does not specifically support parallel applica-
tions or maintain data copies on a cluster.

Finally, the currently renewed interest in improving server relia-
bility is manifested by the emergence of a large number of commer-
cial cluster management systems, such as Microsoft MSCS [29],
NCR Lifekeeper [22], and Veritas Firstwatch [9] that provide fault-
tolerance functionalities. Such products differ from our approach in
that they employ fail-over to backup servers to provide continuous
service operation non-transparently, at the application level.

7. Conclusions
In this work we investigate building commodity, transparently reli-
able servers that support continuous availability. Our approach uses
dynamic state replication during execution to guarantee system re-
covery when a failure occurs. We focus on the recovery path and
present the protocol actions required for transparent and efficient
recovery. We present results for a working prototype that reconfig-
ures itself after failures injected during system operation.

Our approach results in sub-second recovery times for all cases
we measure. Using dynamic replication of system and application
state during execution results in an average 38% increase of pro-
gram execution time, which we believe is acceptable for many ap-
plication areas, given the fast recovery provided by our system. Fur-
thermore, we expect that the applications presented are examples of
“stress-tests” for our system and this overhead can be significantly
reduced for applications with low to moderate sharing needs which
allow the system better control over the checkpoint frequency.

Our experience shows that there is a need for a better under-
standing of the tradeoffs between designing systems for perfor-
mance and designing for reliability. Communication protocols in
system area networks have been highly optimized for data trans-
fers. In particular, messages are not buffered at the host in order
to eliminate software data copies out of the critical path. Instead,
the memory that the application is writing on is itself used as the
send buffer. This makes atomicity for the remote replication of up-
dates in the presence of failures complex to implement correctly in
a system using remote data copies for reliability purposes.

Overall, however complex the system design may be, our work
demonstrates that using commodity, transparently reliable servers
for continuous operation is a promising approach for building low-
cost application servers.

Acknowledgments
We thank the anonymous reviewers for their comments and Reza
Azimi for his help with VMMC. We thankfully acknowledge the
support of Natural Sciences and Engineering Research Council of



Canada, IBM, Canada Foundation for Innovation, Ontario Centers
of Excellence, the European Commission FP6 HiPEAC Network
of Excellence, and Research and Technology, Greece.

References
[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Data replication strategies

for fault tolerance and availability on commodity clusters. In Proc. of
the Int’l Conference on Dependable Systems and Networks, 2000.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In 19th ACM Symposium on Operating Systems
Principles, Oct 2003.

[3] J. Bartlett, W. Bartlett, R. Carr, D. Garcia, J. G. R. Horst, R. Jardine,
D. Lenoski, and D. McGuire. Fault tolerance in Tandem computer
systems. Technical Report TR-90.5, Tandem, 1990.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[5] A. Bilas, C. Liao, and J. P. Singh. Accelerating shared virtual memory
using commodity ni support to avoid asynchronous message handling.
In The 26th Int’l Symposium on Computer Architecture, May 1999.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. N. Seizovic, and W. Su. Myrinet: A gigabit-per-second local area
network. IEEE Micro, 15(1):29–36, Feb. 1995.

[7] P. Chen, W. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell.
The Rio file cache: Surviving operating system crashes. In
Proceedings of the 7th Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 74–83, Oct.
1996.

[8] R. Christodoulopoulou, R. Azimi, and A. Bilas. Dynamic data
replication: An approach to providing fault-tolerant shared memory
clusters. Proc. of The 9th IEEE Symposium on High-Performance
Computer Architecture (HPCA9), Submitted for Publication, 2003.

[9] V. S. Corp. Veritas firstwatch. http://www.veritas.com.

[10] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro.
Lightweight logging for lazy release consistent distributed shared
memory. In Proc. of the Operating Systems Design and Implementa-
tion Conference, pages 59–73, Oct. 1996.

[11] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. Vmmc-2:
Efficient support for reliable, connection-oriented communication. In
Proc. of the Hot Interconnects Symposium V, Aug. 1997.

[12] E. N. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys (CSUR), 34(3):375–408, 2002.

[13] IBM. High availability with DB2 UDB and Steeleye Lifekeeper. IBM
Center for Advanced Studies Conference (CASCON): Technology
Showcase, Toronto, Canada, Oct 2003.

[14] D. Jiang, H. Shan, and J. P. Singh. Application restructuring and
performance portability across shared virtual memory and hardware-
coherent multiprocessors. In Proceedings of the 6th ACM Symposium
on Principles and Practice of Parallel Programming, June 1997.

[15] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency
for software distributed shared memory. In Proc. of the 19th Annual
Int’l Symp. on Computer Architecture (ISCA’92), pages 13–21, 1992.

[16] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Tread-
marks: Distributed shared memory on standard workstations and
operating systems. In Proceedings of the 1994 Winter Usenix Confer-
ence, pages 115–131, Jan. 1994.

[17] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and I. Puaut.
A recoverable distributed shared memory integrating coherence and
recoverability. In Proc. of the 25th Annual Int’l Symp. on Fault-
Tolerant Computing (FTCS-25), pages 289–298, 1995.

[18] J. Kim and N. Vaidya. Analysis of failure recovery schemes for
distributed shared-memory systems. IEE Computers and Digital
Techniques, 146(3), May 1999.

[19] K. Li. Ivy: A shared virtual memory system for parallel computing.
Proceedings of the 1988 International Conference on Parallel
Processing, 2:94–101, August 1988.

[20] D. Lowell and P. Chen. Free transactions with Rio Vista. In
Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Oct. 1997.

[21] C. Morin and I. Puaut. A survey of recoverable distributed shared
virtual memory systems. IEEE Transactions on Parallel and
Distributed Systems, 8(9):959–969, 1997.

[22] NCR Lifekeeper. http://www.ncr.com.

[23] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design
and Implementation of Zap: A System for Migrating Computing
Environments. In OSDI’02, Dec. 2002.

[24] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-effective
architectural support for rollback recovery in shared-memory
multiprocessors. In Proceedings of the 29th Int’l Symposium on
Computer Architecture, May 2002.

[25] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet:
Improving the availability of shared memory multiprocessors with
global checkpoint/recovery. In Proceedings of the 29th Int’l
Symposium on Computer Architecture, May 2002.

[26] M. Stumm and S. Zhou. Fault tolerant distributed shared memory
algorithms. In Proc. of the 2nd IEEE Symposium on Parallel and
Distributed Processing, pages 719–724, December 1990.

[27] F. Sultan, T. D. Nguyen, and L. Iftode. Scalable fault-tolerant
distributed shared memory. In Proc. of Supercomputing, 2000.

[28] VMware. Vmware ESX Server Storage Area Networks.
http://www.vmware.com/, 2003.

[29] W. Vogels, D. Dumitriu, K. P. Birman, R. Gamache, M. Massa,
R. Short, J. Vert, J.Barrera, and J. Gray. The design and architecture
of the Microsoft cluster service. In Proceedings of the 1998 Fault
Tolerant Computing Symposium, pages 422–431, 1998.

[30] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodolog-
ical considerations and characterization of the SPLASH-2 parallel
application suite. In Proceedings of the 23rd Int’l Symposium on
Computer Architecture, May 1995.

[31] Y. Zhou, P. Chen, and K. Li. Fast cluster failover using virtual
memory-mapped communication. In Proc. of the Int’l Conference on
Supercomputing, June 1999.

[32] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-
based lazy release consistency protocols for shared virtual memory
systems. In Proc. of the 2nd Symp. on Operating Systems Design and
Implementation, pages 75–88, 1996.

[33] Transaction Processing Performance Council. TPC Benchmark B
Standard Specification, August 1990.

[34] Transaction Processing Performance Council. TPC Benchmark C
Standard Specification, August 1996.


