
Using Semantic Information to Improve Transparent Query Caching for
Dynamic Content Web Sites

Gokul Soundararajan and Cristiana Amza
Department of Electrical and Computer Engineering

University of Toronto
{gokul, amza}@eecg.utoronto.ca

Abstract

In this paper, we study the use of semantic information to
improve performance of transparent query caching for dy-
namic content web sites. We observe that in dynamic con-
tent web applications, the most recently inserted items are
also the ones that register the highest activity. For example,
the newest books in a bookstore are also the ones more fre-
quently browsed and bought. Hence, assuming repeatable
queries, a particular read-only query response is likely to
incrementally change as new rows are added to the query’s
tables. We avoid the cached query response invalidations
that would otherwise occur due to the addition of new items
by keeping the newly inserted rows in small temporary ta-
bles. This allows us to reuse cached responses for partial
coverage of query results. A query result is then obtained
from merging an existing cached response with one or more
lightweight residual query results that involve the tempo-
rary tables. In addition, we enhance our cache with other
partial coverage techniques based on per-query semantic
information such as sub-range queries for all queries that
match a specific template.

We implement semantic query caching on top of an exist-
ing template-based cache with column-based invalidations.
Our evaluation is based on a dynamic content site using
the Apache web server with Tomcat Java servlets and the
MySQL relational database. We use the industry-standard
TPC-W e-commerce benchmark as our benchmark appli-
cation. We conclude that augmenting transparent query
caching with the ability to retrieve partial results from the
cache improves performance substantially in terms of la-
tency and to a lesser extent in terms of hit-rate and through-
put.

1 Introduction

In this paper, we study transparent query caching tech-
niques providing both performance enhancements and strict

consistency guarantees to the user. Most previous work
in the area of dynamic content caching has concentrated
on specialized caching solutions [15, 23, 10, 5, 8]. These
existing solutions require some type of programmer or
site administrator intervention to explicitly specify the
cacheable fragments of web pages and their lifetime. Other
query caching solutions assume relaxed consistency seman-
tics [2]. The use of these previous caching solutions implies
either additional design and programming effort to achieve
the right consistency semantics for each application, or
force the user to handle inconsistent results. At the other
end of the spectrum are basic transparent caching tech-
niques which provide strong consistency, but use coarse-
grained table-based or column-based invalidations [17, 9].

In this paper, we design and implement optimizations
based on semantic information for a fully transparent dy-
namic content cache suitable for any web application, in-
cluding applications with strong transactional requirements
such as e-commerce workloads. Transparency requires that
cached entries be invalidated automatically as a result of
writes. Specifically, a cached query response needs to be
invalidated when an underlying data item in the database
changes. Our focus is on reducing the impact of automatic
invalidations by either making them unnecessary or reduc-
ing the penalty of a cache miss through partial coverage of
query results.

Our first transparent cache optimization is based on ad-
dressing the high rate of invalidations caused by the addition
of new items to a database table in a cache with coarse grain
(table or column-based) automatic invalidations. Semantic
information here means that the optimization is driven by
knowledge of common application patterns such as the high
frequency of browse-type access to newly inserted items
(e.g., browsing the new books).

We maximize the probability that a read-only query can
be largely satisfied from the cache, by keeping track of
newly inserted items in separate small temporary tables.
A query result is then obtained from merging an exist-
ing cached response with one or more lightweight residual
query results that may need to be computed on the tem-



porary tables. By keeping the temporary tables small, the
overall perceived response time for a query is low.

A second dimension to our semantic cache scheme is
using per-query information to determine full and partial
coverage for query results. Full or partial coverage occurs
when a query response is fully or partially contained within
one or more cached responses. Semantic information in this
case is using per-query knowledge to check for containment
of the current query response within an already cached re-
sponse. For this purpose we parse each query to infer query
result ranges and possible coverage or partial coverage for
all queries that match a specific template.

The combination of partitioning the new and old items
through the use of temporary tables driven by application
patterns and using per-query semantic information work in
synergy. In particular, partitioning increases opportunities
for partial coverage for each individual query as explained
above. On the down side, our semantic cache optimizations
come at the expense of additional processing for contain-
ment checking, filtering responses for useless rows in cases
of partial coverage and even reimplementing a limited frac-
tion of the database functionality (such as re-ordering, or
re-counting rows during merging results for our partition-
ing scheme).

We implement semantic query caching on top of an exist-
ing template-based cache with column-based invalidations
as available with the open-source C-JDBC database clus-
ter middleware [9]. The C-JDBC query cache accesses the
database through a JDBC driver, and does not rely on any
special database features (such as availability of triggers or
any other database functionality).

Our evaluation uses a dynamic content site with the
Apache web server [1], Tomcat Java servlets as the appli-
cation server and the MySQL [17] relational database. We
use the industry-standard TPC-W [22] e-commerce bench-
mark’s browsing and shopping workload mixes, as our
benchmark application. We compare our semantic cache
and the original C-JDBC basic cache version. We con-
clude that semantic caching improves performance signif-
icantly in terms of response time, especially for workloads
with a higher fraction of writes (e.g., the TPC-W shopping
mix). For both of the TPC-W browsing and shopping mixes,
column-based invalidation enhanced with partial coverage
detection is more effective than column-based invalidation
alone. Hence, for both workloads, the benefits of higher
hit ratios outweigh the costs of additional processing in our
semantic cache. The remainder of this paper is structured
as follows. Section 2 provides the necessary background on
transparent caching with coarse-grained automatic invalida-
tions. Section 3 introduces our semantic cache design. Sec-
tion 4 describes our benchmark and experimental platform.
We experimentally investigate how our semantic cache im-
proves performance in Section 5. Section 6 discusses re-
lated work. Section 7 concludes the paper and presents av-

Web server
Database 

server

Client

Internet HTTPHTTP

Application 
Server

SQL

 

Figure 1. Common architecture for dynamic
content sites

enues for future work.

2 Background

Dynamic content sites commonly use a three-tier archi-
tecture, consisting of a front-end web server, an application
server implementing the business logic of the site, and a
back-end database (see Figure 1). The (dynamic) content of
the site is stored in the database. A number of application
programs provide access to that content. A client request for
dynamic content causes the web server to invoke a method
in the application server. The application server executes
the application program, issues SQL queries, one at a time,
to the database and formats the results as an HTML page.
The web server then returns this page in an HTTP response
to the client.

To speed up the delivery of dynamic web pages, database
query caching has been proposed [4, 11, 14, 19, 24]. With
query caching, the results of recent queries are cached lo-
cally and are reused on later queries. By caching, both the
latency of retrieving the results and the load on the database
back-end is reduced.

Our cache optimizations are implemented on top of
an open-source caching middleware called C-JDBC which
in turn accesses the database through a JDBC driver.
JDBC (Java Database Connectivity) allows two methods
of declaring queries: (1) using templates where queries
are predeclared as prepared-statements and parameters are
set through function calls and (2) non-templated versions
where the query is a string concatenation of query body and
arguments. The C-JDBC cache assumes the template ver-
sion is in use for queries which suits the parameterized de-
sign of web pages well. Henceforth, we assume that query
templates are accessible to the cache.

The cache functions as a transparent proxy between the
application logic and the database. To the application logic,
the cache appears as the database and to the database, the
cache appears as the application server. The cache takes as
its input the database queries generated by the application
logic. On a read query, the cache checks whether the results
of the query reside in the cache, and, if so, returns them im-
mediately to the application. Otherwise, the cache forwards
the query to the database. The database returns the results
of the query to the cache, where they are inserted and for-
warded to the application. On an update, insert or delete



query, the cache performs the necessary invalidations and
forwards the write query to the database. The cache may be
located on the same machine as the front-end, on a separate
machine, or on the same machine as the database.

The C-JDBC cache supports two transparent invalidation
schemes (table and column based). In these schemes, for
each cached query response, the query’s dependencies are
recorded in terms of database tables, or in terms of database
columns. In the case of table-based (column-based) inval-
idation, each table (column) object contains references to
the cache entries that are dependent on this table (column).
When an update, insert or delete query is received, the cache
invalidates all cache entries dependent on either the affected
tables or the affected columns and forwards the query to the
database. To keep the size of the cache manageable, the
C-JDBC cache implements an LRU replacement strategy.

3 Semantic Cache Design

In this section we describe our techniques for using
query results from the cache as partial results towards com-
puting a query response. Section 3.1 presents an overview
of our partitioning scheme for transforming misses caused
by insert queries into partial hits. Section 3.2 presents our
method for obtaining partial answers from the cache using
both our optimization for inserts and more generally per-
query semantic information.

3.1 Partitioning Scheme for Alleviating Insert In-
duced Invalidations

We keep newly inserted rows in separate tables called
temp tables, one temp table per regular database table. The
value of each field in the temp table rows (including key
values) is the same as if the rows were present in the main
table. Upon receiving a select query, the cache splits it into
two queries: the original query and one or more residual
queries. The original query is the unmodified query work-
ing on the regular table. A residual query is the same query
on the corresponding temp table. These separate results are
obtained and cached as usual. The final query result is ob-
tained by merging these query results. This optimization
potentially benefits query results that would otherwise be
invalidated by inserts into the accessed tables. In the ex-
ample shown in Figure 3, a SELECT which fetches a large
number of rows (A) would be invalidated by a subsequent
INSERT query. By placing newly inserted rows in a tem-
porary table, we avoid invalidating the result of the first
SELECT and we can compute the result for a subsequent
matching SELECT quickly by merging the cached response
(A) with a small residual response (B) computed from the
corresponding temporary table (Figure 4).

Although the residual queries on the temporary tables
are lightweight, we choose to cache their results as well.

Hence, these residual results could either be returned from
the cache if valid or otherwise would need to be recomputed
at the database similarly to the treatment of any other query.

Upon an INSERT query, the cache redirects the query to
insert it in the temporary table. For UPDATE and DELETE
queries the cache sends them to both the original and the
temporary tables. In the case of queries containing joins of
two or more tables, the query is split into the correspond-
ing sub-queries necessary to compute the join according to
the formula in Figure 2 (shown for 2 tables). Checks for at-
tributes with null values and additional filtering of the result
set are inserted to handle the case of outer joins.

A ./ B = (A ∪ tA) ./ (B ∪ tB)

= (A ./ B) ∪ (A ./ tB)

∪(tA ./ B) ∪ (tA ./ tB)

Figure 2. Join Formula for Partitioned Tables

Partitioning a select query could lead to O(2n) parti-
tioned queries, where n is the number of tables referenced
in the query. However, in practice, only certain tables are
partitioned at any given time (usually 1 or 2). Their number
depends on how many of a query’s tables registered inserts
in the recent past. Furthermore, the joins that involve the
temporary tables are fast since these tables contain a few
rows (a maximum of 100 in our scheme). When an insert
table exceeds the threshold size, we remove and reintegrate
all entries from the insert table into the corresponding reg-
ular table. Since the number of sub-queries is kept low and
the temp tables are small, computing the residual queries in
the case of joins is relatively fast compared to recomputing
the original result.

Figure 3. Incremental change for a query re-
sponse (A) upon inserting a new row (B)

3.2 Detecting Coverage for Query Results

The cache can detect both Full Coverage and Partial
Coverage of a query response. In Full Coverage (see Fig-
ure 5), the query response of the current query is fully con-
tained within a cached response. In this case, (at least) one



Figure 4. Using a separate temporary table for
new inserts allows reuse of previous query
response (A) for partial coverage

of the cached query responses is a superset of the current
query response. In Partial Coverage, a query result is ob-
tained from merging an existing cached response with one
or more residual query results that may need to be computed
at the database.

Figure 5. Coverage of Query Results: The re-
sponse for the “PRICE < 50” query is fully
contained within a previous cached entry

Full coverage is classified as a cache hit, while partial
coverage is currently classified as a cache miss. Checks
for either full or partial coverage are done for all types of
queries (including sub-queries of a partitioned query). The
cache first checks whether there is an exact match with a
previously cached query. If not, the algorithm proceeds to
check if any previously cached query can provide a full an-
swer (full coverage). If full coverage is detected, the cache
filters out any rows that are not necessary to satisfy the cur-
rent query from the cached entry and returns the resulting
query response.

Otherwise, the cache algorithm proceeds to check if any
previously cached query can provide a partial answer. If

such a query exists, the cache sends a remainder query to
the database. When the database returns the result for the
remainder query, the cache merges the result with the partial
result obtained from the cache. In the following section we
provide more detail on how we determine whether a cached
result satisfies the incoming query (i.e., how we implement
full coverage and partial containment checks), how to gen-
erate a remainder query in the case of partial coverage and
the merging algorithm.

3.2.1 Coverage Checking

We follow the general coverage testing described by Larson
et al. [13] which defines that a query Q1 covers Q2 if the
following three conditions hold:

1. Attribute Coverage: This states that the columns in
the SELECT clause of Q2 should be a subset of Q1.

2. Tuple Coverage: This means that the tuples addressed
by Q2 should be a subset of the tuples addresses by
Q1. In other words, for the WHERE predicates, P1 of
Q1 and P2 of Q2, ∀(ttupleofQ2)P2 → P1.

3. Selectability: This requires that the query must be en-
tirely evaluated using the cache entries. That is, Q2

should not refer to any columns in other SQL con-
structs (such as ORDER BY, and WHERE) that is re-
ferred by Q1.

We currently consider only conjunctive WHERE clauses
for containment (coverage) checking. Furthermore, we can
detect coverage only conservatively for queries matching a
given query template (e.g., differing only in the inequality
expressions appearing in the WHERE clause).

In more detail, the containment checking algorithm takes
as input the incoming query Q and a list of cached queries C

matching Q’s template. Each query contains a list of pred-
icates P contained in the WHERE clause. For each cached
query, the algorithm checks whether all the equality con-
straints are satisfied. Any cached query not satisfying an
equality constraint is removed from further consideration
for this match. Then, for each inequality predicate, the algo-
rithm selects the cached query that covers the most tuples.
In case of ties, the first query on the list is returned.

3.2.2 Generation of the Remainder Query

To complete the result obtained from the cache, a remainder
query obtains the missing tuples from the database. For-
mally, the remainder query is described as R = Q − C

where Q is the incoming query and C is the cached partial
result. The remainder query is generated in a straightfor-
ward way. We consider the inequality predicates, one at a
time. For each predicate, if the cached query does not cover
the incoming query, the predicate is rewritten to fetch the
tuples not referred by the cached query.



For example, consider the following queries conforming
to template T below, where the new query Q is presented to
the cache, while the results of C1, C2 and C3 are already
cached (only the WHERE clause is shown for these queries):

T: (SUBJECT = ?) AND (PRICE < ?)
Q: (SUBJECT = ‘KIDS’) AND (PRICE < 100)
C1: (SUBJECT = ‘KIDS’) AND (PRICE < 50)
C2: (SUBJECT = ‘KIDS’) AND (PRICE < 75)
C3: (SUBJECT = ‘ARTS’) AND (PRICE < 100)

The containment checking algorithm first checks
whether the equality constraints are satisfied. After this
stage, C3 can be removed from future consideration. Then,
we proceed to check if there are any overlapping regions be-
tween Q and any of the cached queries. In this example, it
is easy to see that both C1 and C2 partially cover Q, but C2
is a better candidate since it contains a larger percentage of
the final result. Therefore, C2 is selected as the best result
from the cache. Q is rewritten to

Q2: (SUBJECT = ‘KIDS’) AND
(PRICE >= 75 AND PRICE < 100)

The rewritten query is sent to the database and its results
are merged with the cached results to form the final answer
that is returned to the client.

3.2.3 Efficient Merging

Since results have to be merged for every partitioned query,
special care needs to be taken for queries that contain
special clauses such as ORDER BY, COUNT, MAX and
other SQL functions. For sorting necessary in ORDER BY
clauses, we use an algorithm that merges the results in
O(ndc) time where d is the number of partitioned tables
in the query and c is the number of ORDER BY columns.
Our algorithm is based on merge-sort [7] and uses the fact
that the query result sets to be merged are pre-sorted by the
database. The algorithm then generates the sorted final re-
sult by interweaving the different streams.

4 Experimental Evaluation

4.1 Hardware and Software Environment

We use the same hardware for all machines running
the client emulator, the web servers, the cache, and the
database. Each machine has dual AMD Athlon 2400 MP
processors (running at 2 GHz), 512MB SDRAM, and a
120 GB disk drive. All machines are connected through
a switched 100 Mbps Ethernet LAN.

All machines run RedHat Linux 9. We use Apache Tom-
cat 4.1 as our Web/Application server. We use MySQL v4.0
as our database server.

4.2 TPC-W Benchmark

We use an industry-standard e-commerce benchmark,
TPC-W, from the Transaction Processing Council [22].

Several interactions are used to simulate the activity of
a retail store. We implemented the 14 different interactions
specified in the TPC-W benchmark specification. Of the
14 scripts, 6 are read-only, while 8 cause the database to
be updated. The read-only interactions include access to
the home page, listing of new products and best sellers,
requests for product detail, and two interactions involving
searches. Read-write interactions include user registration,
updates to the shopping cart and two interactions involving
purchases. With one exception, all interactions query the
database server.

TPC-W simulates three different interaction mixes by
varying the ratio of read-only to read-write scripts brows-
ing, shopping, and ordering.

The complexity of the interactions varies widely, with in-
teractions taking between 20 ms and 700 ms on an unloaded
database in our experimental environment, and read-only
interactions up to 30 times more heavyweight. than read-
write interactions. The most complex read-only interactions
are BestSellers, NewProducts and Search by Subject.

We use the standard TPC-W database containing
100,000 items and 2.8 million customers which gives a
database size of about 5 GB.

4.3 Measurement Methodology

In the experiments, we consider a configuration where
the client emulator, Apache and Tomcat are co-located on
one machine. The query cache is running on a second ma-
chine and the MySQL database on a third machine.

The same methodology is used for measuring the perfor-
mance of both cache versions (the C-JDBC cache with and
without the semantic optimizations). In each experiment the
first half of the run is used to warm-up the cache and is ex-
cluded from the measurements. Each experiment also starts
with an identical database. Differences between repeated
runs of the same experiment were minimal. To select the
load for the experiments, we are driving the server without
the cache with increasing the number of clients, until per-
formance peaks. Then, we use the same number of clients
to drive the server with the cache enabled, for both the basic
C-JDBC cache and the semantically enhanced cache.

We measured the performance in terms of throughput
and response time of our cache versus the C-JDBC cache
for two TPC-W mixes: browsing and shopping. The brows-
ing mix contains 95% read-only scripts, and the shopping
mix 80%.



5 Results

In this section we study the impact of our semantic
caching techniques on the performance of a query cache
with column-based automatic invalidations.

Figure 6. Latency Comparison

Figure 6 shows a latency comparison for the C-JDBC
original cache and the semantic cache for the TPC-W
browsing and shopping mixes, respectively. The latency
represents the average response time for a page as perceived
by the client. The results indicate that semantic caching
lowers the latency significantly, by a factor of 2.9 for the
shopping mix and by a factor of 1.2 for the browsing mix.
The shopping mix contains a higher fraction of writes com-
pared to the browsing mix (20% vs. 5%), hence a higher
number of invalidations in C-JDBC. The latency gains are
mostly due to faster computation of query responses from
partial and residual results compared to re-executing the
original query.

Shopping Mix Browsing Mix

Column 23% 37%
Semantic 27% 44%

Table 1. Hit Rates

As seen in Table 1, semantic caching also improves the
hit-rate of the cache due to full coverage detection. For the
browsing mix, the hit-rate is improved by 8% and for the
shopping mix by 4%. We currently classify partial hits as
misses.

On the other hand, the most latency improvement comes
from partial coverage cases rather than additional hits due to
full coverage. Partial hits, especially for queries that involve
multiple table joins (e.g., the BestSeller query that retrieves
the books that were ordered the most in recent purchases)
make a difference in terms of latency improvements for
the shopping mix. The performance improvements brought

about by semantic caching translate in throughput increases
as well, however to a lesser extent than for latency, with
throughput increases only up to 10% for both mixes.

6 Related Work

6.1 Overview of dynamic data caching

Dynamic Web data can be cached at different stages in
its production: the final HTML page (e.g., [3, 12], interme-
diate HTML or XML fragments (e.g., [8]), database queries
(e.g., [16]), or database tables (e.g., [15, 18]). Combination
of various caches are also possible (e.g., [5, 23]). Intu-
itively, caching at the database stage typically offers higher
hit ratios, while caching at the HTML or XML stage offers
greater benefits in the case of a hit. There is no conclu-
sive evidence at this point that caching at any single stage
dominates the others. For instance, Labrinidis and Rous-
soulos use a synthetic workload and conclude that HTML
page caching is superior [12], but Yagoub et al. use TPC-
D and conclude that database query caching is more effec-
tive [23]. It appears that the different caches are complimen-
tary [20, 23]. This paper is concerned with database query
caching. Our methods can be extended to record dependen-
cies between HTML pages or fragments and database data
items, and we intend to investigate this in further work.

6.2 Non-transparent approaches

Luo et al. [15] require the database designer to specify
which tables are cached. Updates to the cache are per-
formed once a minute. Oracle 9i also provides table-level
caching in the middle-tier and invalidation based on time
and events (database triggers), but no generalizable solu-
tion for generating invalidations [18]. Yagoub et al. [23]
describe a declarative system for specifying a web site that
allows a designer control over HTML, XML and query
caches, including what to insert or to remove from the cache
and how to invalidate or update items in the cache. Chal-
lenger et al. propose a cache API to control the contents
of the API [10, 5]. Datta et al. propose annotating the ap-
plication logic to inform the cache which HTML fragments
are cacheable, similar to the WebLogic cache [8]. In con-
trast, our approach is transparent, can be applied without
additional effort to an existing web site design, and auto-
matically maintains consistency at all times. Nonetheless,
we have been able to demonstrate substantial performance
benefits.

6.3 Semantic Caching

The concept of semantic caching has been examined in
the context of database design [13, 21]. This approach



has been explored for LDAP (Lightweight Directory Ac-
cess Protocol) with existing studies studies [6] focusing on
how to reuse results from existing LDAP queries to answer
future queries. More recently, Amiri et al. [2] has pro-
posed using semantic information to generate results based
on cached query results for dynamic content queries shar-
ing the same query template. Their cache shares similarities
with our per-query semantic information optimizations, but
it lacks the ability to generate partial results. Furthermore,
their intended deployment is in caches with loose consis-
tency at the client edge of the network, while our focus is
on providing strong consistency for a central server cache.

7 Conclusions

In this paper, we presented a method of using seman-
tic information to retrieve partial results for queries from
the cache. This method has several new features. First,
the tables are partitioned to reduce misses due to INSERT
queries. Second, information from previous queries is used
to generate partial results. Finally, the results are effi-
ciently merged for high performance. We have demon-
strated that semantic caching improves the performance of
query caching for dynamic content web servers. For the
TPC-W benchmark, we have shown a factor of 2.9 latency
improvement in the shopping mix and a factor of 1.2 latency
improvement in the browsing mix.

References

[1] The Apache Software Foundation. http://www.apache.org/.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. Scalable
template-based query containment checking in web semantic
caches. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), Bangalore, India, 2003.

[3] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and
D. Agrawal. Enabling dynamic content caching for database-
driven web sites. In Proceedings of the 2001 ACM SIG-
MOD International Conference on Management of Data,
May 2001.

[4] J. Challenger, P. Dantzig, and A. Iyengar. A scalable system
for consistently caching dynamic web data. In Proceedings
of the 18th Annual Joint Conference of the IEEE Computer
and Communications Societies, New York, New York, 1999.

[5] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system
for consistently caching dynamic web data. In Proceedings
of IEEE INFOCOM’99, pages 294–303, Mar. 1999.

[6] S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDAP
directory caches. pages 273–284, 1999.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to algorithms (second edition). McGraw-Hill and MIT Press.

[8] A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer, K. Ra-
mamritham, and D. Fishman. A Comparative Study of Al-
ternative Middle Tier Caching Solutions to Support Dynamic

Web Content Acceleration. In Proceedings of the 27th Inter-
national Conference on Very Large Databases, pages 667–
670, Sept. 2001.

[9] E. Cecchet et al. ObjectWeb Open Source MiddleWare:
Clustered JDBC, 2003.

[10] A. Iyengar and J. Challenger. Improving web server perfor-
mance by caching dynamic data. Dec. 1997.

[11] A. Labrinidis and N. Roussopoulos. WebView materializa-
tion. pages 367–378, 2000.

[12] A. Labrinidis and N. Roussopoulos. WebView Materializa-
tion. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 367–378,
May 2000.

[13] P.-Å. Larson and H. Z. Yang. Computing queries from
derived relations. In A. Pirotte and Y. Vassiliou, editors,
VLDB’85, Proceedings of 11th International Conference on
Very Large Data Bases, August 21-23, 1985, Stockholm,
Sweden, pages 259–269. Morgan Kaufmann, 1985.

[14] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo,
B. G. Lindsay, and J. F. Naughton. Middle-tier database
caching for e-business. In Proceedings of the 2002 ACM
SIGMOD international conference on Management of data,
pages 600–611. ACM Press, 2002.

[15] Q. Luo, S. Krishnamurty, C. Mohan, H. Pirahesh, H. Woo,
B. Lindsay, and J. Naughton. Middle-tier database caching
for e-business. In Proceedings of the 2002 ACM Interna-
tional Conference on Management of Data, pages 600–611,
June 2002.

[16] Q. Luo and J. F. Naughton. Form-based proxy caching for
database-backed web sites. In Proceedings of the 27th Inter-
national Conference on Very Large Databases, pages 667–
670, Sept. 2001.

[17] MySQL. http://www.mysql.com.

[18] Oracle. Oracle9i Application Server Web Caching, Oct.
2000.

[19] K. Rajamany. Multi-tier caching of dynamic content for
database-driven web sites. PhD thesis, Rice University,
Houston, Texas, 2000.

[20] K. Rajamany. Multi-tier caching of dynamic content for
database-driven web sites. PhD thesis, Rice University, Aug.
2000.

[21] D. J. Rosenkrantz and H. B. H. III. Processing conjunctive
predicates and queries. In Sixth International Conference on
Very Large Data Bases, October 1-3, 1980, Montreal, Que-
bec, Canada, Proceedings, pages 64–72. IEEE Computer
Society, 1980.

[22] Transaction Processing Council. http://www.tpc.org/.

[23] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez.
Caching strategies for data-intensive web sites. In Proceed-
ings of the 26th International Conference on Very Large
Databases, pages 188–199, Sept. 2000.

[24] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez.
Caching strategies for data-intensive web sites. In Proceed-
ings of the 26th International Conference on Very Large
Databases, 2000.


