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Abstract

We study several transparent techniques for scaling dy-
namic content web sites, and we evaluate their relative im-
pact when used in combination. Full transparency implies
strong data consistency as perceived by the user, no modi-
fications to existing dynamic content site tiers and no addi-
tional programming effort from the user or site administra-
tor upon deployment.

We study strategies for scheduling and load balancing
queries on a cluster of replicated database back-ends. We
also investigate transparent query caching as a means of
enhancing database replication.

Our work shows that, on an experimental platform with
up to 8 database replicas, the various techniques work in
synergy to improve overall scaling for the e-commerce TPC-
W benchmark. We rank the techniques necessary for high
performance in order of impact as follows. Key among the
strategies are scheduling strategies, such as conflict-aware
scheduling, that minimize consistency maintainance over-
heads. The choice of load balancing strategy is less im-
portant. Transparent query result caching increases perfor-
mance significantly at any given cluster size for a mostly-
read workload. Its benefits are limited for write-intensive
workloads, where content-aware scheduling is the only
scaling option.

1 Introduction

We investigate the relative impact of several techniques
for transparently scaling a dynamic content web site on
commodity clusters.

Web sites serving dynamic content commonly consist
of a front-end web server, an application interpreter, and
a back-end database (see figure 1). The site’s (dynamic)
content is stored in the database. A number of application

scripts provide access to that content. The client sends an
HTTP request to the web server containing the script’s URL
and some parameters. The web server invokes the appli-
cation interpreter to execute the script, which issues SQL
queries, one at a time, to the database and formats the re-
sults as an HTML page. This page is then returned by the
web server to the client as an HTTP response.

Scaling dynamic content sites has received considerable
attention in recent years due to the large and growing eco-
nomic impact of such sites. Most previous research on
scaling dynamic content sites through either dynamic con-
tent caching [9, 10], or content replication [15, 34, 40]
has focused on specialized, per-application solutions, which
require site administrator or user intervention. In par-
ticular, dynamic content caching typically requires spec-
ifying page fragments through templates [9] and using
ad-hoc rules for invalidating cached results by means of
database triggers [10]. Similarly, most existing data repli-
cation approaches require the definition of specialized per-
application consistency schemes [15, 34, 40] or force the
user to handle inconsistent results [20].

To the best of our knowledge, this paper is the first
evaluation of a transparent, combined query result caching
and cluster replication solution for scaling dynamic content
web server clusters. Our study draws on recently proposed
content-aware scheduling techniques in replicated database
clusters [8, 31, 33, 25] and in particular on our own previous
work [3, 4] on asynchronous replication with conflict-aware
scheduling.

In order to evaluate the relative impact of conflict-aware
scheduling versus other scaling optimizations, we study
load balancing and scheduling strategies with and without
content-awareness and transparent dynamic content caching
with automatic invalidations. All techniques provide full
application independence; they guarantee strong data con-
sistency to the user and do not require modifications to ex-
isting dynamic content site tiers or additional programming
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Figure 1. Common Architecture for Dynamic
Content Sites

effort for deployment.
In our experimental evaluation we use the TPC-W

benchmark [36]. This benchmark is designed to be repre-
sentative of an e-commerce workload, specifically an on-
line bookstore. It specifies the site’s data and the possi-
ble interactions with the data. It has three workload mixes
with an increasing fraction of writes. The browsing mix
(5% writes) reflects a read-heavy workload. The shopping
mix with 20% writes is meant to be the most representa-
tive workload. The ordering mix (50% writes) represents
a write-heavy workload. We have implemented a web site
meeting the TPC-W specification, using three popular open
source software packages: the Apache web server [1], the
PHP web-scripting/application development language [30]
and the MySQL database server [26]. Since PHP is imple-
mented as an Apache module, the web server and the appli-
cation interpreter must coexist on the same machine(s). Our
experimental platform consists of a cluster of AMD Athlon
800Mhz processor PCs connected by Fast Ethernet and run-
ning FreeBSD. Our largest experimental setup includes 8
database server machines and 8 web server machines.

Our conclusions are:

• With the appropriate combination of load balancing
and scheduling techniques, the TPC-W benchmark
scales well with increases in cluster size. We get an
8, 7.4 and 5.0 factor of improvement for the brows-
ing, shopping and ordering mixes, respectively, at 8
database engines.

• Conflict-aware scheduling with its two main ingredi-
ents, asynchronous replication and conflict avoidance,
has the most beneficial impact.

• Load balancing has a secondary impact. Furthermore,
optimizing for locality in connection with load balanc-
ing has almost no impact.

• At any given cluster size, transparent query result
caching significantly improves performance (by up to
a factor of 2), but only for workloads with low write
frequency.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary background on content-aware
scheduling and load-balancing techniques. Section 3 in-
troduces our overall cluster design. Section 4 describes

the scheduling techniques explored in the paper, and Sec-
tion 5 describes the load balancing techniques. Section 6
describes our combination of query result caching and clus-
tering. Section 7 describes our benchmark and experimen-
tal platform. We experimentally investigate how the differ-
ent scheduling, load balancing and caching techniques af-
fect scaling in Section 8. Section 9 discusses related work.
Section 10 concludes the paper.

2 Background: Content-Aware Scheduling
and Load Balancing

In tune with the recent trends towards designing self-
managing systems [17], a few dynamic content scaling so-
lutions that provide complete application transparency have
been proposed.

Content-aware scheduling techniques for dynamic con-
tent sites [3, 4, 8, 31, 33] build on recent database re-
search towards providing scaling and strong consistency at
the same time [23, 22]. Typically, while a database repli-
cation scheme with asynchronous replication is used inter-
nally for scaling, the database queries are scheduled such as
to hide any inconsistencies from the user, thus providing full
application transparency. The query scheduling algorithm
works as follows. First, a total ordering is used for apply-
ing all updates to the database replicas (e.g., as provided by
group communication [22]). The updates are applied asyn-
chronously at each replica in this order. More importantly, a
second mechanism involves keeping track of the state of the
database replicas and scheduling read-only database queries
on fully consistent replicas.

Content-aware load balancing has been studied in the
context of scaling static content web sites through locality-
aware request distribution (LARD) [7, 28]. Intuitively,
the need for a re-evaluation of this technique in the con-
text of dynamic content sites arises from the basic differ-
ences between static and dynamic content. The latter is
typically more CPU intensive, executes a small number of
pre-defined scripts with widely different complexities, and,
above all, contains updates to the content. This shifts the
focus from simple load balancing techniques based on data
locality [28] to more complex strategies driven by the need
for data consistency maintainance.

3 Dynamic Content Web Site Architecture

We discuss the programming model (in section 3.1) and
the design of the cluster dynamic content site (in sec-
tion 3.2) that form the basis for the implementation of the
scheduling and load balancing algorithms discussed in sec-
tions 4 and 5, respectively.



3.1 Consistency and Programming Model

The consistency model we use for all our protocols
is strong consistency or 1-copy-serializability [6], which
makes the system look like one copy to the user. With
1-copy-serializability, conflicting operations of different
transactions execute in the same order on all replicas (i.e.,
the execution of all transactions is equivalent to a serial ex-
ecution, and that particular serial execution is the same on
all replicas).

The user inserts transaction delimiters wherever atom-
icity is required in the application code. In the absence
of transaction delimiters, each single query is considered a
transaction and is automatically committed (so called ”auto-
commit” mode).

Our method requires that all tables accessed in a trans-
action and their access types (read or write) be known at
the beginning of each transaction. During a pre-processing
phase, we parse the application scripts to obtain a conserva-
tive approximation of this information. The pre-processor
inserts a “lock tables” database query at the beginning of
each script for all tables accessed and their access type.
Although these queries are not actually executed by the
databases, they form the basis of a conservative two-phase
locking protocol [6] based on conflict classes [29] that
avoids deadlocks. We choose a protocol that avoids dead-
locks, because the deadlock probability for a replicated
database cluster becomes prohibitive in large clusters, due
to the extra updates that each node performs on behalf of
the other nodes [16].

3.2 Cluster Components

We consider a cluster architecture for a dynamic content
site, in which a set of collaborating schedulers distribute in-
coming requests to a cluster of database replicas and deliver
the responses back to the application server (see Figure 2).
The web server interacts directly only with the schedulers.
For each client interaction, the web server only interacts
with a single scheduler. These interactions are synchronous:
for each query, the web server blocks until it receives a re-
sponse from the scheduler.

The schedulers use a set of database proxies, one at each
database engine, to communicate with the databases, and
a sequencer to assign a unique sequence number to each
transaction. The sequence numbers are subsequently used
to enforce a total order of conflicting operations at each
database replica.

3.2.1 Operation

The web server sends the queries embedded in a script,
one at a time, to one of the schedulers. Subsequently, the
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Figure 2. Cluster Architecture Design

scheduler sends read-only (SELECT) queries to a single
database machine, while the execution of write queries (IN-
SERT, UPDATE, DELETE) is replicated on all machines.
The transaction delimiters and lock operations are sent to
all databases.

The scheduler sends each query to the database proxy,
tagged with the sequence number obtained at the beginning
of its enclosing transaction. Read queries in auto-commit
mode are not assigned a sequence number. The database
proxy performs any necessary query queuing for queries ar-
riving not in sequence number order and for consistent con-
flict ordering (see section 3.2.2), and passes the query to the
database. After the database executes the query, it returns
the results to its database proxy, which forwards them to
the scheduler. The scheduler updates its state and forwards
the results to the web/application server. At any given time,
the scheduler state contains: load information, the current
availability and the current status of each database back-
end in terms of the operations that have been applied. From
this information, the scheduler can infer which databases
are up-to-date, allowing for intelligent scheduling decisions
for queries.

Both the scheduler and database proxy layers are trans-
parent. To the web/application servers, a scheduler looks
like a database engine. At the other end, each database en-
gine interacts with its database proxy as if it were a reg-
ular web/application server. As a result, we can use any
off-the-shelf web server (e.g., Apache), application server
(e.g., PHP) and database (e.g., MySQL) without modifica-
tion. Moreover, the system is easy to configure and recon-
figures itself automatically in case of failures. Schedulers
and database proxies read a configuration file at startup, and
set up connections accordingly.

3.2.2 Implementation

The key to good scaling for the entire system lies in the
scheduler design. The scheduler code is lightweight such
that it can support a large number of web server front-ends



and database back-ends. The schedulers do not execute any
complex operations, they do not hold any locks, or maintain
any queues. Conflict resolution and conflict queue handling
for consistent replicated execution is done at the database
proxies. The schedulers and the database proxies are imple-
mented as an event-driven loop, which multiplexes requests
and responses over a pool of open connections to and from
the web server and database tiers.

In content-aware schemes, each scheduler parses and
tags each dispatched query with information such as the
query type, estimated query load, tables accessed, and
whether or not the query belongs to a previously initiated
transaction. Furthermore, the scheduler maintains as part
of its internal state, a backlog for the state of all replicated
operations (i.e., transaction delimiters, write and lock op-
erations) in the active transactions that it currently handles.
The backlog is updated whenever a write-type query is re-
ceived, when it is sent to the database engines or when a
reply is received from one of the database engines.

The scheduler also keeps the current load of each
database (see section 5). This data structure is updated
with feedback from the database proxy upon each reply.
The feedback loop is necessary because each scheduler sees
only its own request traffic, and not the traffic going through
other schedulers. Hence, the load balancing information it
keeps is only an estimate of the real database load.

Finally, for fault tolerance purposes, the schedulers
maintain persistent state for all write queries of past trans-
actions that have not been committed or aborted at all
databases. More details on fault tolerance are provided in
our previous paper [3].

Each database proxy delivers conflicting queries to the
database engine on its machine, in the order of their pre-
assigned sequence number. The database proxy keeps
queues of conflicting operations and also attempts to send
queries out-of-order across conflict classes to maximize
concurrency. Queries from the same script are issued in-
order. Queries belonging to an ongoing transaction are pri-
oritized. This means that, once a query has finished at
the database, we first check whether a query from one of
the transactions that have started to execute is ready to be
sent. The database proxy may also limit congestion on
its database machine by holding back queries once a load
threshold has been reached on its database (see section 5.3).

4 Scheduling Algorithms

4.1 Synchronous Replication

This is a basic replication scheme with in-order execu-
tion of all queries and synchronous execution of writes on
all replicas. No query parsing for obtaining each query’s
tables is necessary. The scheduler waits for completion of

every write-type query on all database back-ends, before re-
turning the answer to the web server. The schedulers and
database proxies only pass through queries, and keep track
of the completion of operations.

4.2 Asynchronous Replication with Consistency

This is a content-aware technique where the scheduler
parses each query to obtain its tables. Lock requests are
sent to all replicas where the database proxy executes them
locally on its own per-table data structures in order of their
pre-assigned sequence numbers. The locks are used by the
database proxy to keep track of conflicts and enforce a to-
tal order of conflicting operations, and are not passed to the
database. This allows any writes within a transaction to ex-
ecute asynchronously at each replica, without the need for a
2-phase commit protocol [6, 38] between replicas.

The scheduler returns the response to the web server as
soon as a lock, write or commit operation executes at any
replica. This means that, at any given time, the same script
can generate several outstanding queries. Read queries in
auto-commit mode proceed without locking after previous
update transactions from their assigned proxy’s queues on
the same tables have committed. These single read queries
are common in browse-oriented dynamic content work-
loads. They are typically much more complex than update
transactions, hence will induce asynchronous system behav-
ior because they produce different loads and different con-
flict types on different replicas.

4.3 Conflict-Aware Scheduling of Read Queries

Conflict-aware scheduling is an enhancement of asyn-
chronous replication. For each read query, the scheduler
first determines the set of up-to-date replicas without con-
flicts, that have completed the previous writes in the same
transaction. Conflicts are determined on a per-table basis.
The scheduler then selects the least loaded replica from this
set as the replica to receive the read query.

This optimization requires that the scheduler, in addition
to parsing queries, maintains in its backlogs the completion
status of locks and outstanding writes in a transaction, for
all database replicas.

5 Load Balancing Strategies

5.1 Generic Load Balancing Schemes

The simplest load balancing policy assigns the requests
in Round Robin (RR) order to back-ends. Slightly
more complex, Shortest Queue First (SQF) is based on
weighted round-robin, a common load balancing scheme in
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static-content cluster servers [18, 11]. SQF uses the num-
ber of outstanding queries to a particular back-end as an
estimate of the load on that back-end. The incoming re-
quests are distributed in round-robin fashion, weighted by
the estimate of the load on the different back-ends.

5.2 Content-Aware Load Balancing Schemes

With Shortest Execution Length First (SELF), we
measure off-line the execution time of each query on an un-
loaded (idle) machine. At run-time, the scheduler estimates
the load on a particular back-end as the sum of the (a priori
measured) execution times of all queries outstanding at that
back-end. As opposed to SQF, which treats each query as
equal, SELF tries to take into account the widely varying
execution times for different query types.

The wide range of query execution times makes SELF
a better load balancing strategy for e-commerce workloads.
We illustrate this using the example in figure 3. Assume that
the SQF scheduler has placed queries Q1, Q2, Q3, Q4 on the
two database machines. Furthermore, assume all queries are
read-only and access a common table t1. A transaction con-
taining updates to table t1 (Q5 and Q6) follows. The two
machines have optimal load balance with respect to SQF
(i.e., the same queue length). However, the total database
engine load is clearly not balanced in this situation, due to
the large variability in query complexities. Even worse, if
this technique is used in conjunction with a synchronous
scheduler, all subsequent operations (i.e., Q5 and Q6) have
to wait for the machine with the longest query times to fin-
ish.

Locality-Aware Request Distribution (LARD) was de-
veloped and shown to be successful for load balancing static
content requests in a cluster [28]. The goal of LARD is to
combine good load balance and high locality for increased
hit rates in the data caches of each back-end. In our imple-
mentation of LARD, the scheduler keeps, for each machine,
a history of queries that have executed previously at that

machine and the tables that those queries accessed. When
a new query arrives, accessing a certain set of tables, the
scheduler computes the set of back-ends that have recently
accessed the maximum number of those tables. It selects the
least loaded machine from that set, unless its load is over a
certain threshold. If the selected machine is overloaded, the
scheduler sends the query to the least loaded machine.

5.3 Admission Control

Admission control is a potential addition to any load bal-
ancing algorithm, in which there is a limit set on the load of
outstanding queries at a particular back-end. This limit is
specified in terms of the number of queries for SQF and
in terms of execution time for SELF (and can be either for
LARD). Limiting the load (i.e., admission control) has the
effect of smoothing out load peaks due to either bursts of
request traffic or load balancing imperfections which could
otherwise cause overload conditions on the database server.
If the load for its back-end is over the limit, the database
proxy holds on to the queries until the load on its back-end
drops below the limit.

6 Replicated Clustering and Caching Combi-
nation

Each scheduler caches the query results for all read
queries that pass through it. If an incoming read query
matches an entry in its cache, the scheduler returns the
cached query result to the web/application server front-end.
If there is no match, a new cache entry is allocated, and
the query is sent to the database. The database returns the
results of the query to the cache, where they are inserted
and then forwarded to the application server front-end. On
an update, insert or delete query, the cache performs the
necessary invalidations and forwards the write query to the
database.

The cache is fully transactional by virtue of being inte-
grated with the scheduler algorithm. Specifically, the cache
forwards “lock tables” annotations at the start of each trans-
action to the databases just as in the usual scheduler proto-
col. This ensures serialization of conflicts even if now read
operations may be serviced by scheduler caches.

The scheduler cache supports two transparent invalida-
tion schemes (table and column based). In these schemes,
for each cached query response, the query’s dependencies
are recorded in terms of database tables or in terms of
database columns. In the case of table-based invalidation,
each table object contains references to the cache entries
that are dependent on this table. In the case of column-
based invalidation, each table object contains a number of
column objects, each one corresponding to a column in the
corresponding table. Each of these column objects contains



references to the cache entries depending on this column.
When an update, insert or delete query is received, the cache
invalidates all cache entries dependent on either the affected
tables or the affected columns and forwards the query to the
database. To keep the size of the cache manageable, the
cache implements an LRU replacement strategy.

Similarly to maintaining consistency between each cache
and its underlying data, consistency between the different
scheduler caches is maintained through an invalidation pro-
tocol. When an update, insert or delete query arrives at a
particular scheduler, it is first forwarded to the back-end.
The query is then parsed to determine its dependencies. An
invalidation message containing these dependencies is sent
to all the other schedulers. The scheduler to which the query
was initially sent then waits for the invalidations to be ac-
knowledged by all the other caches and for the response
from the database to come back. At that point, it sends the
response back to the client.

7 TPC-W Benchmark

The TPC-W benchmark from the Transaction Processing
Council [36] is a transactional web benchmark designed for
evaluating e-commerce systems. Several interactions are
used to simulate the activity of a retail store. The database
size is determined by the number of items in the inventory
and the size of the customer population. We use 100K items
and 2.8 million customers which results in a database of
about 4 GB.

The inventory images, totaling 1.8 GB, are resident on
the web server. We implemented the 14 different interac-
tions specified in the TPC-W benchmark specification. Of
the 14 scripts, 6 are read-only, while 8 cause the database to
be updated. Read-write interactions include user registra-
tion, updates of the shopping cart, two order-placement in-
teractions, two involving order inquiry and display, and two
involving administrative tasks. We use the same distribution
of script execution as specified in TPC-W. The complexity
of the interactions varies widely, with interactions taking
between 20 ms and 700 ms on an unloaded machine. Read-
only interactions consist mostly of complex read queries in
auto-commit mode, up to 30 times more heavyweight than
read-write interactions containing transactions. The weight
of a particular query (and interaction) is largely independent
of its arguments.

TPC-W uses three different workload mixes, differing in
the ratio of read-only to read-write scripts. The browsing
mix contains 95% read-only scripts, the shopping mix 80%,
and the ordering mix 50%.

All read-only interactions exhibit locality in their access
patterns, which ranges from hot-spot rows satisfying a con-
dition (such as top-k published items and top-k recent or-
ders) to larger sets of frequently accessed rows in the item

table for bestseller, new product and promotional items and
for return customers in the customer table.

The item table is the most frequently read. It is also up-
dated in every order-placement transaction. Other tables
that both appear in compute-intensive queries and are up-
dated frequently are orders and order line.

7.1 Client Emulation Implementation

We implemented a client-browser emulator. A session
is a sequence of interactions for the same customer. For
each customer session, the client emulator opens a persis-
tent HTTP connection to the web server and closes it at the
end of the session. Each emulated client waits for a certain
think time before initiating the next interaction. The next
interaction is determined by a given state transition matrix
that specifies the probability to go from one interaction to
another. The session time and think time are generated from
a random distribution with a specified mean.

7.2 Hardware Platform

We use the same hardware for all machines running the
client emulator, the web servers, the schedulers and the
database engines. Each one of them has an AMD Athlon
800Mhz processor running FreeBSD 4.0, 256MB SDRAM,
and a 30G ATA-66 disk drive. They are all connected
through 100MBps Ethernet LAN.

7.3 Software

We use Apache v.1.3.22 [1] for our web-server, config-
ured with the PHP v.4.0.1 module [30] providing server-side
scripting for generating dynamic content. We use MySQL
v.4.0.1 [26] with InnoDB transactional extensions as our
database server.

8 Experimental Results

8.1 Baseline Experiments

We run the TPC-W benchmark with one web server ma-
chine and one database engine machine. We obtain 5.1, 8.5,
and 20.4 interactions per second for the browsing, shopping
and ordering workload mix, respectively. The database is
already a bottleneck in this configuration, as we can see
from the CPU utilization on the web server and the database
server machines in Figure 4. For the browsing and shop-
ping mixes, the CPU usage on the database is almost 100%,
while for the ordering mix it does not reach 100% due to
lock waiting times. The database CPU is less of a bottle-
neck in the ordering mix, due to a much smaller fraction



of complex single read queries, compared to the browsing
and shopping mixes. A scheduler is not necessary in this
configuration. There is no measurable difference in terms
of throughput, however, when we interpose a scheduler be-
tween the web server and the database machine.
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Figure 4. CPU Utilization for the web server
and the database server in a single-replica
configuration

All further experimental numbers are obtained running
an implementation of our dynamic content server on a clus-
ter of 1 to 8 database server machines. We use a number of
web server machines sufficient for the web server stage not
to be the bottleneck. The largest number of web server ma-
chines used for any experiment is 8. We use two schedulers
to ensure data availability. The invalidation mechanism we
use for caching is the finer-grain column-based invalidation.

In all further experiments, the performance metric used
is the standard one in TPC-W, throughput in terms of inter-
actions per second. We present performance measurements
in Section 8.2, and Section 8.3.

8.2 Overall Scaling Results

In this section we discuss the overall results for the best
combination of load balancing and scheduling. We discuss
the relative merits of various load balancing and scheduling
strategies in Section 8.3. Figure 5 shows in the x-axis the
number of database machines and in the y-axis the num-
ber of interactions per second. The three graphs correspond
to the three different workload mixes. For each point in
the graphs, we drive the server with increasing number of
clients, until performance peaks, and we report the peak-
point throughput.

The top two curves in each graph show the overall
scaling results for the best combination of load balancing
and scheduling strategies (including conflict-awareness and
asynchrony, labeled ”ConflA” in the figure), with and with-
out caching. Comparing the two, we see that roughly the

same factor of improvement was obtained through caching,
independent of the cluster size. The factor of improvement
is 2 for the browsing mix, 1.2 for the shopping mix, and 1.1
for the ordering mix. The decreasing cache effectiveness is
due to a decrease in the fraction of reads and an increase in
the number invalidations as a result of writes. In the largest
configuration we get a 40%, 31% and 17% hit rate for the
reads in the browsing, shopping and ordering mixes, respec-
tively. During a one-hour run, the caches for each scheduler
did not exceed the maximum set size of 50 MB, and thus
there were no cache replacements. This is explained in part
by the high locality in the application and by the relatively
coarse-grained invalidation scheme (column-based), which
invalidates many cache entries when hot tables are written.

Looking at the effectiveness of clustering alone, we see
that with increasing cluster size, the browsing and shop-
ping mixes scale very well. We get almost linear improve-
ment with each added database machine up to 8 machines,
where we get a factor of 8 improvement for the browsing
mix and a factor of 7.4 for the shopping mix. The lower
overall scaling (a factor of 5.0 at 8 machines) in the or-
dering mix is explained by a lower degree of parallelism.
This mix contains a significant fraction of order-placement
transactions accessing several hot tables (such as item, or-
ders and order line). While out-of-order query issue at the
database proxy and conflict-aware scheduling can overlap
query waits if a variety of conflict classes exist, these tech-
niques have limitations when a single conflict type is domi-
nant, as in this mix.

Conflict-aware scheduling with asynchronous replica-
tion is the method of choice. Figure 5 also contains the best
result for any strategy that does not include these two ingre-
dients (Best-Sync). Clearly, the results are inferior for all
mixes. Furthermore, the bottom curves in Figure 5 present
the scaling results for a simple round robin (RR) distribution
strategy with synchronous scheduling of queries, no load
limiting, and no attention paid to conflicts. The results are
poor for all workloads.

8.3 Detailed Comparison

In this section we compare the impact of the different
strategies on performance. All numbers represent peak-
performance and were derived through measurements using
the experimental platform with 8 databases.

8.3.1 Relative Impact of All Scheduling Strategies

The graphs in Figure 6 for all the three mixes show the con-
tribution of each strategy. Starting from the simplest strat-
egy of round-robin with synchronous scheduling (Base), we
add all the other enhancements, one by one. First, we add
the best load balancing strategy (SELF), then we add the
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limit on database load (Limit), then asynchronous replica-
tion (Async) and scheduling reads with conflict-awareness
(ConflA). We found that using the load measure in terms of
execution length that comes with SELF allows for relative
independence on the exact value of the load limit. This is
in contrast to choosing a limit in terms of number of out-
standing queries in SQF, as shown in Figure 7. We use a 1
second load limit with SELF for all mixes.

First, the most important factors are related to consis-
tency maintainance (asynchronous replication and conflict
awareness) and the least important is the choice of load bal-
ancing. Second, in the browsing mix, admission control is
a relatively important secondary factor. In this workload,
writes are rare, while heavy-weight reads can cause conges-
tion at the database. For all mixes, given that traffic is non-
uniform due to client think times, limiting database conges-
tion during bursts of traffic becomes more important than
the particular choice of load balancing. On the other hand,
in the shopping and ordering mixes, where transactions are
more frequent than in the browsing mix, any other improve-
ment is dwarfed by the combined impact on performance of
asynchronous scheduling and conflict-awareness (ConflA).

8.3.2 Comparison of Load Balancing Methods

Figure 8 shows the relative performance of the four load
balancing policies when used in conjunction with the best
scheduling policy (conflict-awareness with asynchronous
replication). We use no limit for the database load. Setting a
limit could smooth out imperfections in the load balancing
due to the queuing capacity of the database proxies.

First, the content-aware schemes (SELF and LARD),
perform better than the generic ones. The maximum differ-
ence, however, between the performance of any two poli-
cies is around 20%. Second, locality (LARD) does not
bring any benefits compared to SELF. This is mainly due
to the compute-intensive nature of the read queries. Fur-
thermore, all complex read queries such as the ones nec-
essary for computing best sellers and new products access

Strategy CPU Memory Network Disk
(%) (MB) (Mb/sec) (MB/sec)

No-cache 4% 0.8 3.8 < 1
Cache 13% 33.1 6.0 < 1

Table 1. Average resource usage at each of
the two schedulers for the TPC-W shopping
mix, at the largest configuration with and
without caching

hot rows in only a few tables (e.g., item, author, order line),
which become replicated in most memories independent of
policy. These complex queries have a large performance
impact, and each replica’s memory can easily accommo-
date the data necessary for computing all of their results.
Locality-aware request distribution can make a difference
only for sets of requests with combined working sets that
do not fit into the memory of any single node. This is a
common scenario [28, 7] in web sites serving static content
where this technique was shown to work well.

8.3.3 Costs of Content-Awareness at the Scheduler

In table 1 we show the memory, disk, and network usage at
the scheduler in the largest configuration with 8 databases,
with and without caching (disk accesses result from fault
tolerance actions in both configurations). All resource us-
age is very low. Throughout our experiments, the bottleneck
is either the front-end tier or the database tier (with oscilla-
tions between the two especially due to cache invalidations),
while the scheduler never becomes the bottleneck. From
additional profiling experiments, we have determined that
for a scheduler without caching, query parsing accounts for
around 2% of the total CPU processing time, while the rest
is spent in handling connections in the event-driven loop.

The CPU usage for each database proxy is negligible for
all mixes in all experiments.
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Figure 6. Contributing factors in content-aware strategies (all protocols normalized to ConflA)

25

30

35

40

45

50

55

60

65

70

0 500 1000 1500 2000 2500 3000

Limit (execution time)

T
h

ro
u

g
h

p
u

t 
(t

p
s)

SELF-Sync SELF-ConflA

25

30

35

40

45

50

55

60

65

70

0 10 20 30 40
Limit (no of queries)

T
h

ro
u

g
h

p
u

t 
(t

p
s)

SQF-Sync SQF-ConflA

Figure 7. Throughput for conflict-aware asynchronous versus synchronous replication as a function
of threshold value for SFQ and SELF for shopping mix on 4 databases

Browsing Mix

0

0.2

0.4

0.6

0.8

1

1.2

RR
SQF

SELF
LA

RD

Th
ro

ug
hp

ut
 (t

ps
)

Shopping Mix

0

0.2

0.4

0.6

0.8

1

1.2

RR
SQF

SELF
LA

RD

Th
ro

ug
hp

ut
 (t

ps
)

Ordering Mix

0

0.2

0.4

0.6

0.8

1

1.2

RR
SQF

SELF
LA

RD

Th
ro

ug
hp

ut
 (t

ps
)

Figure 8. Comparison of load balancing policies (normalized to LARD)



8.4 Discussion

Overall our results indicate that: i) Scheduling queries
with content awareness is a promising technique for scaling
dynamic content sites. The computational costs involved
are very low and employing such techniques can dramati-
cally reduce consistency-induced overheads. ii) Traditional
load balancing strategies even when enhanced with content-
awareness become less important than congestion control
measures due to the non-uniform traffic on such sites caused
by client think times. iii) Simple query-caching techniques
can help scale the site for typical browse-oriented client ses-
sions.

Finally, more research is needed to investigate the
database features, the interfaces, and the protocols nec-
essary for a closer integration between the scheduler and
the internal database consistency maintenance policies, in
replicated database clusters. We believe that further im-
provements are possible if the database is no longer treated
as a black box without sacrificing transparency. For in-
stance, the scheduler could benefit from further augment-
ing its awareness with knowledge about the presence or ab-
sence of advanced concurrency control techniques used by
the databases (e.g., multiversion concurrency control [6],
database statistics on fine-grain lock conflicts, database log-
ging of row-level write-sets in a standard format, etc).

9 Related Work

Current high-volume web servers such as the official web
server used for the Olympic games [10, 9] and actual e-
commerce site configurations reported by industry [19, 36],
rely on expensive supercomputers to satisfy the volume of
requests. Nevertheless, performance of such servers may
become a problem during periods of peak load. Our solu-
tion provides scalability and availability by using commod-
ity hardware and software with no modifications.

This paper is related to all previous work studying trans-
parent performance optimizations in static or dynamic con-
tent servers, such as web caching [32, 2], scaling through
replication [5, 35, 21, 22, 38, 39, 31], load balancing [28, 7,
25] or admission control [37, 12]. In contrast, we present
our experience with scaling a dynamic content server sys-
tem, as a whole. We strive to provide insights into what
techniques are important in practice when engineering such
sites and pinpoint areas that are worth further investigation.

Our dynamic content caching approach differs from
previous transparent approaches to dynamic content
caching [32, 2] because we design and evaluate a cluster
dynamic content cache, with automatic invalidations and
strong consistency guarantees.

In practice, database replication has previously been
used mainly for fault tolerance and data availability [14].

Recent efforts in the database research community focus
on providing both scaling and serializability in replicated
databases [5, 35, 21, 22, 38]. These approaches differ from
ours in that databases are considered independent (e.g., dis-
tributed on a wide area network), where clients have lit-
tle choice other than executing transactions locally, and the
replication is implemented by modifying the database layer.

Luo et al. [24] and Oracle’s 9i Database Cache prod-
uct [27] use a middle-tier database cache. They rely on
replication tools to periodically propagate updates from
the back-end database to the cache tier. More recent ef-
forts towards integration of database fine-grained concur-
rency control and replication techniques use snapshot iso-
lation [13, 39, 31] to minimize consistency maintainance
overheads.

These techniques are not completely transparent, since
they either assume the presence of some particular fea-
tures (e.g., multiversioning and write-set extraction) at the
database or allow stale data [24]. In contrast, by treat-
ing databases as black-boxes, our techniques are applicable
even to heterogeneous environments clustering databases of
different types.

Our LARD scheme is similar to the locality-aware re-
quest distribution proposed by Pai et al. [28] for static con-
tent. They show that for a web engine serving static content,
LARD outperforms both pure locality-based and weighted
round-robin schemes. In contrast, we show that, when the
web server is targeted at serving dynamic content, consis-
tency maintenance techniques have more impact than dis-
tributing requests for locality. Zhang et al. [41] have pre-
viously extended LARD to dynamic content in their HACC
project. Their study, however, is limited to read-only con-
tent workloads. In a more general dynamic content server,
replication implies the need for consistency maintenance.

Neptune [34] adopts a primary-copy approach to provid-
ing consistency in a partitioned service cluster. However,
their scalability study is limited to web applications with
loose consistency such as bulletin boards and auction sites,
where scaling is easier to achieve. They do not address e-
commerce workloads or other web applications with rela-
tively strong consistency requirements.

10 Conclusions

In this paper, we investigate the impact of several content
replication and caching techniques on scaling in a dynamic
content site using a cluster of web server and database en-
gine machines. We avoid modifications to the web server,
the application scripts and the database engine. We also as-
sume software platforms in common use: the Apache web
server, the MySQL database engine, and the PHP scripting
language. As a result, our techniques are applicable with-
out burdensome development or reconfiguration of the web



site. We use the various workload mixes of the TPC-W
benchmark to evaluate the contribution of load balancing,
scheduling and caching to good scaling behavior.

Our cluster architecture scales well for all the TPC-W
workload mixes. The key ingredient of a scalable policy
is content-aware asynchronous replication. The scheduler
combines information about the individual queries and the
state of the database replicas to, at the same time, improve
performance and provide strong consistency. The actual
choice of load balancing strategy is less important. Some-
what better results are obtained if query execution time
is taken into account for load balancing. Locality-based
load balancing policies, found very profitable for static web
workloads, offer little advantage.

Finally, we have shown that clustering and caching, two
traditional scaling methods can be combined successfully
in a fully transparent integrated solution. Dynamic content
caching improves performance by the same factor indepen-
dent of cluster size. The impact is significant (a factor of
2) only for workloads with low write frequency, while for
write-intensive workloads, conflict-aware scheduling with
asynchronous replication is the main scaling option.
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