
Locality Aware Dynamic Load Management for Massively
Multiplayer Games

Jin Chen
Department of Computer

Science
University of Toronto, Canada

jinchen@cs.toronto.edu

Baohua Wu
Department of Computer and

Information Science
University of Pennsylvania,

USA

baohua@cis.upenn.edu

Margaret Delap
Department of Computer and

Information Science
University of Pennsylvania,

USA

delap@cis.upenn.edu

Björn Knutsson
Department of Computer and

Information Science
University of Pennsylvania,

USA

bjornk@cis.upenn.edu

Honghui Lu
Department of Computer and

Information Science
University of Pennsylvania,

USA

hhl@cis.upenn.edu

Cristiana Amza
Department of Electrical and

Computer Engineering
University of Toronto, Canada

amza@eecg.toronto.edu

ABSTRACT
Most massively multiplayer game servers employ static partition-
ing of their game world into distinct mini-worlds that are hosted
on separate servers. This limits cross-server interactions between
players, and exposes the division of the world to players. We
have designed and implemented an architecture in which the par-
titioning of game regions across servers is transparent to players
and interactions are not limited to objects in a single region or
server. This allows a finer grain partitioning, which combined with
a dynamic load management algorithm enables us to better handle
transient crowding by adaptively dispersing or aggregating regions
from servers in response to quality of service violations.

Our load balancing algorithm is aware of the spatial locality in
the virtual game world. Based on localized information, the algo-
rithm balances the load and reduces the cross server communica-
tion, while avoiding frequent reassignment of regions. Our results
show that locality aware load balancing reduces the average user
response time by up to a factor of 6 compared to a global algorithm
that does not consider spatial locality and by up to a factor of 8
compared to static partitioning.

Categories and Subject Descriptors
D.0 [Software]: GENERAL

General Terms
Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

Keywords
adaptive, distributed, load balancing, locality aware, massively
multiplayer games

1. INTRODUCTION
The popularity of Massively Multiplayer Online Games

(MMOGs) like Lineage [13] and Everquest [14] is on the rise with
millions of registered players, and hundreds of thousands of con-
current players. Current state-of-the-art servers, such as, Butter-
fly.net [3] and TerraZona [15] achieve scalability by splitting the
game world into linked mini-worlds that can be hosted on sepa-
rate servers. These mini-worlds are effectively like separate games,
with the added ability of moving players between them through
special gateways. Admission control at the gateways ensures that
no server gets overwhelmed by players. Newer games, such as,
Sims Online and Tabula Rasa [11] feature more dynamic land-
scapes making static load prediction harder, hence static partition-
ing infeasible.

We have designed and implemented an architecture in which the
partitioning into regions is transparent to players, visibility and in-
teractions are not limited to objects and players in a single region or
server, and regions are mapped dynamically to servers. This means
that the transparency also extends to designers, reducing the need
to adapt the map of the world in order to address load balancing
concerns. Most importantly, our flexible server architecture allows
us to address server bottlenecks caused by registered MMOG pat-
terns, such as, player flocking.

Flocking is the movement of many players to one area or hot-
spot in the game world. It may occur because of features of the
game design or because of agreements among players. If the game
world has some regions that are more interesting, or more profitable
to players in terms of points, experience, treasure, etc., then those
regions will attract more players while other regions remain under-
loaded. Such game hot-spots appear spontaneously and move over
time as a result of players chasing each other, completing parts of a
quest or following invitations from other players to join them. The
exact location of the next hot-spot is only partially predictable since
it could be determined both by in-game and out-of-game events,

such as, email exchanges among players. Hence, no static game
partitioning algorithm can effectively address this problem.

Dynamic load management through adaptive region to server
remapping is an obvious solution to the load management problem.
However, any dynamic remapping algorithm must evaluate the po-
tential trade-offs between the two conflicting goals of i) Balancing
the server load in terms of numbers of players by splitting exist-
ing game world partitions across more servers and ii) Decreasing
inter-server communication by maintaining the locality of adjacent
regions or aggregating adjacent regions into large partitions to be
assigned to fewer servers.

In more detail, game hot-spots degrade the quality of service
(i.e., the response time) for server(s) hosting the interesting regions
to unacceptable levels. On one hand, this naturally leads to remap-
ping some of the regions from the overloaded servers onto under-
loaded servers. On the other hand, the load rebalancing process it-
self may result in an increase in the number of partition boundaries,
hence possible disruption in region locality. Locality disruption
in its turn increases inter-server communication for cross-partition
visibility and inter-server player hand-offs as players move between
partitions. Finally, since dynamic remapping of regions is com-
plex, involving inter-server migration of the region state, the num-
ber of region remaps in any dynamic partitioning algorithm should
be kept low.

Few dynamic load balancing techniques in massively multi-
player game servers [9] attempt to address the complex load ver-
sus inter-server communication trade-offs. Moreover, existing al-
gorithms [1, 9], for solving the NP-complete load balancing prob-
lem typically involve all nodes in the system in global heuristic
approximations. In contrast to these global algorithms, which are
very compute and communication intensive, we use a localized al-
gorithm. An individual server detecting a local bottleneck causing
quality of service violation triggers dynamic region repartitioning.
Depending on the bottleneck type, the repartitioning goal is either
shedding load from an overloaded server or aggregating partitions
of relatively underloaded servers to reduce inter-server communi-
cation. In either case, our dynamic partitioning algorithm is locality
aware. Specifically, our solution preserves region locality in each
server partition, while involving only a small portion of the net-
work, usually corresponding to the in-game neighbor servers, in
the repartitioning process.

In our evaluation, we use a prototype implementation of the Sim-
Mud game server [8] and a set of clients running on a 1GHz dual
processor Pentium III cluster interconnected by a 100 Mbps LAN
to study limitations of a single server and the costs of inter-server
communications. We plot the server’s response time curve with
increasing number of clients. We measure CPU, bandwidth con-
sumption and delays for basic single-server operations, region and
player state migration. We use the measured delays to calibrate a
configurable simulator in terms of server operation costs and re-
source contention curves. We then evaluate various versions of dy-
namic load management with and without spatial locality versus
static load balancing, using trace-driven simulations that involve
massive player flocking. We explore the behavior of locality aware
dynamic load management through simulation in two server con-
figurations: a centralized local area network server (LAN) as in
state-of-the-art game servers [3, 15] and a large-scale wide-area
distributed server (WAN) [8].

Our results show that the dynamic load balancers outperform
static load balancing substantially in both configurations. Our re-
sults further show that differences between dynamic load balanc-
ing algorithms with and without spatial locality are minimal in the
LAN environment. On the other hand, in the WAN environment,

������������ Item

�������
�

�������
�

������������

		

���
�

�
�

�������
�

���
�

�������
�

������������

������������

���
�

�������
�

Free−formatSquaresHexagonals

Connections between region
Player

Limit of perception

Figure 1: Partitions of the game world.

preserving spatial locality improves performance by up to a factor
of 6 compared to a global algorithm that does not consider spatial
locality.

The rest of this paper is organized as follows. Section 2 intro-
duces background on game server architectures. Section 3 intro-
duces our dynamic load management solution. We describe our
prototype implementation in Section 4, our evaluation methodol-
ogy in Section 5 and experimental results in Section 6. We investi-
gate the performance of the different static and dynamic partition-
ers for large numbers of concurrent players through simulation in
Section 7. Section 8 discusses related work. Section 9 concludes
the paper.

2. GAME SERVER ARCHITECTURE
BACKGROUND

The client-server architecture is the predominant paradigm for
implementing massively multiplayer online games, in which a cen-
tralized server receives server requests, updates the game state and
then propagates the new state to clients. Scalability is an important
issue in game servers, because players enjoy complex interactions,
detailed physical simulations, and the possibility to interact with a
large number of players and objects.

Server clusters are typically used to support thousands of players
in strategy or role playing games [3, 15]. Current implementations
use static partitioning of the game map, where each partition is as-
signed to a server. Players switch servers when they move from one
region to another. Load balancing is a problem — current games
require game designers to carefully plan the load distribution at the
design phase.

One of the simplest approaches to game world partitioning is to
split the world into separate mini-worlds with links to other mini-
worlds. We refer to this approach as “free-format” partitioning,
since these mini-worlds do not require any strong spatial relation-
ships. For example, each mini-world may be a country in the world,
and links can be modeled as airports. This works well for games
where the world can be abstracted into separate areas and allows
limiting the number of players entering any one partition. Where
this is not possible, and the world truly is a single contiguous map
with strong spatial relationships, “true” partitioning is, however, re-
quired. Figure 1 illustrates three possible approaches to partitioning
a game world. The first two model a contiguous world, and differ
only in the geometric shape used for the partitioning. The third
illustrates one possible free-format world.

The player’s game avatar has limited movement speed and sens-
ing capabilities. In the figure, the area a player avatar can sense i.e.,
its area of interest, is illustrated by the shaded area surrounding the
player. Items and players outside this area cannot be detected by the
avatar. This means that data access in games exhibits both temporal
and spatial localities. Networked games and distributed real-time

simulations have exploited this property and applied interest man-
agement [12] to game state. Interest management allows us to limit
the amount of state any given player has access to, so that we can
both distribute the game world at a fine granularity and localize the
communication. Thus, inter-server communication is needed only
between servers hosting neighbor partitions of the game map for
communication of state information to ensure cross-partition visi-
bility within their players’ area of interest. Furthermore, as players
move between server partitions, they incur player hand-off costs be-
tween the servers hosting the affected regions to communicate the
avatar state including its position in the world, its abilities, health
and possessions.

3. LOCALITY AWARE DYNAMIC LOAD
MANAGEMENT

Locality Aware dynamic partitioning is a decentralized algo-
rithm that uses a heuristic approach to i) shed load from an over-
loaded server while keeping locality in mind and ii) aggregate
server partitions in normal load for reducing excessive inter-server
communication.

Each server monitors its quality of service (QoS) violations in
terms of its average update interval to each of its clients through pe-
riodic sampling. The server then determines whether the cause of a
perceived QoS violation is client load or inter-server communica-
tion and triggers either load shedding or aggregation, respectively.

Locality Aware dynamic partitioning uses locality heuristics in
two dimensions: communication based on network proximity in the
game and region clustering based on adjacency on the game map.
The former means that the distributed load balancing algorithm fa-
vors localized communication between servers hosting neighboring
partitions for both load shedding and aggregation. The latter means
that it attempts to keep adjacent regions together on one server.

Each server periodically communicates its load information with
neighbor servers hosting adjacent partitions along with data for area
of interest consistency maintenance. Each node maintains the cur-
rent load on its neighbors and a limited subset of other nodes that
are currently lightly loaded based on its knowledge. When over-
loaded with clients, a server favors shedding load to its neighbors
rather than to any other node in its locally maintained lightly loaded
set. Conversely, partition aggregation corrects any locality disrup-
tion caused by load shedding by inter-neighbor partition aggrega-
tion when in normal load.

In the following sections, we detail our formal definitions for
quality of service and use of load thresholds (i.e., light load, over-
load and safe load) in section 3.1, our overall algorithm for shed-
ding load by an overloaded server in section 3.2 and our algorithm
for partition aggregation in section 3.3.

3.1 Definitions
Our definition of quality of service is in terms of meeting a ser-

vice level agreement (SLA), in our case a predefined update interval
of each server to its clients. An SLA violation occurs when a server
exceeds the predefined update interval for 90% of its clients. We
define the overload threshold (Overload th) as the server load in
terms of number of clients for which the SLA is violated. We fur-
ther define the safe load threshold (Safety th) the highest server
load for which the SLA is still met for all clients. The overload
and safe thresholds are determined by off-line measurements using
a stand-alone server (i.e., without inter-server communication). If
the number of clients on a server exceeds its overload threshold,
we say that the server is in overload.

An SLA violation while in overload triggers load shedding from

the overloaded server. On the other hand, to avoid system oscil-
lation, we trigger aggregation more conservatively only for non-
overloaded servers that violate double the SLA used for load shed-
ding.

The safe load threshold corresponds to the target load after load
shedding for an overloaded node. Any load under the light load
threshold is the load of an optimal candidate for receiving the
load shed. Once a safe load threshold has been set, the light load
threshold is computed from it by the formula below. The formula
corresponds to a scenario where after load shedding, both the
previously overloaded node and the lightly loaded node achieve
the safe load threshold.

Light load th = 2 ∗ Safety th − Overload th

Each server node maintains a local load graph as an undirected
weighted graph G(V, E,W) where V are vertices, E edges, and
W weight of vertices. Every server exchanges load graphs and
lightly loaded server lists with neighbors and maintains their load
graph in addition to its own. In G, each vertex v represents a region.
The weight of a vertex v represents the load of the corresponding
region. If two regions are adjacent on the game map and are hosted
on the same server, their corresponding vertices are connected by
an edge e. Thus, a contiguous region cluster hosted on a server
forms a strongly connected component in the graph representing
that server’s partition.

We quantify locality preservation for the purpose of dynamic
load management in terms of preserving the number of strongly
connected components in the overall game map graph.

3.2 Locality Aware Load Shedding
The constraint of load shedding is to achieve the safe load target

on the overloaded node without exceeding the safe load threshold
on any of the nodes that it sheds load to. At the same time, load
shedding pursues two optimization goals: i) Locality is preserved,
i.e., the same number of strongly connected components is main-
tained after load shedding as before and ii) The minimum number
of region migrations occur.

When a server’s periodic sampling detects an SLA violation and
the server determines that it is due to overload as defined in sec-
tion 3.1, the overloaded server triggers the ShedLoad algorithm
shown in figure 2. In the first phase of the load shedding algo-
rithm, the overloaded server, Si, attempts to shed load to as few
neighbors as possible, then sheds any remaining load remotely as
described in the next sections.

3.2.1 Load Shedding to Neighbors
Each candidate neighbor’s load should be below the safe thresh-

old load level, but not necessarily below the lightly loaded level.
This is why shedding to several neighbors may be necessary. The
algorithm iterates through all eligible neighbors attempting to give
each a contiguous region cluster starting with the respective neigh-
bor’s boundary regions using a heuristic graph partitioning algo-
rithm (see section 3.2.3). If the safe load level has not been
achieved after shedding to neighbors, the remaining excess load
is shed to the lightest loaded node known.

3.2.2 Load Shedding to Lightly Loaded Servers
If shedding to remote servers becomes necessary, the algorithm

first checks the lightly loaded server set maintained locally. The
overloaded server contacts server Sj , the lowest loaded server from
its lightly loaded list as the next candidate to receive the load shed.
Since the information kept in the lightly loaded server set may not

ShedLoad(Si, targetLoad)
{

//Attempt to shed to neighbors
leftLoad = ShedtoNeighbors(Si, targetLoad);

while (leftLoad <= targetLoad) {

//Find a new lightly loaded candidate
Sk = SeekUnvisitedLightestServer();

if (not found) return; //No more resources

//shed to lightest loaded node
HeuristicGraphPartition(Si, Sk, targetLoad);

}
}

ShedtoNeighbors(Si, targetLoad);
{

while (Si leftLoad > targetLoad and
neighbor unvisited) {

Sj = GetLightestLoadedNeighbor(Si);
HeuristicGraphPartition(Si, Sj, targetLoad);

}
}

Figure 2: Pseudo code for Locality Aware Load Shedding.

be accurate, Sj may reject the request because it is not in lightly
loaded status anymore. If the overloaded server cannot get a candi-
date from its lightly loaded server set, it floods the network with
a SeekLightlyLoadedServer request message searching a lightly
loaded server. These messages are propagated among neighbor
pairs and carry the identity of the overloaded server. If an under-
loaded server cannot be found, this means that all resources are
highly utilized and load shedding is not possible.

When a node Sj accepts the load shedding from the overloaded
node, the actual region migrations occur as dictated by the region
graph partitioning algorithm described next. In the unlikely case
where load shedding cannot be accommodated by a single remote
server, in spite of the remote node being lightly loaded (i.e., due
to non-uniform distribution of players in regions on the overloaded
server), the algorithm iterates and selects a new lightest loaded can-
didate for load shedding.

3.2.3 Heuristic Graph Partitioning Algorithm
We use the following graph partitioning heuristic algorithm to

determine a load shedding schedule given our constraints and
locality-based optimization goals. If any acceptable schedule is
found for shedding load to either a neighbor or remote node as the
case may be, the corresponding scheduled region migrations occur.
Otherwise, the load shedding returns an error, by signaling that the
load remaining on the node is unchanged. The algorithm proceeds
with the next option as shown in the ShedLoad pseudocode.

Our graph partition problem is hence to divide a graph into two
or more strongly connected components. The sum of the region
weights for each component to be shed should be as close as pos-
sible to the target sum of weights to shed for reaching the safe load
threshold. In the case of shedding load to a neighbor, Sj , we set
the root of our search as one of the regions on the boundary with
that neighbor. In case of shedding to a remote server, Sr , a random
boundary region is chosen. We then use breadth first search (BFS)
to explore connected regions by following edges starting with the

Figure 3: Remote load shedding and subsequent possibilities
for merging to correct locality disruption.

root region to obtain a strongly connected region cluster to shed.
While the target load is not met on the local server, we continue
adding to the cluster to be shed by traversing regions in BFS order.
The constraint is to keep the total load of Sj (or Sr) including the
weights of the new tentative regions less than the safe load thresh-
old.

3.3 Locality Aware Aggregation
In this section, we introduce a partition aggregation algorithm,

orthogonal to load shedding, that is triggered when quality of ser-
vice violation for a particular server is caused by excessive inter-
server communication instead of high client load.

We first give an intuition for our algorithm through a motivat-
ing scenario where locality disruption causes excessive inter-server
communication in section 3.3.1. We then proceed to describe lo-
cality aware aggregation more formally, as a heuristic graph merge
algorithm in section 3.3.2.

3.3.1 Motivating Example
The example in Figure 3 shows the partition of regions to servers

before (top left) and after (top right) a remote load shed, respec-
tively. Initially, blocks of two regions are assigned statically to
servers. Next, assume that a hot-spot occurs within server 6’s ini-
tial partition. As a result, server 6 needs to shed load, but let’s say
neighbor servers 4,5 and 8 are overloaded themselves with players
moving towards the hot-spot location. Hence, server 6 is forced to
shed one region to remote server 1.

As we can see, remote load shedding implies locality disruption.
This is reflected in an overall increase in the number of adjacent
region clusters co-located on the same server. In the initial configu-
ration, each server partition contains exactly one cluster of regions
with strong locality (strongly connected component). After the re-
mote load shed, the number of distinct strongly connected com-
ponents in server 1’s partition has increased with the new single
region component. In contrast, shedding the region to one of server
6’s neighbors would have kept the overall number of strongly con-
nected components unchanged. Shedding load rapidly is, however,
the immediate goal under severe hot-spot overload for server 6 and
shedding to a remote server is the only option.

The net effect of the observed locality disruption is potentially
high inter-server communication. Before receiving the load shed,
server 1 has inter-server boundaries only with servers 2 and 3,
while afterwards server 1 has several inter-server boundaries with

MergewithNeighbors(Si)
{

while(unvisited neighbor Ni){
if(Ni boundaries < Si boundaries and

Ni load < Safe threshold)
HeuristicMerge(Si, Ni);

}
}

HeuristicGraphMerge(Si, Ni)
{

while (unvisited boundary region R){
//Estimate merging R into Ni’s partition
if(Ni new load > Safe threshold or

Ni new boundaries > Si new boundaries)
Discard partial schedule;

else
Schedule region migration to Ni;

}
}

Figure 4: Pseudo code for Locality Aware Aggregation.

servers 2,3,4,5,6 and 8. Over time, under random, dispersed player
movement after the hot-spot is over, server 1 may experience ex-
cessive inter-server bandwidth consumption in the new configura-
tion. Quality of service to clients may thus degrade on server 1 due
to high volume inter-server visibility information exchange and/or
frequent player hand-offs back-and-forth across its several bound-
aries. Although the potential performance impact of increased
inter-server communication might seem second order compared to
the one induced by hot-spot server overload, the problem may per-
sist for a longer time than the hot-spot itself.

Our partition aggregation algorithm corrects such isolated lo-
cality disruptions. Server 1 detects that its QoS violation is not
induced by overload in terms of its average number of serviced
clients, but due to excessive inter-server communication and trig-
gers locality aware aggregation. The intuition behind our aggre-
gation algorithm is that server 1 might be able to merge one of its
region clusters into a neighbor server’s partition under normal load
conditions. For example, server 1 may be able to merge its single
region component with the partition of server 8, when server 8’s
load subsides (bottom left example). Alternatively, server 1 may be
able to merge its other two-region cluster into server 3’s partition
and/or server 2’s partition, as in the bottom right example.

3.3.2 Heuristic Graph Merge Algorithm
More formally, Figure 4 shows how our MergewithNeighbors al-

gorithm attempts to create an acceptable schedule of merging the
regions of the problem server, Si, into the partitions of its neigh-
bors. As in the load shedding algorithm presented before, for each
neighbor, HeuristicGraphMerge is called in turn for all neighbors.
As before, HeuristicGraphMerge traverses regions in BFS order
starting from the boundary with the corresponding neighbor in or-
der to create the merge schedule for regions. The optimization goal
and constraints are, however, different in this case. The Merge-
withNeighbors algorithm attempts to optimize the number of inter-
server boundaries for the server Si (Si b). The constraint is to
maintain the load under the safe threshold and the number of inter-
server boundaries under the current Si b for each neighbor server
involved.

While the ideal merge removes an isolated region cluster from
Si’s partition, any partial partition merge that shrinks Si’s parti-

tion is considered valid if it decreases Si’s inter-server boundaries,
Si b. Note that our constraint for safe neighbor load while merging
avoids oscillations in the algorithm due to the potentially contra-
dictory goals of shedding load versus decreasing inter-server com-
munication of two different neighbor servers.

3.4 Other Static and Dynamic Partitioning
Algorithms Used for Comparison

In this section, we introduce other dynamic load balancing al-
gorithms for comparison with the main Locality Aware dynamic
partitioning algorithm. We also introduce a baseline Static parti-
tioning algorithm. By considering different optimization goals, we
explore different trade-offs with each algorithm, in order to demon-
strate the relative impact of different optimization strategies. We
consider an algorithm that optimizes global load balancing and an
algorithm that optimizes the remapping cost during load balancing.
In contrast, as we have seen, Locality Aware partitioning optimizes
locality.

3.4.1 Dynamic Uniform Load Spread (Spread)
Spread is a dynamic load balancing algorithm that aims at opti-

mizing the overall load balancing through a uniform load spread in
the server network. Load shedding is triggered when the number
of players exceeds a single-server’s capacity (in terms of CPU or
bandwidth towards its clients) just as in our main dynamic parti-
tioning algorithm.

This algorithm, however, attempts to uniformly spread the play-
ers across all participating servers through global reshuffling of re-
gions to servers. The algorithm is meant to be an extreme where
the primary concern is the global optimum in terms of the small-
est difference between the lowest and highest loaded server in the
system. There are no attempts at locality preservation in either
network proximity or region adjacency. The algorithm is a bin-
packing algorithm that needs global load information for all partic-
ipating servers. The algorithm starts with one empty bin per server,
then in successive steps takes a region that is currently mapped at
any of the servers and places it in the bin with the current light-
est load. This is done iteratively until all regions have been placed
into bins. After the global reshuffle schedule is created, each bin is
assigned to a particular server and the corresponding region migra-
tions occur. While the algorithm could be adapted to include only
a subset of servers (e.g., just neighbors and their neighbors) into
the region reshuffle process, we currently involve all servers in this
process.

3.4.2 Dynamic Load Shedding to Lightest Loaded
Node Known (Lightest)

Lightest is a dynamic load balancing algorithm that attempts to
optimize the cost of remapping by prioritizing shedding load to a
single server instead of several servers. The algorithm does not take
network proximity in the game (i.e., to neighbors) into account.
Furthermore, clustering of adjacent regions is maintained whenever
possible but is of secondary concern compared to load shedding to
a single server.

An overloaded server tries to shed load directly to the lightest
loaded node known. The precondition is that this node’s load has
to be below Light load th. Note that our definition of Light load th
is such that a single such node should be able to accommodate a
sufficient load shed from an overloaded node. While this is true in
most cases, depending on the actual distribution of players to re-
gions, if some regions are more overloaded than others, a careful
load shedding schedule should be constructed to maximize the load
to be shed. The lightest loaded node may in fact be a neighbor, but

the Lightest algorithm does not give preference to neighbors when
shedding load except in case of load ties. Instead, the overloaded
node prefers shedding a sufficient portion of its load to a single
server even if this server is remote and even if this implies some
declustering for the shedded regions. Regions of the overloaded
node are scanned in-order and placed into a bin to be assigned to
the lightly loaded node. Thus, Lightest attempts to keep region
clusters together by scanning adjacent regions in sequence. On the
other hand, if a region cannot be placed in the bin without exceed-
ing the safe load threshold, a subsequent region is selected, hence
sacrificing on region locality. In contrast, the main Locality Aware
algorithm prioritizes region locality.

3.4.3 Static Partitioning
Several algorithms for static partitioning of regions to servers

are possible: static block partitioning, row-based or column-based
static partitioning and cyclic partitioning as well as combinations
of these. We have previously shown [5] that no single static parti-
tioning algorithm performs well for all types of scenarios in terms
of hot-spot location and server environment. In our previous study,
static partitioning algorithms had inconsistent behavior across envi-
ronments and hot-spot locations and performed extremely poorly in
at least one experiment. In this paper, we use static block partition-
ing as a sufficiently general static load partitioning algorithm for a
baseline comparison with our dynamic partitioning algorithms.

3.5 Discussion
None of the heuristics used in our dynamic partitioning algo-

rithms is hard-wired for a particular environment. The same al-
gorithm applies to alleviate locally perceived overload if “non-
standard” or heterogeneous environments are used (e.g., a peer-to-
peer environment as opposed to a centralized server cluster). For
instance, individual load thresholds for each server node in hetero-
geneous server environments could be either measured or approx-
imated by multiplying normalized client load measurements taken
on a standard-resource server by the respective server capacity ra-
tios. On the other hand, from the dynamic load balancing versions,
the main Locality Aware algorithms may be more appropriate in
distributed server environments because, as opposed to Spread, it
requires only localized information from neighbor servers to make
region migration decisions.

There is a trade-off between shedding to potentially several
neighbors as in Locality Aware, versus shedding to a remote server
node with lower load than any of the neighbors as in Lightest.
Shedding to several neighbors may imply a higher remap cost, but
may be the best in terms of region clustering type locality and com-
munication cost during load shedding. Shedding to the lightest
loaded node as in the Lightest algorithm may involve on the down-
side some region locality loss and communication penalties such
as a search if the local node currently does not know of any such
node.

All three algorithms are fast. Lightest and Locality Aware are
running in sub-linear time in terms of their number of server par-
ticipants and the number of regions involved. Spread is the highest
complexity algorithm, running in O(rlogn) time, where r is the
total number of regions and n is the total number of servers.

4. IMPLEMENTATION
We implement our load balancing algorithms within the context

of SimMud [8], a simple game developed at University of Pennsyl-
vania. SimMud includes a cluster-based game server and clients,
and is implemented in Java using UDP to communicate between
clients and servers. We extend SimMud with multiple regions by

adding a scheduler and allowing multiple regions to reside on a
single server. Players are allowed to migrate between different re-
gions, and regions can be migrated between servers. This section
starts with a brief overview of SimMud, followed by the extensions
to enable dynamic load balancing.

4.1 Game objects
Game objects include players, food, quests, and roadblocks, each

of which has its own position in the game map at any given time.
Roadblocks exist in fixed locations in the map, and as in a maze,
they restrict the movement of players. Currently, roadblock posi-
tions are determined before the game begins, and roadblocks can-
not be added or removed while the game runs. Thus, roadblocks
are a part of the terrain.

In SimMud, food objects are similar to roadblocks in that they
cannot be moved to new positions. However, they can be eaten
by players, making them a form of mutable landscape information.
Each food item has a quantity attribute that can be reduced as play-
ers eat it. Food is removed when this quantity reaches zero. Servers
can also add new food objects during play. These food objects can
be thought of as a simplified representation of a larger variety of
objects, such as, money, tools, and weapons.

Player objects are the most complex game object in SimMud.
Players are able to move, eat, and fight other players. SimMud sup-
ports both robotic, AI-controlled players, which we call robots, and
user-controlled players operated using the keyboard. Our robots
use a variant of a simple path finding algorithm [10] to move around
the map and avoid roadblocks. Robots are programmed to explore,
seek out food, fight weaker opponents and flee from stronger. Each
player object has a health attribute which can be increased by eating
or decreased as the result of a fight.

Quests are a mechanism for causing robots to flock to one area of
the map, thus loading the server hosting the corresponding regions.
Like food, a quest is a stationary object, and it can be added to the
map during game play. Each quest has a duration, after which it
expires and is removed from the map. While the quest is present,
this overrides all other robot priorities, and the robot moves single-
mindedly to the quest goal. Quests are useful in that they allow
simulation of the flocking behavior that occurs in real games.

4.2 Server Actions
Player eating or fighting involves sending a request to the re-

gion’s server, which decreases the quantity of the food and updates
the player’s health, respectively. Concurrent requests are serialized
at the server to avoid race conditions. Fighting is started by one
player (the attacker) who sends a request to the server. The server
determines who wins the fight, and decreases the health of the los-
ing player. Players’ movement within a region does not require re-
quests to the server, although players must send position updates to
the server periodically. Changes in food and in players’ positions
and health are periodically sent by the server to clients in region
status updates.

4.3 Multiple Server SimMud
To show the effects of player migration and clustering of players

on one server, we extend the single server game to multiple servers.
Each server controls one or more rectangular regions of the map.
Servers are given the contact information for each of their neigh-
bors in east, west, north, and south directions (if they have any) at
start-up time.

The multiple server SimMud, involves a scheduler in addition
to the region servers. Although the locality aware load balancing
can rely on distributed decision making, we include a centralized

Scheduler

Old Server

New Server

Client/
Neighbor
Server

M
sg

1

Msg1

M
s
g

3

M
s
g

4

M
s
g

9

M
sg
 5

Msg 7Msg 8

M
sg
 2

Msg 2

Msg 6

Msg 9

Msg 10

M
s
g

10

Figure 5: Multiple server SimMud architecture.

scheduler in order to accommodate centralized scheduling algo-
rithms, such as, Spread. Each server keeps track of its own load
and reports it to the scheduler periodically. The scheduler makes
cross-server region migration decisions. The region to server map-
ping is stored locally on each server. Because we assume players
display spatial locality in movements, each server only has to keep
track of servers that host neighboring regions.

4.4 Player Migration
Quests or exploration may lead a robot or a human player to try

to move outside its server partition. To do so, the player sends a
request to its current server, containing the direction in which it is
trying to move. The server checks whether it has any neighbor-
ing servers in the requested direction. If so, it contacts its neigh-
bor with the player’s information and the appropriate new position
for the player. The player is then removed from the old region
and added to the neighboring region on the new server. Requir-
ing servers to directly contact each other during player migration
prevents the player from falsifying their states during migration.
In addition, we added timeout and retransmit to handle possible
message delays and client failures during the player handoff across
servers.

4.5 Region Migration
Figure 5 illustrates the message sequence of a scheduler-initiated

region migration for load management purposes. The messages are
numbered by their time line in the process. The odd numbered mes-
sages are requests, and the corresponding even numbered messages
are replies. Details of the region remap follow:

• Msg1/2: The scheduler sends a Remap Decision message to
both the original server and the new server of a region to
initiate the region migration.

• Msg3/4: The original server sends a Remap Request to the
new server that contains the region’s status and saved incom-
ing messages.

• Msg5/6: Upon a successful remap request, the original server
multicasts a Remap Notify to its clients and neighboring
servers to notify them of the new server’s IP address.

• Msg7/8: Upon receiving the new server’s address, both
clients and neighbor servers contact the new server by send-

ing a Player Remap Request or a Neighbor Remap Request,
respectively.

• Msg9/10: Finally, after all relevant clients and neighbors
have contacted the new server, it sends a Remap Success mes-
sage to both the scheduler and the original server to signal the
completion of the migration.

5. EVALUATION METHODOLOGY
We use a prototype implementation of the SimMud game

server [8] to study limitations of a single server and basic costs
for player and region migration with multiple servers under player
flocking. Our experimental testbed consists of a 32-node cluster
of dual 1GHz Pentium III machines running 2.4.18 Linux, inter-
connected by a 100Mbps Ethernet. Because of limitations in this
testbed configuration (e.g., each client machine can accommodate
only 10 robots), we are unable to fully demonstrate the benefit of
dynamic load balancing with experiments. Therefore, we measure
update interval delays for a stand-alone server with increases in
client load and experiment with multiple servers under player flock-
ing in section 6. We then use the experimental results to calibrate a
configurable simulator in terms of safe load and overload thresh-
olds to use for dynamic load management, resource contention
curves and server operation costs. We generate 6000 SimMud robot
traces for a large game map and present trace-driven simulation re-
sults with 100 servers and 6000 players in section 7. We choose the
load shedding SLA as a 1 second update interval to clients, and a
corresponding load aggregation SLA of 2 second update intervals.
Hence the goal of our Locality Aware algorithm is to maintain the
client update interval under 2 seconds.

6. EXPERIMENTAL RESULTS
This section presents our experimental results with the actual

multi-server SimMud implementation. We first present a single
server bottleneck analysis and load threshold determination, then
we discuss a simple player flocking experiment and measured
player and region migration costs.

6.1 Single server experiments
Our robots run on clients that propagate two position updates per

second. The server aggregates and disseminates position updates
every 500ms.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
(%

)
(2

00
%

 =
 2

 C
P

U
s

10
0%

)

Players on server

CPU utilization

CPU

Figure 6: As can be seen, CPU is not a bottleneck. The drop at 256 is
due to clients terminating because of network overload.

No. of Players 4 8 16 32 64 128 256
State Update Size (KB) 4.5 5.2 7.2 10.0 16.8 34.2 60.0

Table 1: Size of server state updates.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 50 100 150 200 250 300

A
ve

ra
ge

 b
an

dw
id

th
 u

se
d

Players on server

Bandwidth utilization

Bandwidth

Figure 7: Server bandwidth utilization. When requirements exceed
available bandwidth, server update delays skyrocket causing clients to
terminate.

In the experiments, we vary the total number of robots between
4 and 256 to explore the resource consumption of SimMud. The
server performance, averaged over 15 minute sampling intervals, is
shown in Figures 6 and 7. The client requests for position updates
are approximately 800 bytes each and consist of the entire player
object. The size of server updates, shown in Table 1, depends on
the number of players — 4.5 KBytes for 4 players up to 60 KBytes
for 256 players.

Our experiments show that the server can handle up to 128
players. When increasing the server load further, delays increase
sharply — from 214 milliseconds for 128 players to 33 seconds
for 144 players. Figure 7 shows that at 144 players, the bandwidth
consumption curve flattens out as the network bandwidth limit is
reached, and then falls as clients time-out and terminate due to ex-
cessive update delays from the server. The main bottleneck in our
environment is thus the server-clients bandwidth. CPU consump-
tion remains low throughout the experiment, with peak consump-
tion being less than half the available cycles from the dual proces-
sors.

6.2 Multiple server experiments
A four region world distributed on four servers is set up as shown

in Figure 8 with 128 robot players evenly distributed, seeking food
and fighting. A temporary goal (quest) is set up in the northwest
(Server 1) region at time t ≈ 65 lasting 300 seconds, and players
flock towards it.

Traversal of a region in this case takes about 100 seconds, un-
less detoured by roadblocks, hence, most players can reach the
goal in 300 seconds. We sample player density, update interval
and CPU/bandwidth consumption for each server every 3 seconds.

In Figure 9, the player density is illustrated as a function of time.
Since players that originate from the southeast region must traverse
an intermediate region, this intermediate region will be populated
longer. At the end of the quest, 123 players have made it to the
quest region, with 5 stragglers still on their way.

CPU load and bandwidth consumption (Figures 10 and 11, re-

Server 1 Server 2

Server 4Server 3

Figure 8: Flocking: Robot players are moving toward a target (quest),
in the northwest region (Server 1), many of them crossing server parti-
tion boundaries in the process.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 p

la
ye

rs

Time (seconds)

Players per server

Server 1
Server 2
Server 3
Server 4

Figure 9: 128 (robot) players distributed over four servers. At time
t ≈ 65 a quest in Server 1’s region is created, and players flock there
for 300 seconds.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400

C
P

U
 u

til
iz

at
io

n

Time (seconds)

CPU utilization per server

Server 1
Server 2
Server 3
Server 4

Figure 10: CPU consumption increases on the server hosting the quest
(server 1), and declines for other servers.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 u

til
iz

at
io

n
 (

by
te

s/
s)

Time (seconds)

Bandwidth utilization per server

Server 1
Server 2
Server 3
Server 4

Figure 11: Network bandwidth consumption increases on the server
hosting the quest (server 1) to almost the maximum sustainable band-
width.

spectively) on each server correlate with player density. Server
update delays on the server hosting the quest (server 1) increase
from 50 ms at quest initiation time by roughly a factor of 4 at the
end. On the other hand, since the total number of players on each
server does not exceed the overload threshold of 128 players, up-
date delays for all servers are within 250 ms for the duration of the
experiment.

During the quest, player migration occurs less than once per sec-
ond and the 960 byte player handoff messages incur only a minor
impact on bandwidth.

6.3 Player and Region Migration Costs
Player migration across a server boundary takes about 100 mil-

liseconds. On the other hand, the cost of region migration is heavily
dependent on the number of players in the region. Table 2 shows
the migration time as well as the message size of Remap Request
under different number of players. The migration time is measured
from the beginning to the end of the migration. The message size of
the Remap Request sent from the original server to the new server
dominates other migration related message sizes.

7. SIMULATION RESULTS
We use simulation to extrapolate from our experimental results in

two different directions: simulating a massively multiplayer game
as a state-of-the-art server would support and varying the environ-
ment. We have developed a configurable simulator that is powerful
enough to model hundreds of servers, thousands of clients and the
network between them.

7.1 Simulation Methodology
Each server accepts client requests and performs its normal func-

tions of computing player moves, eat and fight requests which are
all simulated in terms of their CPU costs. More importantly, each
server sends periodic state updates to all the corresponding players
it hosts. In addition, servers send visibility information and other
information periodically to their neighbor servers and are able to
perform dynamic player and region migrations. The sizes of up-
date, player and region migration messages used in the simulator,
are the measured averages in the experiments from section 6, re-
spectively.

The following sections describe our simulation methodology in

terms of resource usage, player movement and simulation
parameters for different environments.

7.1.1 Resource Usage Simulation
The simulator maintains a queue of events ordered by their sim-

ulated start time. We currently simulate just two types of resources,
CPU and network. Whenever an event is triggered (e.g., by a client
request) a record specifying the event’s future start time is placed
on the queue. The simulator estimates a completion time for the
event, using the same event execution time estimates as measured in
the experimental testbed. This calibration of the simulated system
against measurement of the real server allows us to simulate CPU
and network contention by extrapolating from server response time
measurements obtained in the real system with increasing player
load. A CPU cost is assigned to each event type such as: sending
an update to clients, processing a player request for moving, send-
ing and receiving a visibility message from a neighbor server. An
average message size as measured in the experimental environment
is associated with a client update. The visibility costs are com-
puted as follows. Sending and receiving a visibility message has
some fixed CPU cost and incurs a message that is proportional in
size to the number of players in the region of interest.

We measure the periodic update interval experienced by players.
We compare the various partitioners through the delays in receiv-
ing periodic updates induced by server CPU or network resource
contention. The Overload th, Safety th and Light load th are
128, 80 and 32 players respectively, according to the experimental
results of section 6.

7.1.2 Player Trace-Driven Simulation
We collect 6000 robot traces by running SimMud robots using

the same game configuration of a 100 servers, 400 regions, 10000
by 10000 meter game map with a quest in the center of the game
map. Each robot gets a random initial position. The average mov-
ing speed of robots is 2 meters per second. The players move to-
wards the hot-spot for a period of time of 1000 seconds, then the
hot-spot is removed and players spread out again. The duration of
the whole experiment is 2000 seconds. Since our robots stop eat-
ing and fighting when a quest is initiated and just move towards the
quest, the resulting movement of a robot is independent of others.
Therefore, we collect 6000 traces of robots during separate Sim-
Mud runs with smaller numbers of concurrent clients, then feed all
traces to our simulator to simulate a massively multiplayer game on
a server configuration with 100 servers and 400 regions. Initially,
regions are allocated to servers using static block partitioning corre-
sponding to a block of four regions per server. All simulations cor-
respond to player traces for the same center hot-spot location that
attracts all players. We have varied the time that the players stay in
the hot-spot area and the hot-spot location across experiments, and
we have determined that our results are largely insensitive to these
parameters.

7.1.3 Environment Simulation Parameters
We explore dynamic versus static partitioning of the game world

under two different server configurations: i) a LAN-based central-
ized server with 100 Mbps inter-server and 100 Mbps server-client
bandwidths corresponding to our experimental platform and ii) a
WAN distributed server system (e.g., as in a peer-to-peer decentral-
ized server or a set of proxies run by a trusted third-party) with a
100 Mbps shared network bandwidth towards both its clients and
its neighbor servers. In all environments the CPU power and con-
tention is modeled after our experimental environment.

No. of players 1 10 20 40 60 80 100
Time to migrate (ms) 415 439 514 535 715 743 778
Message size (KB) 4.5 7.7 11.1 18.0 22.8 31.8 38.0

Table 2: Cost of region migration.

7.2 Results for Dynamic Load Balancing
Algorithms

In Figures 12 and 13 we show a comparison of the three dynamic
partitioning algorithms, the main Locality Aware algorithm (Lo-
cality), dynamic partitioning that sheds to the lightest loaded server
(Lightest), Spread dynamic partitioning and our baseline Static par-
titioning algorithm in the LAN and WAN distributed environments,
respectively. The graphs also contain a variant of our main Locality
Aware algorithm without partition merging (Locality w/o Merge),
where only load shedding adaptations are used in response to server
overload but partition aggregation is disabled. This allows us to
separate the relative effects of the two components of our Locality
Aware algorithm.

Both figures show the average update interval for players, using a
50 second sampling period, for the least responsive server over that
period of time; note that this server could be different for differ-
ent sampling periods. Overall, from both figures, we see that con-
gestion causes severe degradation in the average update interval to
clients in the Static protocol. Furthermore, the dynamic partition-
ing protocols perform better overall compared to Static partitioning
for both platforms.

In the LAN environment (Figure 12), due to the low penalty of
all types of inter-server communication, such as, player hand-offs,
region migration and area of interest consistency maintenance, all
dynamic partitioning algorithms work well. The small latency peak
experienced by the two Locality versions and Lightest is due to
significant player crowding in the single region of the quest, when
dynamic load shedding cannot be performed. In contrast, Spread
changes region assignments frequently such that no single server
holds the quest region for a significant amount of time; hence each
individual server’s average latency is the best in Spread. On the
other hand, while we don’t currently use any server admission con-
trol policy, limiting the per-region player density within a server
may be reasonable, thus avoiding this problem for our main algo-
rithm.

In contrast to the relative performance graph of the LAN server,
in the WAN environment (Figure 13), only the Locality Aware
algorithm manages to maintain an acceptable average update in-
terval after triggering adaptation to overload. Because they tend
to decluster regions, hence increase inter-server communication
through their adaptations, the respective average update intervals
of Spread and Lightest dynamic partitioning algorithms remain rel-
atively high even after load-shedding adaptation. We see that this
applies to Locality w/o Merge as well, although to a lesser extent.
The performance of the Locality Aware algorithm is very similar to
the one of Lightest in the initial phases of hot-spot creation because
all players are close to the hot-spot location and neighbor servers
are over the safe load threshold themselves. Thus, both algorithms
shed to remote servers. Both Locality Aware versions outperform
Lightest during the second part of the simulation, when the inter-
server communication begins to penalize algorithms that have not
maintained region clustering on servers. Finally, partition aggre-
gation in this second portion of the graph triggers automatically
in our main Locality Aware algorithm, since the quality of service
is not met even in normal load due to the increased inter-server

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

Time (seconds)

A
v
e

ra
g

e
 o

f
P

e
ri
o

d
ic

a
l
U

p
d

a
te

 I
n

te
rv

a
l
o

v
e

r
H

e
a

v
ie

s
t

S
e

rv
e

r
(s

e
c
o

n
d

s
)

Periodical Update Interval (Robot speed: 2 m/sec)

Locality
Locality w/o Merge
Lightest
Spread
Static

Figure 12: Comparison of Static Partitioning and Dynamic
Load Partitioning for centralized LAN-based server, 1000 sec-
onds hot-spot duration. The network to clients bandwidth is
the bottleneck during the hot-spot.

communication. We see that partition merging corrects the local-
ity disruptions caused by remote load shedding for the most part,
nearly closing the performance gap to the best locality algorithm,
static partitioning, at the end of the run.

Metric Loc Loc w/o M Lightest Spread
Reg. Mig. 45 34 29 88058
Reg. Clu. 104 108 116 399

Table 3: Comparison of the total number of region migrations
and the number of region clusters at the end of simulation in
WAN setting.

In order to differentiate the inter-server communication costs fur-
ther, Table 3 shows a comparison under the WAN environment
of all our dynamic partitioning algorithms in terms of total num-
ber of region migrations and the number of strongly connected re-
gion clusters at the end of simulation. We see that the Locality
Aware algorithm (Loc) maintains the best region locality by keep-
ing the number of region clusters close to the initial value of 100
region clusters (corresponding to the initial block partitioning on
100 servers).

Locality w/o Merge (Loc w/o M) migrates fewer regions than
our main Locality algorithm since it does not respond to the SLA
violations caused by inter-server communication. Its higher degree
of locality disruption compared to the Locality Aware algorithm
is reflected in a higher number of strongly connected components.

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Time (seconds)

A
v
e

ra
g

e
 o

f
P

e
ri
o

d
ic

a
l
U

p
d

a
te

 I
n

te
rv

a
l
o

v
e

r
H

e
a

v
ie

s
t

S
e

rv
e

r
(s

e
c
o

n
d

s
)

Periodical Update Interval (Robot speed: 2 m/sec)

Locality
Locality w/o Merge
Lightest
Spread
Static

Figure 13: Comparison of Static Partitioning and Dynamic
Load Partitioning for WAN server, 1000 seconds hot-spot dura-
tion. The network to clients bandwidth is the bottleneck during
the hot-spot.

While the absolute difference in the numbers is small, 108 versus
104, these are overall numbers, while the persistent impact on in-
dividual servers involved in a remote load shed may be high. Fig-
ure 13 captures the highest individual server impact since it shows
the update interval of the worst performing server.

The total number of region migrations in Lightest is less than
in Locality Aware, as expected, because Lightest always selects
lightly loaded nodes to shed load to instead of first considering
neighbor nodes. Correspondingly, due to more remote load shed-
ding, the algorithm induces more locality disruption than both Lo-
cality Aware versions. On the other hand, compared to Spread,
Lightest still attempts to shed regions as connected clusters and in-
volves a single server in load shedding. We can see that Spread
does much worse in terms of both metrics because it completely
disregards locality maintenance and does not try to minimize the
number of region migrations. Hence, its high inter-server commu-
nication impacts its performance in the wide-area environment.

8. RELATED WORK
Companies, such as, Butterfly.net [3] and TerraZona [15] de-

velop middleware that provides cluster support for MMOGs. How-
ever, these systems provide only static partitioning and newer, more
dynamic games like Sims Online and Tabula Rasa can not be effec-
tively handled by them [11]. Each server can support only one
region at a time. Updates do not propagate across regions.

Many on-line load management algorithms [1, 9] require global
knowledge about the load of all tasks and resources, which is usu-
ally not available or prohibitive to obtain in terms of communica-
tion in a distributed environment. In particular, Lui and Chan [9]
reduce load balancing in distributed virtual environment systems to
a graph partition algorithm, and assume global knowledge of load
and pairwise communication cost between avatars.

CittaTron [7] is a multiple server game with load adaptation
mechanisms. Their algorithm dynamically moves rows of bound-

ary regions to neighboring servers. Their idea of incremental load
shedding is similar to our Locality Aware algorithm, but they do
not explicitly consider the communication cost resulting from lack
of locality.

An online load balancing algorithm using localized adaptations
is presented by Ganesan et al. [6] for range-partitioned databases in
peer-to-peer systems. Their objective is to minimize the number of
tuples moved to achieve a desired constant imbalance ratio, while
keeping the tuple range contiguous for any specific partition. Our
optimization problem is more complex due to its higher dimension-
ality, contradictory optimization goals and the need for a fast and
efficient solution under severe hot-spot overload.

An orthogonal approach addressing graph partitioning in high di-
mensions is to use space-filling curves [2], such as, Hilbert curves,
for mapping a multidimensional map into a uni-dimension space
while preserving some proximity information present in the multi-
dimensional space.

Finally, our dynamic load balancing algorithm has similar goals
to load management in cellular networks [4]. Just like game play-
ers, mobile users may transfer from an area managed by a particu-
lar base station to another, incurring hand-off calls. Mobile client
crowding in any particular cell may cause the corresponding cell
to run out of available channels. Dynamic channel allocation al-
gorithms allow an overloaded cell to borrow channels that do not
cause interference from neighbor cells.

9. CONCLUSIONS
This paper presents a load balancing algorithm that enables a

seamless game world in which players can freely move and inter-
act with each other across server partition boundaries. Our experi-
ments have shown that both the dynamic approach and the locality
aware algorithm are crucial to the performance of game servers.
First, the dynamic approach reassigns regions to servers at runtime
to accommodate spontaneous flocking to game regions. Second,
the load balancing algorithm is aware of spatial locality in the vir-
tual game world and aims to reduce the cross server communication
caused by transparent partition boundaries. Our algorithm attempts
to collocate adjacent regions onto the same server while maintain-
ing balanced load among servers.

We have designed and implemented the load balancing algorithm
and applied it to the SimMud game. Our evaluation is based on a
game configuration with 100 servers and 6000 independent robot
players distributed over 400 regions. Results show that the local-
ity aware dynamic load balancer improves performance by up to a
factor of 8 compared to static partitioning, and by up to a factor of
6 compared to a load balancing algorithm that does not consider
spatial locality.

10. REFERENCES
[1] Gagan Aggarwal, Rajeev Motwani, and An Zhu. The load

rebalancing problem. In The Fifteenth Annual ACM
symposium on Parallel algorithms and architectures, pages
258 – 265, 2003.

[2] S. Aluru and F. Sevilgen. Parallel domain decomposition and
load balancing using space-filling curves. In In Proc. 4th
International Conference on High-Performance Computing,
pages 230–235, 1997.

[3] Butterfly.net, Inc. The butterfly grid: A distributed platform
for online games, 2003.
www.butterfly.net/platform/.

[4] Guohong Cao. Integrating distributed channel allocation and
adaptive handoff management for QoS-sensitive cellular
networks. Wireless Networks, 9(2):131–142, 2003.

[5] Jin Chen. Locality aware dynamic load management for
massively multiplayer games. Master’s thesis, University of
Toronto, Jan 2005.

[6] Prasanna Ganesan, Mayank Bawa, and Hector
Garcia-Molina. Online balancing of range-partitioned data
with applications to peer-to-peer systems. In Proceedings of
30th International Conference on Very Large Data Bases
(VLDB), Aug 2004.

[7] Masato Hori, Takeki Iseri, Kazutoshi Fujikawa, Shinji
Shimojo, and Hideo Miyahara. Cittatron: a multiple-server
networked game with load adjustment mechanisms on the
internet. In SCS Euromedia Conference, pages 253–260,
2001.

[8] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins.
Peer-to-peer support for massively multiplayer games. In
INFOCOM ’04, Hong Kong, China, March 2004.

[9] John C. S. Lui and M. F. Chan. An efficient partitioning
algorithm for distributed virtual environment systems. IEEE
Transactions on Parallel and Distributed Systems, 13(3),
March 2002.

[10] Mike Mika and Chris Charla. Simple, cheap pathfinding. In
Steve Rabin, editor, AI Game Programming Wisdom, pages
155–160. Charles River Media, Inc., 2002.

[11] Mitch Ferguson and Michael Ballbach. Product review:
Massively multiplayer online game middleware, January
2003.
http://www.gamasutra.com/features/20030115/ferguson 01.htm.

[12] Katherine L. Morse. Interest management in large-scale
distributed simulations. Technical Report ICS-TR-96-27,
University of California, Irvine, 1996.

[13] NC Soft. Lineage, 2002. http://www.lineage.com/.
[14] Sony Computer Entertainment Inc. Everquest online

adventures, 2002.
everquestonlineadventures.station.sony.com/.

[15] Zona Inc. Terrazona: Zona application frame work white
paper, 2002. www.zona.net/whitepaper/
Zonawhitepaper.pdf.

