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Adaptive Energy Conserving Algorithms for
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Abstract— In this paper, we introduce and evaluate novel
adaptive schemes for neighbor discovery in Bluetooth-enabled
ad-hoc networks. In an ad-hoc peer-to-peer setting, neighbor
search is a continuous, hence battery draining process. In order
to save energy when the device is unlikely to encounter a
neighbor, we adaptively choose parameter settings depending on
a mobility context to decrease the expected power consumption
of Bluetooth-enabled devices. For this purpose, we first determine
the mean discovery time and power consumption values for
different Bluetooth parameter settings through a comprehensive
exploration of the parameter space by means of simulation
validated by experiments on real devices. The fastest average
discovery time obtained is 0.2 s, while at an average discovery
time of 1 s the power consumption is just 1.5 times that of the idle
mode on our devices. We then introduce two adaptive algorithms
for dynamically adjusting the Bluetooth parameters based on
past perceived activity in the ad-hoc network. Both adaptive
schemes for selecting the discovery mode are based only on
locally-available information. We evaluate these algorithms in a
node mobility simulation. Our adaptive algorithms reduce energy
consumption by 50% and have up to 8% better performance over
a static power-conserving scheme.

I. INTRODUCTION

MOBILE devices with short range wireless network
interfaces become increasingly popular and enable new

peer-to-peer applications involving devices communicating in
proximity of each other. One example of such applications
are ad hoc opportunistic networks [1], [2], [3], [4] in which
content is forwarded between mobile devices in the absence
of global connectivity by taking advantage of communication
opportunities that arise in the course of user mobility. The
typical scenario in this kind of networks is that of two users
carrying mobile devices (e.g., PDAs, smartphones) with wire-
less networking capabilities (e.g., Bluetooth, Wi-Fi) walking
past each other and exchanging data (e.g., news articles,
weather reports, multimedia files) during the period of time
they are in-range.
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Bluetooth-enabled mobile devices are particularly suitable
for this kind of new communication peer-to-peer applications,
because they offer low-power short-range data transfers [5]. In
addition, since such devices become increasingly pervasive,
almost anyone with a Bluetooth device in her/his pocket
becomes a potential participant in the forwarding process.
To enable the above scenario with Bluetooth, neighboring
devices first need to discover each other, i.e., learn about
each other’s presence. This implies that a continuous, or at
least periodic, process for scanning the surroundings i.e., the
neighbor discovery process, must be run on each device. Due
to its continuous nature, the discovery process may consume
considerable amounts of energy, even if individual data trans-
fers on Bluetooth are low-power. Previous user studies [1] have
shown that the energy consumption of the Bluetooth discovery
protocol is the limiting factor for wide deployment of such ad-
hoc Bluetooth networks, because mobile devices have limited
battery life.

In this paper, we first explore the inherent trade-off in the
selection of Bluetooth parameters between energy efficiency
and neighbor discovery speed. Specifically, depending on the
choice of Bluetooth parameters, there is a range of discovery
modes we might select from low-power, slow discovery to
high-power, fast discovery. For a certain device, the best choice
might depend on many factors including user preference
and remaining battery life. While there is no single optimal
discovery mode, ideally, we would like to maximize battery
life while minimizing the lost opportunities for communication
due to slow discovery.

Based on our exploration of Bluetooth parameter settings,
we introduce and evaluate two novel adaptive algorithms for
dynamically selecting the parameters of the neighbor discovery
process in order to switch between low-power, slow discovery
modes and high-power, fast discovery modes, depending on a
mobility context. Both adaptive schemes for selecting the dis-
covery mode are based only on locally available information.
In particular, we use the real-life observation that wherever
a neighbor device is encountered, other contacts are likely to
happen as well. Such is the case, for example in classrooms,
shopping complexes, public transport, etc. Our first scheme
uses the level of recent activity as an indicator for selecting
the discovery mode. The second scheme assumes access to a
positioning system and remembers previous contacts and their
location. It then uses these patterns to predict future activity.

In our evaluation, we first explore the energy consumption
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versus neighbor discovery speed trade-off in Bluetooth and
we select a set of representative parameter settings. We then
evaluate our two adaptive discovery selection schemes, using
dynamic parameter settings in a mobility simulation. In order
to efficiently search the multi-dimensional Bluetooth param-
eter space, we have developed a simulator closely matching
the implementation of real Bluetooth devices. The simulator
enables us to search a much larger parameter space than it
would be possible by measurement. To validate our simu-
lations, we confirm the discovery time and power consump-
tion for important parameter settings (e.g., yielding minimum
discovery times or a good compromise between discovery
time and power consumption) on a real experimental platform
composed of two Cellink BTA-3100 devices with a Silicon
Wave chipset and compatible with v1.2 of the Bluetooth
protocol. Furthermore, we introduce a systematic methodology
for experiment randomization to set the instant at which two
devices come into range in a statistically meaningful way.

The fastest average discovery time obtained from our sys-
tematic Bluetooth parameter setting search is 0.2 seconds.
While several previous studies have considered neighbor dis-
covery in Bluetooth version 1.1 [6], [7], [8], the best previous
experimentally validated discovery scheme reports a minimum
discovery time of 8 seconds [7]. Another contribution of our
work is to find parameter settings that dramatically improve
both Bluetooth discovery time and power consumption at the
same time. For an average discovery interval of 1 second,
which is well within the usual window of opportunity for
establishing contact, the power consumption can be as low
as 1.5 times the idle mode power consumption. To our
knowledge, this is the first result to show feasibility of a fast
neighbor discovery scheme on currently available hardware in
the envisioned ad-hoc Bluetooth network setting.

To evaluate our adaptive neighbor discovery selection
schemes, we use a mobility simulator implementing a modified
Random Waypoint [9] model to evaluate the performance
of our two adaptive schemes along with the performance
of static discovery mode schemes. Our simulation results
show good performance for the two adaptive schemes when
compared to the static schemes: i) 50% less energy spent per
contact and ii) up to 8% better throughput. When compared
to the highest power mode available, although less contacts
are made, the power consumption is far superior. While our
investigation has its limitations, due to being unable to fully
mirror the periodical patterns of movement of people in the
real world, we believe both schemes are good candidates for
implementation in a real-world setting.

The rest of this paper is organized as follows. Section II pro-
vides the background on the discovery process in Bluetooth.
In Section IV, we present our two schemes for dynamically
selecting the discovery mode in Bluetooth in an opportunistic
ad-hoc network. In Section III, we explain how we perform the
search for the optimal parameters through simulation, how we
validate the simulation through measurements on real devices,
and we present other aspects of our simulation methodology,
such as the simulation of mobility in ad-hoc opportunistic
Bluetooth networks. Section V presents our evaluation of the
adaptive and static schemes. We discuss the related work in

Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we introduce the concepts and terminology
used in this paper. First, to motivate our work, we present
the concept of opportunistic networking and the challenges
of the neighbor discovery process. Second, we present the
discovering procedure in Bluetooth. At last, we talk about
how the neighbor discovery process used in opportunistic
networking would be implemented in Bluetooth.

A. Opportunistic Networking

With the advent of mobile devices, such as, laptops, PDAs
and mobile phones, with short-range wireless networking
capabilities, such as, Bluetooth, new types of networking
applications are possible even in the absence of global con-
nectivity. The mobility of the users that carry the devices
can be exploited for data transport even when there is no
end-to-end path between the source and destination nodes.
A number of recent proposals [2], [1] investigate the idea
of opportunistic networking or, alternatively called, pocket
switched networking [3]: propagating data in an epidemic
fashion through ’opportunistic’ data exchanges that occur
when mobile devices come into wireless range due to the
mobility of their users.

An example in which this type of networking might be
useful are remote and rural areas with sporadic access to
broadband infrastructure [10]. Another potential use would
be networking when access infrastructure has failed, such
as under disaster conditions. Another study [1] suggests that
within particular user communities, e.g. students on a univer-
sity campus, targeted content might be forwarded using user
mobility as a network transport mechanism. Finally, one can
easily imagine generic data dissemination through epidemic
propagation involving data of common interest such as MP3
music, news articles, weather reports, or browsed web content.
Such a system would work in the same way as peer-to-peer file
sharing systems, where users agree to donate computational
resources to the community in return for access to the shared
content.

The typical scenario in opportunistic networking involves
two users that carry mobile devices exchanging data as they
walk past each other. A key step in establishing contact
between these users is the neighbor discovery process: nodes
need to learn about each other’s presence before establishing
a connection. The absence of any infrastructure means that
devices have to continuously scan their surroundings to detect
nearby nodes.

The challenges presented by this continuous discovery pro-
cess are two-fold:

1) Short discovery times. Communication opportunities
within such networks are usually brief, on the order of a
few seconds. Two users carrying devices that have a ra-
dio range of 10 m such as that of Bluetooth and walking
towards each other at a normal speed of 2 m/s will have
a window of opportunity of only 5 s to discover each
other’s presence and establish communication. Hence,
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the discovery process needs to be fast in order to enable
devices to take advantage of random encounters.

2) Low power consumption. While most subsystems on
mobile devices have seen a great deal of progress
in recent years, power remains a scarce resource and
must be conserved as much as possible. The discovery
process, being a continuous process run by the device,
needs to be energy-efficient in order to avoid prematurely
draining the battery.

While it is desirable to have both characteristics at the same
time, fast discovery and low power consumption, it is clear that
at some level a trade-off between the two needs to be achieved.
A device might use more energy-intensive discovery modes
when quick discovery times are essential, and conversely, low-
power modes when conserving battery is more important.

B. Standard Asymmetric Bluetooth Discovery Procedure

Typical Bluetooth [11] devices use an asymmetric protocol
for discovering each other. One of the devices performs the ac-
tive role sending beacons and listening to replies. This device
is known as the inquiring device, or otherwise, performing
the inquiry procedure. The other device, in the passive role,
performs the inquiry scan procedure that consists in listening
to beacons and sending responses.

Figure 1 illustrates the main aspects of the discovery pro-
cess. The Bluetooth physical layer is based on a frequency
hopping scheme, in which devices use one of the 79 available
frequencies according to a pseudo-random scheme. For discov-
ery, a device uses a special hopping sequence that covers only
32 out of the 79 frequencies. The inquiring device sends 1600
beacons per second cycling very fast through the available
frequencies. The 32 inquiry frequencies are split into two
trains of 16 frequencies each, called A and B (see Figure 1).
The inquiring device uses the frequencies only in one of the
trains at a time. It switches trains every 2.56 s. The scanning
device periodically listens to beacons during a usually short
window of time. Two Bluetooth parameters, called the scan
interval and the scan window, control the frequency and the
duration of the listening windows. If the device receives a
beacon during a scan window, it waits for 625 µs and sends
a response on the frequency of the beacon. The discovery
process completes when the inquiring device receives the
response. The scanning device follows a much slower hopping
pattern changing the frequency it listens to only every 1.28 s.

The physical channel used by Bluetooth devices is divided
into time slots of 625 µs. During the discovery procedure,
the inquiring device sends two beacons in each slot on two
different frequencies and listens to responses during the next
slot on the frequencies of the beacons. Each Bluetooth device
has an internal clock that determines the timing and frequency
hopping of the transceiver. The clock is implemented as a 28-
bit counter whose least significant bit ticks in units of 312.5 µs.
It solely determines the frequency to use in the inquiry or
inquiry scanning procedures according to the equations below:

Finquiry = [CLK16−12 + koffset + (CLK4−2,0

−CLK16−12) mod 16] mod 32

Fscan = [CLK16−12 + N ] mod 32 (1)
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Fig. 1. Bluetooth discovery process

where koffset is 24 for train A and 8 for train B, respectively.
N is a counter incremented after each response to a beacon.
By CLK16−12, we denote the 5-bit sequence from bit 16 to
12 of the clock.

As it can be seen from these formulae, the scanning fre-
quency changes whenever bit 12 of the clock changes, that is,
every 1.28 s, while the inquiry frequency changes with every
tick of the clock, that is, every 312.5 µs.

There are two differences between the discovery procedure
in Bluetooth version 1.1 and 1.2. The first one is the random
backoff defined in v1.1 and dropped in v1.2: after receiving
the first beacon, the scanning device would go into a backoff
period of up to 0.64 s and only after receiving a second beacon
from the same device, it would send a response. It has been
shown that the backoff period potentially doubles discovery
times at a slight benefit of avoiding collisions, that are anyway
fairly unlikely [8]. The second difference is the interlaced
inquiry scanning mode added in v1.2. If a device performs
interlaced scanning as opposed to the standard scanning pro-
cedure described above, then each (standard) scan window on
frequency Fscan is followed immediately by a scan window
(of the same length) on frequency (Fscan + 16) mod 32. Due
to the way the inquiry train membership evolves over time,
it is guaranteed that the two scanning frequencies will be in
different trains for any given inquiring device.

C. Symmetric Neighbor Discovery in Bluetooth-enabled Ad-
Hoc Networks

In an ad-hoc scenario required for opportunistic communi-
cations, the roles of Bluetooth devices (active versus passive)
cannot be predefined, because if both devices had the same
role, they would never discover each other. Instead, devices
need to alternate between the inquiry (active) and inquiry
scan (passive) modes, as pointed out in previous studies [12]
that have considered neighbor discovery in Bluetooth v1.1.
Salonidis et al. [12] have shown that the residence time during
which a device performs a given role (active or passive),
should be random in order to ensure bounded discovery times.
Otherwise, if the residence times are deterministic, two devices
with synchronized schedules for alternating roles would never
discover each other.
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Bohman et al. [7] have further studied the Bluetooth sym-
metric neighbor discovery scheme by means of simulation and
measurements on an experimental testbed. They have defined
the residence time as composed of a fixed part and a variable,
randomly chosen part distributed either uniformly or exponen-
tially. They have assumed equal residence times and default
scan window timing and by trying different parameters for the
residence time, they found that when the mean residence time
in each role is around 2.5 s, the mean discovery time, i.e.,
the average time from the moment two devices are in range
until one of them discovers the other, is around 8 s. They also
concluded that there is almost no difference between using a
uniform or exponential distribution for the variable part of the
residence time.

III. BASIC NEIGHBOR DISCOVERY SCHEME

In this section, we presents the basic neighbor discovery
scheme and show how to set its parameters by exploring a
large space of possible values. We thus can understand the
trade-off between power consumption and discovery time on
our devices that will be further used in the selection of our
adaptive discovery modes.

We extend the approach proposed by Bohman et al. [7]—
we assume that the residence time spent by a device in each of
the two phases (inquiry and inquiry scan) during the discovery
process are as follows:

Tinquiry = Cinq + rand(0, 2Vinq)

Tscan = Cscan + rand(0, 2Vscan) (2)

where Cinq , Vinq , Cscan, Vscan are respectively, parameters
of the constant and the variable part of the residence time in
each phase, rand(x, y) denotes an integer-valued uniformly
distributed random variable with values in the interval (x, y)
(note that the mean values of the variable parts are thus
Vinq and Vscan). We also propose to vary scan window

and scan interval, the duration and frequency of the scan
windows (how often and for how long the passive device is
listening while in the scan phase). We consider the Bluetooth
v1.2 protocol and explore the use of the interlaced inquiry
scan mode in addition to the standard one. Our scheme does
not require any modification of the standard and can be
implemented on the currently available hardware.

The basic scheme comes from considering two main perfor-
mance objectives: fast discovery and low power consumption.
We look for two-fold benefits: a reduction in power consump-
tion and an improvement of the mean discovery time. Our
main observation is that during the inquiry phase, a device is
continuously engaged in baseband activities (i.e., transmitting
search beacons or receiving responses to beacons), thus con-
suming much more power than in the scanning phase during
which the device is only active for a fraction of time (the scan
window). Hence, the key to finding the best of the two worlds
(discovery speed and power consumption) is to independently
vary the mean times spent by the device in each of the two
phases and the size of the scan window. Choosing the right
values of the mean residence times as well as the frequency
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Fig. 2. Cumulative distribution functions of the discovery time

and duration of the scanning window thus enables us to find
parameter settings offering an energy efficient scheme with a
short mean discovery time.

The metrics of interest are the mean discovery time and the
mean power consumption. The discovery time is defined as
the time elapsed between the instant the devices are in the
communication range until one of the devices discovers the
other. The power consumption depends on the type of activity
performed in a given time slot.

A. Parameter Space Search

Since the parameter space is seven-dimensional, it would be
infeasible to explore it through measurements on real devices.
We have implemented a discrete-event based simulator that
closely models the discovery process as specified in the
Bluetooth specification [11] with the specific features of the
Bluetooth devices that we used in our measurement. We use
this simulator to explore a large number of points in the
parameter space and we validate the values obtained from the
simulator through empirical measurements for some selected
points. For the experiments, we use two Cellink BTA-3100
devices with a Silicon Wave chipset and compatible with v1.2
of the Bluetooth protocol.

Table I summarizes the parameter subspace that we ex-
plored in the simulation by showing the values taken for
each parameter and the total number of points. Note that
scan window should be always smaller than scan interval

so some combinations of values can be eliminated. In the
interlaced scan mode, the actual window size is twice the
scan window, so only points that have 2 ∗ scan window <

scan interval are to be considered (which accounts for less
points explored in the interlaced scanning mode, cf. Table I).

Figure 2 shows the cumulative distribution functions of the
discovery times obtained from simulation and measurements
for the points yielding the minimum mean discovery times.
We can see that the measurement results closely match those
obtained through simulation. We also observe that the inter-
laced mode performs noticeably better due to its scanning of
frequencies in both inquiry trains.

Furthermore, in our parameter space search, we are inter-
ested in capturing the power consumption of the discovery
process versus discovery time trade-off. We derive power
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Parameter Values
Cinq[s] 0.25 0.5 1.0 2.0 3.0 4.0 6.0 8.0
Vinq[s] 0.25 0.75 1.5 2.0 2.5 3.0 4.0 4.5 5.0
Cscan[s] 0.25 0.5 1.0 2.0 3.0 4.0 6.0 8.0
Vscan[s] 0.25 0.75 1.5 2.0 2.5 3.0 4.0 4.5 5.0
scan window[ms] 11.25 22.50 45.00 90.00 180.00 312.50
scan interval[ms] 160.00 320.00 472.50 640.00 960.00 1280.00 2557.50
scan mode standard interlaced

Number of points explored
Standard scan 207,360

Interlaced scan 186,624
Total 352,152

TABLE I

PARAMETER SPACE EXPLORED IN SIMULATION

State Power consumption
Idle 91 mW
Inquiry 280 mW
Inquiry Scan 437 mW

TABLE II

POWER CONSUMPTION OF THE CELLINK BTA-3100 DEVICE

consumption from the parameters of the discovery process
based on careful measurement of our operational prototype on
the real devices. Bluetooth devices divide time into slots used
for various activities (inquiry, scanning, connections). There
is a strong correlation between the number of slots that are
dedicated to the discovery process and its power consumption.
Moreover, using fewer slots for discovery implies having more
slots available for other baseband activities such as serving
ongoing connections. So, we relate power consumption to the
percentage of baseband slots used in the discovery process out
of the total number of slots. By power used by the discovery
process, we mean only power spent in excess of the idle mode
consumption.

We have measured the power consumption of our Cellink
devices in the idle mode and in the two discovery states (scan
and inquiry) as shown in Table II. This was done by placing
a precision resistor in series with the Bluetooth device and
measuring the voltage drop across this resistor with the aid of
a digital storage oscilloscope. As we can see from this Table,
the inquiry scan mode uses considerably more power than the
inquiry mode on the devices in our experimentation platform.

In order to visualize all relevant points in the power con-
sumption versus discovery time trade-off, we plot the graph
shown in Figure 3 as follows. For each value of the mean
discovery time obtained in the simulations, we retain the
point that has the minimum power usage of the discovery
process. We then use these values to draw the power vs.
discovery time graph with the power expressed in milliwatts
as shown in Figure 3. We observe from this power versus
discovery time graph that if discovery times under 8 s are not
essential, interlaced scanning offers power modes only slightly
higher than the idle mode consumption in Bluetooth v1.1. As
expected, spending more power results in shorter discovery
times. Interlaced scanning outperforms standard scanning over
the whole range of parameters of interest.
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Fig. 3. Mean discovery time vs. power consumption of the discovery process

Cinq[s] 3 0.25
Vinq[s] 0.25 0.25
Cscan[s] 3 0.25
Vscan[s] 5 2.5
scan window[ms] 11.25 11.25
scan interval[ms] 320 472
scan mode standard interlaced
Mean disc. time[s] 2.98 1.03
Std. dev.[s] 2.90 0.96
Median disc. time[s] 2.21 0.74
Slot usage 31.4% 19.4%

TABLE III

PARAMETER VALUES FOR GOOD TRADE-OFF POINTS (SIMULATION)

Table III gives parameter values for points that yield good
trade-off between the low mean discovery times and power
consumption (they are on the knee of the curve discovery time
vs. power consumption, cf. Figure 3).

Discovery Modes Used in the Opportunistic Ad-Hoc Network
Simulation

We chose five discovery modes for use in our ad-hoc
network simulation as shown in Figure 4: M1 is the most
aggressive mode and M5 is the laziest one. At any given time,
a mobile device in our simulation uses one of these discovery
modes. Table IV shows the parameters of these discovery
modes and their corresponding average power consumption.
For comparison with previous work, we also use the best
mode given by the state-of-the-art scheme of Bohman et al [7],



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 1, NO. 11, NOVEMBER 2006 6

scan interval[ms] scan window[ms] Cinq [s] Vinq [s] Cscan[s] Vscan[s] Power[mW]
M1 160 45 0.25 0.25 0.25 0.25 108
M2 320 22.50 0.25 0.25 0.50 0.75 114
M3 640 22.50 0.25 0.25 0.50 2.50 127
M4 640 22.50 0.25 0.25 1.00 5.00 161
M5 960 22.50 0.50 0.25 8.00 5.00 270
Mb 1024 11.25 1.75 2.00 1.75 2.00 173

TABLE IV

PARAMETERS FOR DISCOVERY MODES USED IN THE SIMULATION
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Fig. 4. Discovery time versus power consumption curve. M1 through M5
are discovery modes we use in the ad-hoc network simulation.

M1 M2 M3 M4 M5

M1 0.21 0.24 0.38 0.55 0.78
M2 0.24 0.45 0.76 1.08 1.53
M3 0.38 0.76 1.45 2.06 2.98
M4 0.55 1.08 2.06 2.89 4.15
M5 0.78 1.53 2.98 4.15 5.92

TABLE V

MEAN DISCOVERY TIMES BETWEEN TWO DEVICES IN DIFFERENT MODES

[S]

which we call Mb.
In the previous subsection, we have evaluated the mean

discovery time for these discovery modes, when the same
mode is in use on both devices. In order to realistically model
the discovery process in our node mobility simulation, we
have to consider the case in which two nodes in range use
different discovery modes. Hence, we modified our discrete-
event simulator to support different modes and we ran it for
each pair of modes. The resulting mean discovery times are
shown in Table V. As expected, when both devices are in
mode M1, the smallest mean discovery time is obtained.

A second aspect of emulating the discovery process in the
simulator is randomly drawing the discovery time between two
devices at a particular encounter: while we know the mean
discovery time as a function of the discovery modes used on
the devices, in order to be accurate, we need to know the
distribution of discovery times as well. Fortunately, it appears
that at least when both devices are in mode M1, the expo-
nential distribution approximates very well the distribution of
discovery times as it can be seen from Figure 5. Hence, we
draw the discovery times from an exponential distribution with
the respective mean (as per Table V).

Finally, we simplify our simulation by only considering
pairwise contacts between devices: we do not implement the
discovery process involving more than two devices that are
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in-range at the same time.

IV. ADAPTIVE DISCOVERY MODE SELECTION

We describe in this section two adaptive schemes for
switching between different discovery modes.

A. Overview

From the point of view of the trade-off that discovery modes
achieve between discovery time and power consumption, we
could classify them as ranging from aggressive (fast discovery,
energy intensive) to lazy (slow discovery, low power consump-
tion). It is clear that in general no single discovery mode
represents the best choice. Aggressive modes would drain the
battery of the mobile device too soon, while lazy modes would
miss many communication opportunities. Thus, the choice of
a discovery mode should be user-specified according to the
priorities at a given instant: short discovery times or low
battery usage. Alternatively, devices could dynamically switch
modes based on some global information such as knowledge
about nearby devices. While such global information might
be available, for example a cellular telephony network might
provide the number of users in a certain cell, it is likely that
privacy issues would make such a mechanism unfeasible.

Instead, we introduce two schemes for dynamically switch-
ing discovery modes based solely on local knowledge. The
two schemes are based on the observation previously made by
Ghosh et al. [13] that in the real world, users tend to move in
a non-random fashion: they spend a considerable amount at a
few places and “orbit” between those places. Our two schemes
are based on the variant of this observation that “wherever a
device is encountered, it is likely that there are more devices”.
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Made_Contact:
t_lastcontact := t_current

End.

Update_Discovery_Mode:
If (t_lastcontact = t_current)

mode := 1
Else If (t_current - t_lastcontact >

t_nocontact)
mode := mode - 1

End.

Fig. 6. Recent-activity level scheme

Next, we describe our two adaptive schemes based on the
recent activity level and recognizing locations of past contacts,
respectively:

a) Recent activity level scheme: In this scheme, a device
switches to more aggressive modes whenever another device
is discovered, and conversely, goes back to lazier modes when
no device has been seen for a while. A typical scenario
where the benefits of this scheme are visible, is that of a
user entering a crowded place such as a shopping complex
or a subway station. After the first peer device is discovered,
the user’s mobile device is put into a more aggressive mode,
thus discovering increasing its chances of discovering the
remaining devices. When the user exits the place, the device
is switched back into more economic modes of operation.

b) Location of past activity scheme: In this scheme, a
device has access to a global positioning system and mem-
orizes past contacts and their location. Whenever a location
where contacts have been made previously is approached,
the device switches to a more aggressive mode. This scheme
has a learning phase: initially it should perform poorly as it
has no knowledge about a user’s movement patterns and, as
knowledge is gained, performance should improve.

V. EVALUATION OF THE ADAPTIVE SCHEMES

In this section, we evaluate by means of simulation the pro-
posed adaptive schemes for selecting the discovery modes. We
begin with a presentation of their algorithms as implemented
in the simulation and we describe the simulation environment.
Finally, we discuss the simulation results.

Recent activity level scheme

Figure 6 shows the algorithm of the recent activity level
scheme. By tcurrent we denote the current time in the simula-
tion, tlast contact is the time of the last contact, and tnocontact

is a parameter of the algorithm: if tnocontact seconds have
elapsed and no contact has been made the devices switch to
the next lazier discovery mode. Whenever a contact is made,
the devices switch to the fastest discovery mode—M1. The
default value of tnocontact is 5 s.

Location-based scheme

For the implementation of the location-based scheme, we
use a grid to divide the simulation space into equal sized cells.
Each device holds a counter, for each cell, of the number
of contacts that were made while in that cell. The current

Update_Discovery_Mode:
mode := 5 - 5 * current_cell_counter /

max_counter;
End.

Fig. 7. Location-based scheme

discovery mode is chosen as a function of the contact counter
of the current cell and the maximum contact counter of any
cell as shown in Figure 7. For example, assume that the device
has previously discovered 2 devices in the current cell, while
the highest number of contacts seen in any cell is 8. Then,
the current discovery mode is switched to mode M5−5∗4/10 =
M3. cell size is a parameter of this scheme that determines
the granularity of the location-based decisions.

Other schemes

We also introduce three simple static schemes for compar-
ison with our dynamic schemes:

1) A scheme that constantly uses a lazy discovery mode.
This scheme should be the reference in terms of energy
efficiency.

2) A scheme that uses an aggressive discovery mode, thus
being the reference in terms of fast discovery times.

3) A scheme that uses the previously best known mode
proposed by Bohman et al. [7] (i.e. discovery that uses
equal residence times and default scan window timing).

In our evaluation of these schemes, we focus on two general
aspects of performance:

c) Successful contacts ratio: Ideally, all possible com-
munication opportunities, i.e., when two device are in range,
then contact is actually established. In practice, however, if the
discovery time is greater than the time when the devices are in
range, they will not discover each other. Such an occurrence
is a missed opportunity, as opposed to a successful contact,
when devices do discover each other. Clearly, we would like to
maximize the successful contact ratio out of the encountered
opportunities.

d) Throughput: . Short discovery times, in addition to
being desirable to avoid missing communication opportunities,
have another benefit: they leave more time for actual data
transfers to occur. Hence, discovering a neighboring node
faster, implies that the chances of a successful data transfer
increase. We measure the throughput (i.e., the number of
completed transfers) of our simulated ad hoc network for each
of the five schemes.

Both metrics of performance must be weighed against the
energy consumption (otherwise, clearly the most aggressive
discovery mode outweighs all the others in performance).
Hence, in our simulation, we measure average power con-
sumption of the devices and present it alongside the perfor-
mance results.

Simulation environment

In our simulation, we model the patterns of real world
movement of people that have certain preferred destinations or
meeting areas. We have used the familiar Random Waypoint
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Fig. 8. Performance of the five schemes versus number of nodes

model [9] augmented with attraction areas—square-shaped
areas towards which nodes move with high probability. Al-
though this model presents several known shortcomings (it
may generate unrealistic movement patterns such as “sharp
turns” or “sudden stops”, it requires long initial warm up
sequences, it slowly converges to the stationary distribu-
tion [14]), it is simple and allows us to get an insight into the
performance behavior of the proposed schemes. Obviously,
an ideal simulation would use real-world traces, but this
requires access to representative data sets and a complex
simulation set up. Compared with mobility models derived
from traces, the Random Waypoint model may introduce a
significant bias; for example in a recent comparison with a
model based on WLAN traces, the following results have
been reported: the average relative speed was one order of
magnitude higher, the average link duration was approximately
double, and the average spatial density was comparable to that
of the Random Waypoint model [15]. However, comparisons
of different mobility models also show that the Random
Waypoint yields comparable performance metrics concerning
the network topology and ad hoc routing performance as the
recent Obstacle Mobility model [16].

In our simulation, nodes move in a rectangular 1000 m x
1000 m space. They choose a destination at random (but with
high probability it will be in an attraction area) and move
towards this destination at constant speed. Once the destination
is reached, they pause for a random amount of time after
which they choose another destination and so on. We run
the simulation for 100,000 s as a warmup (this is particularly
important for the location-based scheme that has a learning
phase) and then gather our statistics over the next 100,000 s.
The parameters of the simulation are shown in Table VI.

In the following, we present the results of the experimental
performance evaluation of the five schemes.

Communication opportunities

Each node in our simulation has a 10 m radio range.
Whenever two nodes get in-range, we count this occurrence as

Simulation field 1000m x 1000m
Attraction area size 20m x 20m
Speed 1m/s–5m/s (random uniformly distributed)
Pause time 2s–28s (random uniformly distributed)
Radio range 10m
Transfer speed 40 kB/s
Simulation length 100,000s (with 100,000s warmup)
Nodes 5–200 (depending on experiment)
Attraction areas 3-20 (depending on experiment)

TABLE VI

SIMULATION PARAMETERS

a communication opportunity and start the discovery process.
If the nodes discover each other, we count a successful contact.

We measure the ratio of successful contacts for each of
the five schemes while varying the number of nodes in
the simulation as shown in Figure 8. Naturally, the static
aggressive scheme performs best in terms of contact ratio,
but at the expense of a higher energy consumption. The other
schemes perform better as the density of nodes increases. The
“Bohman” scheme performs marginally better than the static,
lazy scheme, but with much higher energy consumption. Our
two adaptive schemes show promising results. We can see
that the proposed schemes perform well even for sparse node
density: for a large range of the number of nodes in the same
region, the percentage of successful contacts stays relatively
flat—it varies from 60 % to 75 %. The recent-activity scheme
does the best at higher node densities due to the increased
frequency of contacts. On the other hand, the location-based
scheme has almost constant power consumption regardless of
the node density.

Next, in Figure 9, we plot the performance of the discovery
schemes while varying the number of attraction areas. As
the number of hubs increases, the successful contact ratio
decreases for all schemes, except for the static aggressive
one. This can be accounted for the lower density of nodes
when there are more attraction areas. A lower density of nodes
implies that nodes meet more often while moving, rather than
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Scheme Lazy Aggressive Bohman Location Activity
Energy/contact [mJ] 4.38 6.78 6.69 4.59 4.46

TABLE VII

ENERGY PER SUCCESSFUL CONTACT
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while they are pausing in an attraction area. Thus, windows
of opportunity for contacts are shorter and more likely to
be missed by the power conserving scheme. The aggressive
scheme by virtue of having very short discovery times is still
able to discover other nodes, so its successful contact ratio is
almost constant.

In Table VII, we show another metric—the energy spent
per successful contact for each of the five schemes. This
metric was calculated for a particular parametrization of the
simulation (10 attraction areas, 50 nodes). Our two adaptive
schemes are almost as energy-efficient as the lazy scheme
and 50% more efficient than the aggressive scheme or the
’Bohman’ scheme.

Next, we investigate the effect of varying the parameters of
the adaptive schemes. Figure 10 shows the performance of the
adaptive recent-activity based scheme for different values of
tnocontact parameter. As expected, increasing the value of this
parameter determines longer stays in aggressive states, hence
better successful contact ratios, but higher power consumption
as well. Clearly, a good choice for this parameter would
depend on the parameters of the environment. In our case, a
good value seems to be around 20 s for which 70% of contacts
are successful along with 150 mW average power consumption
(the idle mode itself consumes 90 mW).

Figure 10 also shows the performance of the location-based
scheme while varying the cell size. Larger cell sizes mean
that the effect of one encounter spreads over a larger area in
the future. Interestingly, the effect of increasing the cell size
seems to flatten out for values larger than 20 m.

Data propagation

There is a double benefit of being engaged in a faster
discovery mode when there is another device in range. In
addition to increasing the chances of a successful contact,
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discovering a neighbor device in a shorter time allows the
devices to have more time for data exchange. In this section,
we investigate the effect of the discovery mode selection on
the throughput of our ad hoc network.

We modify the simulation so that at each encounter between
two nodes, after they discover each other, they transfer a file of
100 kB in size at the typical Bluetooth transfer rate of 40 kB/s
(yielding a transfer time of 2.5 s). A transfer successfully
completes if the two nodes do not walk out of range sooner
than 2.5 s after discovery. We run the simulation with 50 nodes
and 10 attraction areas and count the number of completed and
incomplete transfers. Our results are shown in Figure 11.

Both adaptive schemes show better performance than the
Bohman and lazy schemes. The location-based scheme out-
performs the Bohman and lazy schemes by 4.6% and 8.6%,
respectively. Its performance is very close to the fastest
scheme, while its power consumption, as we have seen in the
previous subsection, is close to the energy-efficient scheme.
We can see that file transfers alleviate the differences in
performance results of different schemes: there is no great
difference between the number of successful transfers for the
lazy scheme and the aggressive one. Thus, there is no need
of being more aggressive to discover more devices, because
there will be no enough time to transfer data to all discovered
devices. Moreover, by being less aggressive, a node may save
more energy during the discovery process.

VI. RELATED WORK

Our work builds on previous research in many different
fields such as opportunistic networking, epidemic algorithms
for data propagation, mobility simulations in general and
of ad-hoc networks in particular, and most importantly on
previous work on implementing and evaluating the neighbor
discovery in Bluetooth and optimizing energy efficiency of
the neighbor discovery process in ad-hoc networks. In the
following, we briefly describe the most relevant work in each
area.

Opportunistic Networking. Previous work has looked into
the concept of networking in the absence of infrastructure
by using node mobility for data propagation. Several terms
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have been proposed to describe this type of communica-
tion: opportunistic networking [1], Pocket Switched Networks
(PSN) [2], [3], Intermittently Connected Mobile Ad Hoc Net-
works (ICMAN) [13]. Opportunistic networking is considered
to fall under the larger category of Delay Tolerant Networking
(DTN) [17],i.e., networking in the absence of simultaneous
end-to-end connectivity.

Epidemic Propagation. Much of the work in DTNs has
been focused on the opportunistic forwarding of data in the
absence of end-to-end paths. This process has been referred
to as data muling [18] or store-and-haul forwarding [19].
Several schemes have been proposed for data forwarding.
Vahdat et al. [20] propose epidemic propagation: a flooding-
style algorithm in which nodes forward messages to every
node they meet. In Message Ferrying [21], highly mobile
nodes called ferries take on the task of carrying messages
between disconnected mobile nodes. Examples of real environ-
ment networks that use opportunistic forwarding to relay data
collected by sensors carried by animals include ZebraNet [22],
[23] and SWIM [24]. These papers focus on routing and
forwarding mechanisms and do not address the question of
neighbor discovery explicitly, however neighbor discovery is
a key step in establishing opportunistic communication.

User studies of mobility patterns. Murphy et al. [25] use
measurements of the discovery time and the range of Blue-
tooth devices to investigate the feasibility of using Bluetooth
for inter-vehicular networking. This study does not consider
symmetric neighbor discovery. Rather, the measurements of
discovery time were done in an asymmetric fashion with one
device in the inquiry mode and the other in the scan mode.
Su et al. [1] gathered traces of human mobility patterns during
two studies involving users carrying PDAs with Bluetooth.
One limitation of their study is that brief contacts, such as
those that occur when two users walk past each other, may
be missed due to the way neighbor discovery is performed.
The same limitation applies to two other studies [2], [3] that
gather data on contact frequency and duration between users
carrying iMotes equipped with Bluetooth. The granularity at

which the neighbor discovery process is run, i.e., every 2
minutes, implies that most brief contacts are not logged.

Bluetooth asymmetric discovery. The Bluetooth discovery
procedure based on alternating the inquiry and scan modes has
been extensively studied [8], [26], [27], [28], [29]. Kasten et
al. [27] perform measurements of the discovery time for Blue-
tooth v1.1 devices. Other authors [26], [28] derive analytical
formulae for the mean discovery time between two devices and
validate them through simulation. All of these papers consider
only the standard asymmetric scenario in which one of the
devices is listening and the other is sending beacons.

Bluetooth symmetric neighbor discovery. Alonso et al. [30]
study the generic neighbor discovery problem in ad-hoc
networks analytically. For Bluetooth, several authors [31],
[32], [33] propose and analyze symmetric neighbor discov-
ery schemes that involve modifying the standard Bluetooth
protocol [11]. By contrast, our basic discovery scheme works
on currently available hardware.

Two studies [12], [7] have considered neighbor discovery in
the unmodified Bluetooth protocol. As mentioned previously,
Salonidis et al. [12] have considered a symmetric discovery
scheme for Bluetooth v1.1. They were the first authors to
point out the need for alternating between the inquiry and
scan modes in corresponding inquire/scan phases in a peer-
to-peer setting and they have also shown that the time spent
in each phase should be random in order to ensure bounded
discovery times. Their paper is based on an analytical evalu-
ation of the Bluetooth discovery protocol with some inherent
simplifications such as not taking into account the two different
inquiry trains in the discovery process. According to further
studies [7], [27], the estimated discovery time could not be
achieved experimentally. Salonidis et al. [12] also considered
that a device is scanning continuously during the scan phase
and not only for the duration of a window out of an scan phase
interval. This implies a 100% slot usage for the discovery
process. As presented previously, Bohman et al. [7] have
further studied the Bluetooth discovery scheme and concluded
that the time necessary for establishing communication using
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symmetric discovery is at least 8 seconds, when the mean
residence time in each role is around 2.5 seconds.

Energy efficiency. Galluccio et al. [34] have proposed an
analytical framework for studying the tradeoff between energy
efficiency and time for the neighbor discovery process in ad-
hoc networks. Sedov et al. discuss an approach for making
the service discovery protocol of Bluetooth more energy-
efficient [35]. Our work builds on this existing work in the
area of improving energy efficiency in ad-hoc networks by
introducing and evaluating two adaptive algorithms for saving
energy depending on a mobility context.

VII. CONCLUSIONS

In this paper, we have presented two adaptive policies
for neighbor communication establishment in Bluetooth ad-
hoc networks. We adapt the power usage of the neighbor
discovery process according to the probability of neighbor
discovery success. Our algorithms adaptively switch between
energy economic discovery modes and those that have fast
discovery times in order to maximize battery life and the
chances of discovering neighboring devices at the same time.
Our schemes use the recent level of activity and the location
of previous encounters, respectively, to predict the probability
of encountering a nearby device.

In our evaluation, we first explore the energy consumption
versus neighbor discovery speed trade-off in Bluetooth 1.2,
select a set of representative parameter settings, then we
evaluate the two adaptive schemes through a node mobility
simulation. To tune the parameter settings of the neighbor
discovery scheme, we develop a simulator closely matching
the implementation of real devices. We use the simulator to
explore a large Bluetooth parameter space and we validate its
results by measurements on an experimental platform based on
Cellink BTA-3100 devices compatible with Bluetooth v1.2.
Our systematic search of the multi-dimensional Bluetooth
parameter space provides fast and energy-efficient discovery
modes. An example of a representative result, verified ex-
perimentally on our devices, is that for an average discovery
interval of 1 second, which is well within the usual window
of opportunity for establishing contact, the power consumption
can be as low as 1.5 times the idle mode power consumption.

Our evaluation of the two adaptive schemes shows that
they spend 50% less energy per contact and have 4.6% and
8.6% better performance, respectively over a naı̈ve power-
conserving scheme. While the simulation results are promis-
ing, there are inherent limitations in modeling real-world
patterns of movement through a simplified mobility model.
In the future, we intend to extend our work by evaluating
our adaptive schemes through user studies. While there have
been similar studies of user mobility in the context of oppor-
tunistic networking, they were limited in either the duration
of the experiment (because the devices drained their batteries
quickly) or could not track brief contacts (due to running
the discovery process infrequently on the devices). Our work
provides fast and energy-efficient discovery modes, so that
even short contacts can be logged, without excessive power
consumption. Finally, our algorithms and techniques work on

the unmodified Bluetooth standard, hence they can be readily
implemented on currently deployed devices.
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