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Abstract

Recent industry trends towards reducing the costs of
ownership in large data centers emphasize the need for
database system techniques for both automatic perfor-
mance tuning and efficient resource usage. The goal is
to host several database applications on a shared server
farm, including scheduling multiple applications on the
same physical server or even within a single database en-
gine, while meeting each application’s service level agree-
ment.

Automatic provisioning of database servers to applica-
tions and virtualization techniques, such as, live virtual ma-
chine migration have been proposed as useful tools to ad-
dress this problem.

In this paper we argue that by allocating entire server
boxes and migrating entire application stacks in cases of
server overload, these solutions are too coarse-grained for
many overload situations. Hence, they may result in re-
source usage inefficiency, performance penalties, or both.
We introduce an outlier detection algorithm which zooms in
to the fine-grained query contexts which are most affected
by an environment change and/or where a perceived over-
load problem is likely to originate from. We show that iso-
lating these query contexts through either memory quota en-
forcements or fine-grained load balancing across different
database replicas of their respective applications allows us
to alleviate resource interference in many cases of overload.

1 Introduction

In this paper, we investigate fine-grained selective tuning
of resource allocations to applications in the database back-
end of large scale dynamic content web sites. Dynamic
content web sites commonly use a three-tier architecture,
consisting of a front-end web server, an application server
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implementing the business logic of the site, and a back-end
database server storing and querying the (dynamic) content
of the site. The diverse nature and complex relationships
among the components that make up such server systems
and the multitude of tuning knobs for each component e.g.,
cache size, number of active connections, etc., make their
performance-tuning difficult and time-consuming for hu-
mans.

Database self-management techniques in stand-alone
database systems [6, 16], and provisioning of database
servers to applications [22] have been recently introduced
to address this problem. On the other hand, recent indus-
try trends towards efficient resource usage through server
consolidation e.g., for savings on power and cooling, have
further increased the inherent difficulty of the resource al-
location problem. In order to reduce the costs of owner-
ship, large service providers now run many concurrent ap-
plications and efficiently multiplex their requests over ex-
isting hardware resources. As a result, server boxes may
be dynamically allocated to applications from a shared re-
source pool and several concurrent applications may run on
the same physical server. In these environments the use of
Virtual Machine Monitors (VMMs), such as Xen [4], which
virtualize the underlying hardware has recently increased
in popularity. VMMs allow for security and failure isola-



tion between database applications placed in separate Vir-
tual Machine containers (see Figure 1). Furthermore, live
Virtual Machine (VM) migration [10] is a technique which
allows online migration of entire application stacks from
an overloaded server to alternate servers. In this paper we
argue that previous database replica provisioning and live
VM migration techniques are too coarse-grained for effi-
cient load balancing of applications. Moreover, these exist-
ing coarse-grained provisioning solutions, even commercial
ones such as IBM’s Tivoli Intelligent Orchestrator, typically
use very simple techniques, such as monitoring the CPU us-
age to trigger provisioning of server boxes.

With this paper, we take a first step towards accurate di-
agnosis and selective retuning for shared database clusters.
We propose fine-grained adjustments of resource allocation
to applications, which may be more appropriate for the most
common load-balancing needs. We observe that the above
mentioned shared hosting environment has a natural hierar-
chy in terms of both system and application structure. Each
physical server can host several Virtual Machines (VM). A
VM may host several database engines or a single database
engine running multiple applications. Each database appli-
cation in its turn typically has several logical structural lev-
els. For example, a database application is formed of client
interactions, which consist of database transactions. Finally,
database transactions consist of queries. Coupled with this
system and application hierarchy, the possible underlying
causes of a perceived overload situation on any particular
physical server may be at different levels of granularity. For
example, the perceived overload at a particular server may
be caused by i) a VM-level change, such as a change in
the set of applications scheduled on the same VM or on
the same physical server as a whole and the resulting re-
source interference, ii) an application-level change, such as
an increase in the number of clients of a single application
running within a VM container together with other appli-
cations or iii) a query-level change, such as an increase in
the frequency of a particular resource-intensive query or a
change in access patterns for a particular query. Examples
of root causes for localized access pattern change are data
evolution over time or an index change affecting only a few
queries.

Load balancing through VM-migration is clearly overkill
for most of these scenarios and may lead to lower resource
usage, hence higher costs. Our contribution is a minimally
intrusive approach to fine grained resource allocation taking
into account both memory and CPU usage for addressing
bottlenecks in shared database clusters.

Our hypothesis is that a localized change leading to an
SLA violation typically produces outlier metric values, i.e.,
statistically remarkable points outside the normal stable
state distribution. The rationale is that a change in a few
queries can be so significant as to impact the SLA of one or

more applications only if these queries clearly “stand-out”
by being either: i) heavyweight in terms of some metrics,
such as memory usage and with a moderate to large devia-
tion from stable state metrics or ii) moderately heavyweight
but showing a large deviation from stable state metrics.

Based on this observation, we use a fine-grained
anomaly detection algorithm that allows us to pinpoint the
overload problem to specific query classes, and to apply a
focused solution to the problem. Within each DBMS, we
perform lightweight on-line monitoring of several metrics,
such as the buffer pool hit ratio, page accesses, etc., and we
tie statistics collection to each query class. We use recorded
statistics in order to determine query contexts which con-
tain outlier measurements compared to the most recent sta-
ble state average values for the respective monitored met-
rics on the same server. A stable state record of average
values for all metrics is made whenever the SLA is continu-
ously met for an application during a measurement interval.
For query classes which show outliers in terms of mem-
ory usage metrics, such as number of accessed pages or
buffer pool misses, we investigate memory usage changes
more precisely, by dynamically tracking the miss ratio curve
(MRC) [24] in the buffer pool per query class. This allows
us to focus our diagnosis on queries that might be the root
cause of the problem by creating memory interference. De-
pending on our diagnosis of the outlier contexts, we either
incrementally schedule problem query classes on a different
replica or limit the memory quota allocation of these query
classes while maintaining their placement.

If no outliers are detected or fine-grained resource allo-
cation fails to solve the problem, we fall back on coarse-
grained server provisioning and application isolation tech-
niques. The rationale is that the cost of the more precise
analysis of detailed metrics and placement reshuffling of
many queries for near-optimal resource usage might out-
weigh any potential benefits from fine-grained load balanc-
ing; such algorithms would be more appropriate at initial
application deployment or as periodic system maintenance.

Our technique does not imply any change to predefined
interfaces or component structure and is transparent to the
clients.

In our prototype implementation, we leverage our previ-
ous work [2, 22], on scheduler-based asynchronous replica-
tion schemes with strong consistency, which provides scal-
ing and consistency in replicated database clusters.

A scheduling tier [22] can dynamically allocate disjoint
server sets to applications and maintains consistency be-
tween the instances of an application allocated on different
physical servers by a read-one-write-all technique. In this
paper, we enhance our previous scheme by allowing mul-
tiple applications to be scheduled to execute on the same
physical server or even within a single database engine. Fur-
thermore, we implement and experiment with fine-grained



memory allocation and load balancing techniques based on
outlier detection.

We present a preliminary evaluation of our techniques in
different scenarios of dynamic change leading to SLA vi-
olations. In our experiments we use the industry-standard
TPC-W e-commerce benchmark, which models an on-line
book store, such as Amazon.com and the RUBiS on-line
bidding benchmark modeled after eBay.com. In order to
record the various metrics, we instrument the buffer pool
management and other internal operations of the MySQL
InnoDB database engine. We vary the load or access pat-
terns of specific queries when running each application
alone or both applications together. We show that investi-
gating contexts with outlier measurements can lead to selec-
tive retuning solutions that inherently have a lower overhead
and potentially better resource usage than coarse grained so-
lutions.

The rest of this paper is organized as follows. Sec-
tion 2 provides the necessary background on MRC-based
dynamic memory allocation schemes. Section 3 introduces
our fine-grained resource allocation and load balancing so-
lution. Section 4 describes details of our prototype imple-
mentation, our benchmarks and methodology. Section 5
presents our results. Section 6 discusses related work. Sec-
tion 7 concludes the paper.

2 Background: Miss Ratio Curve Tracking

The miss-ratio curve (MRC) of an application shows the
page miss-ratios at various amounts of physical memory.
This approach was first used in cache simulation and was
recently proposed for dynamic memory management [24].
MRC reveals information about an application’s memory
demand, and can be used to predict the page miss ratio
for an application given a particular amount of memory.
The MRC can be computed dynamically through Mattson’s
Stack Algorithm[17]. The algorithm is based on the inclu-
sion property that states that a memory of k + 1 pages con-
tains contents of a memory of k pages. The popular Least-
Recently Used (LRU) algorithm exhibits the inclusion prop-
erty thus allowing us to estimate the miss ratio for a given
amount of memory m.

The LRU algorithm can be represented using a stack
where the top of the stack contains the most recently ac-
cessed page and the bottom of the stack contains the least
recently used page. A machine with physical memory of
n pages would be represented by a stack of size n. In ad-
dition, we maintain an array of hit counters (Hit[ ]) which
counts the number of page hits for each memory size. The
data structures are updated as follows. For each memory
reference (p) in a sequence of memory accesses, the page
is searched in the stack. If the page is found at location (i)
from the top of the stack, it indicates that a memory of size

i would have kept page p in memory, and we increment the
number of hits for memory size i by 1. If the page is not
found, it indicates that either the page is accessed for the
first time or a memory of n pages was not enough to keep
this page in memory. In this case, we increment Hit[∞] by
1. We calculate the miss ratio using:

MR(m) = 1−
∑m

i=1 Hit[i]∑n
i=1 Hit[i] + Hit[∞]

(1)

3 Design

We introduce a fine-grained resource allocation and load
balancing algorithm in a replicated database system. We as-
sume that several applications run concurrently on a shared
database cluster. The optimizer’s task is to dynamically pro-
vision replicas for applications and to schedule requests on
those replicas in such a way to maintain the individual la-
tency requirements of each application. Maintaining query
latency under an average query latency bound is considered
the service level agreement (SLA). We further assume that
dynamic changes, such as load bursts, failures and query
pattern changes can occur at any given time. However, we
also assume that the frequency of dynamic changes is such
that the system is able to achieve stable states where the
SLA is continuously met for at least some of the supported
applications at least during some measurement intervals.

3.1 Environment

Our dynamic content server architecture consists of the
web/application and database server tiers (see Figure 2). In-
terposed between the application and the database tiers is a
set of schedulers, one per application, that distribute incom-
ing requests to a cluster of database replicas. Each machine
in the database tier uses either Xen as a VMM and hosts one
or more virtual machines or hosts one or more database sys-
tems directly on top of the native Linux OS. The scheduler
tier contains a resource manager [22] responsible for dy-
namically allocating replicas for each application on physi-
cal servers.

The resource manager makes global replica allocation
decisions across the different applications. Each sched-
uler is in charge of maintaining replica consistency between
different replicas of a single application and for load bal-
ancing read-only queries among the set of replicas allo-
cated for the corresponding application. We assume that
the data of an application is fully replicated and kept con-
sistent on all physical servers allocated to that application.
Each scheduler, upon receiving a query from the application
server, sends the query using a read-one, write-all replica-
tion scheme to the replica set allocated to its corresponding
application.
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Figure 2. Cluster Architecture

The schedulers communicate with a set of decision man-
agers, one per physical server. The decision managers in
their turn use a set of log analyzers, one per database sys-
tem running on their server to detect outlier contexts for
applications running on their designated server.

3.2 Overview of Selective Retuning Algo-
rithm

Our goal is to avoid coarse grained configuration retun-
ing for entire applications in favor of selective fine-grained
retuning. Our goal for selective retuning is to employ a
potentially imprecise, but lightweight algorithm based on
monitoring of a set of system and application counters.

Given an existing set of replicas for an application across
a database cluster, scheduling and placement is done at
the level of query class contexts. Our scheduling unit, a
query class, consists of all query instances of an application
with the same query template but different arguments. The
scheduler determines the query templates of each applica-
tion on the fly. Each query class is placed by the scheduler
on a sub-set of replicas of its application and load balanced
across these replicas.

For each physical server, we maintain a vector of met-
ric averages measured during the last stable state for each
query class of an application executing on that server. We
differentiate stable versus unstable system behavior based
on whether the SLA for the corresponding application as a
whole was met (stable) or encountered one or more viola-
tions (unstable) during a measurement interval.

Upon an application-level SLA violation, we use a statis-
tical approach to pinpoint the fine-grained application con-
texts most affected by the dynamic change. For each server
where the application is running, we compare current mea-
sured metric values with stable metric values for each query
class executing on the same server. We determine outlier
metrics that are likely to be correlated with the high level

problem by either having a wide variation compared to their
stable state counterparts or by having a moderate variation
in an otherwise heavyweight query for the particular met-
ric. We define query contexts where outlier measurements
occur as outlier contexts. We use outlier context detection
as a guide for an incremental diagnosis and fine-grained re-
source allocation and load balancing solution as described
next.

3.3 Statistics Collection

In order to guide system anomaly detection and cor-
rection, our system monitors several system, application-
level and DBMS-level performance metrics. System met-
rics include CPU usage, I/O usage, and memory usage col-
lected from vmstat on each physical server. Application-
level metrics, such as average query latencies and av-
erage throughput, are tracked through the scheduler for
SLA compliance checks. Within each DBMS, we perform
lightweight on-line monitoring of several metrics, and we
tie statistics collection to corresponding query class con-
texts. Specifically, we track the latency, throughput, buffer
pool misses, the number of page accesses, the I/O block re-
quests, the number of prefetch (read-ahead) requests, and
a window of the most recent page accesses issued by the
DBMS on behalf of the queries belonging to each specific
query class.

Whenever a stable measurement interval occurs for an
application, i.e., an interval when the SLA has been contin-
uously met, we update the last stable value seen (as an av-
erage over the duration of the respective interval) for each
metric on each server where the application is running. We
maintain these average metrics in a data structure called a
stable state signature; one such signature is maintained per
query context.

We also maintain the parameters of the MRC curves for
each query class in the stable state record for their cor-
responding application. The MRC is determined when a
query class is first scheduled on the system and is not re-
computed unless an SLA violation occurs and memory re-
lated counters show outlier measurements for that partic-
ular query class. We define two parameters for the MRC
curve of a query class context: total memory needed and
acceptable memory needed. The total memory needed is
the smallest of the following two numbers: the maximum
amount of memory on a physical server and the memory
size for which the miss ratio is estimated to be 0. The miss
ratio associated with the total memory needed is called the
ideal miss ratio of the corresponding context. The accept-
able memory needed is the estimated memory for which the
miss ratio is within a fixed threshold of the ideal miss ratio.
The acceptable miss ratio is the miss ratio associated with
the acceptable memory needed.



3.3.1 Outlier Context Detection

The goal of outlier context detection upon an SLA violation
is to determine query class contexts on each server running
that application which show deviation from stable state be-
havior and are likely to have impacted application perfor-
mance significantly.

We divide the current measured metrics by their last
recorded average stable value. Then we multiply the result
with the weight of the corresponding query in the applica-
tion for this metric to obtain the weighted metric showing
that metric’s impact, called metric impact value. Weights
are assigned per metric by normalizing each metric value
to the least value across all queries for the same metric.
For example, a query is assigned a high weight for the
page access metric if its contribution to the total number
of page accesses for all queries is high. Next, we use a clas-
sic outlier detection algorithm to find out the outliers for
the weighted values of metrics. For each weighted met-
ric, we determine the range of all current measured val-
ues for all query classes, and we define Q1 and Q3 to
be the first and third quartile of this range. We define
IQR to be the interquartile range (Q3 − Q1), the range
[Q1 − 1.5 ∗ IQR,Q3 + 1.5 ∗ IQR] is defined as the in-
ner fence, and the range [Q1− 3 ∗ IQR,Q3 + 3 ∗ IQR] is
defined as the outer fence.

If a metric impact value is outside of the inner fence,
it will be labeled a mild outlier; if it is outside the outer
fence, it will be labeled an extreme outlier. We then con-
sider as outlier query contexts, the query contexts which
contain outlier metric impact values.

3.3.2 Memory Interference Detection and Alleviation

For each query class which shows outlier measurements in
memory related counters e.g., miss ratio and page access
counts, we classify the query class as a problem query class.
We investigate further by triggering the recomputation of
the MRC curve for each problem query class. If the param-
eters of the MRC curve show a significantly higher total
memory need for the query class, then this query class is
likely associated with memory interference, hence it con-
tinues to be suspect. This case includes new query classes
that have been scheduled on the system and for which we
have not computed the MRC curves before. We compute
the MRC curves of these new queries and we classify them
as problem query classes.

We have two options for addressing problem query
classes that are suspected to cause memory interference:
The first option is to schedule a suspect query class on a
different replica. The second option is to limit the amount
of buffer pool that the problem query class is allocated, by
enforcing a fixed quota allocation for the respective query
class, while maintaining the placement of the query on the

same replica as before.

There are trade-offs between these two solutions. By
placing the problem query class QC on a different replica,
we incur the overheads of possibly having to create or up-
date that replica, and of warming up the buffer pool for the
respective query class on that replica. On the other hand,
allocating a fixed memory quota for the buffer pool used
by a given query class may decrease memory utilization on
that machine. For example, the queries within the respec-
tive query class may not occur in the workload mix for a
period of time or may have phases when they leave most
of the QC quota underutilized. Fully exploring these trade-
offs is beyond the scope of this paper. In this paper, we use
a simple heuristic solution. For each physical server where
changes in MRC have occurred, we determine if the cur-
rent placement of query contexts can meet the total memory
need of all query contexts. If this is not the case, we perform
an iterative algorithm to determine if we can maintain the
placement of each problem query class QC on that replica.
The algorithm attempts to find a memory quota for each QC
such that the miss ratios for all QC and the rest of the ap-
plication queries scheduled on the same physical server, are
predicted to be their respective acceptable miss ratios at the
respective memory quotas by the MRC algorithm. If appro-
priate quotas can be found, we limit the memory usage for
each problem query class while maintaining close to ideal
performance. Otherwise, we reschedule the problem query
class on an another replica. The same algorithm as above is
used to determine the appropriate replica for placement.

If no outlier query contexts can be determined, we
use similar algorithms as above on the top-k heavyweight
queries in terms of memory metrics. Finally, if our fine-
grained retuning action is ineffective, we fall back on the
coarse grained allocation solutions. We allocate new repli-
cas and isolate applications on them until all applications
meet their SLAs.

3.3.3 Other Resource Interference Scenarios

For other cases of resource interference, such as CPU and
I/O, we do not currently maintain a sufficient number of
per-context metrics to enable accurate problem diagnosis
through outlier detection. If CPU saturation on a server is
detected as the root cause of an SLA violation, the sched-
uler reactively provisions more servers from the available
pool for the set of query classes running on the overloaded
server. In cases of I/O interference, a simple heuristic is to
remove query contexts from the physical server where I/O
interference occurs in decreasing order of their I/O rate until
the perceived problem on that server is normalized.



4 Implementation Details and Methodology

We use two applications in our experimental evalua-
tion: TPC-W and RUBiS. The TPC-W benchmark from the
Transaction Processing Council (TPC) [1] is a transactional
web benchmark designed for evaluating e-commerce sys-
tems. Several web interactions are used to simulate the ac-
tivity of a retail store. The database size is determined by
the number of items in the inventory and the size of the cus-
tomer population. We use 100K items and 2.8 million cus-
tomers which results in a database of about 4 GB. We use
the TPC-W shopping mix workload with 20% writes which
is considered the most representative e-commerce workload
by the TPC.

We use the RUBiS Auction Benchmark to simulate a
bidding workload similar to e-Bay. The benchmark im-
plements the core functionality of an auction site: selling,
browsing, and bidding. We are using the default RUBiS bid-
ding workload containing 15% writes, considered the most
representative of an auction site workload according to an
earlier study of e-Bay workloads [21].

We have implemented the two applications on a dynamic
content infrastructure consisting of the Apache web server,
the PHP application server and the MySQL InnoDB (ver.
5.0.24) database engine. We run our applications use on a
cluster of Dell PowerEdge servers with 4 Intel Xeon pro-
cessors, running at 3.00 GHz. All servers use the Ubuntu
Linux operating system with Linux kernel 2.6.27. We per-
form lightweight logging of different events by instrument-
ing MySQL. We assume an SLA in terms of average query
latency per server of 1 second for all applications.

The fully automated parts of our prototype include pro-
visioning for CPU saturation, scheduling based on query
placement, lightweight logging of metrics, recording of
metric values corresponding to stable states, outlier analysis
and determination of outlier query contexts. For statistics
collection, we instrumented the MySQL InnoDB database
engine to record query level metrics with little or no over-
head. To avoid locking overhead, we create a private log-
ging buffer per thread. We log the specified counts, statistics
and unique page accesses per query class. Finally, we flush
the logs to disk only when the buffer is full or if the thread
is being shutdown. While collecting the traces, there was no
noticeable decrease in the throughput of the applications.

Other aspects of our prototype are automated only
through off-line trace analysis although they could be used
on-line as well. These include determination of MRC
curves for query classes. Yet other aspects, such as detect-
ing I/O interference, are poorly automated and still depend
on our direct observation and interpretation of statistic col-
lection.

5 Results

5.1 Overview

In this section, we present different performance degra-
dation scenarios in our dynamic content server architecture
and how they can be effectively mitigated using our fine-
grained resource allocation and load balancing technique.
We show a variety of resource interference scenarios which
we believe representative of real-world shared platform sce-
narios. We also present the diagnosis and reaction mecha-
nisms applicable in each case ranging from a fully auto-
mated reaction to CPU saturation to an administrator view-
point observation in the I/O interference case.

In the first scenario, we show a workload change situ-
ation leading to automatic reconfiguration when only one
application is running on the system. Second, we show the
effect of interference in the buffer pool by an access pat-
tern change in one query class. Third we show the memory
interference due to buffer pool sharing by multiple applica-
tions within the same database system. Finally, we show the
effect of I/O interference when two applications run within
separate virtual machines on the same physical server. In
all of these scenarios, we show the fine grained outlier de-
tection and fine-grained resource allocation actions for alle-
viating the problem.

5.2 Alleviation of CPU Saturation

We use our TPC-W client emulator to emulate a sinu-
soid load function, shown in Figure 3(a). This function is in
terms of the number of clients presented to the web server.
In addition, the emulator adds some random noise on top
of the load function by randomly varying the session time
and thinking time of clients. When CPU usage is saturated,
our reactive provisioning algorithm is triggered. The dy-
namic machine allocation is shown in Figure 3(b). All query
classes of TPC-W are load balanced on an increasing set of
replicas. Figure 3(c) shows that the average query latency
drops back below the SLA after provisioning of a sufficient
number of replicas.

5.3 Alleviation of Memory Interference
due to Index Mis-configuration

To show the effect of a localized change, we drop the
O_DATE index from the TPC-W database configuration.
This index is used only in the execution of the BestSeller
query, which also uses two other indexes. After removing
the index, the response time of TPC-W rises significantly
from an average of 600ms to 2 seconds.

In Figure 4, we plot the ratios of the measured values of 4
metrics divided by their respective stable state average val-
ues. The problem has caused the overall latency to increase,
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Figure 3. Alleviation of CPU Contention
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the throughput to decrease, and the buffer pool misses to in-
crease; but only a few queries have a sharp increase in read
aheads. Indeed, this is expected as result of the increased

Hit Ratio (%) BestSeller Non-BestSeller
Shared Buffer 95.5 96.2

Partitioned Buffer 95.7 99.5
Exclusive Buffer 96.1 99.9

Table 1. Hit Ratio of Different Buffer Pool
Management Algorithms

resource interference that the unoptimized BestSeller query
is causing for all other queries on many metrics.

Outlier detection on the memory related counters, such
as page accesses, page misses and read-ahead determines
that 6 distinct query classes are mild outliers, including the
NewProducts(#19)) and BestSeller(#18). To further narrow
down the cause of the problem, we re-compute the MRC
curves of these problem queries based on recent page ac-
cesses.

We find that only the BestSeller query class shows sig-
nificant change in the total memory and acceptable memory.
The MRC curve of the BestSeller without index has a longer
tail than its index-based counterpart shown in Figure 5.3 as
expected. We thus suspect that this query class is likely as-
sociated with the root cause of memory interference.

The new BestSeller query class has a flatter MRC curve,
and thus the memory quota that it needs to meet its accept-
able miss ratios is 3695 pages, less than the original 6982
pages for the index-based query class. We enforce a fixed
quota allocation for this problem query class, while main-
taining the placement of the query on the same replica as
before.

We use a simulator of buffer pool management driven
by traces of page accesses per query class to demonstrate
the benefits of our algorithm. The buffer pool is divided
into two dedicated partitions: one partition for servicing the
BestSeller query class and the other partition for all other
queries of the application.



We show the hit ratio in the buffer pool before buffer
partitioning, after buffer partitioning and if each of the Best-
Sellers and the non-BestSellers queries, respectively, were
allocated the whole buffer pool (exclusively used buffer
pool) in Table 1. The hit ratio under the exclusive use of the
buffer pool are the ideal hit ratio that each set of queries can
reach, respectively. They would also correspond to the hit
ratio if we isolated the BestSeller query class on a different
replica. For the partitioned buffer pool case, the BestSeller
has almost the same hit ratio (95.7%) as running in a shared
buffer pool (95.5%) or running in an exclusively used buffer
pool (96.1%). With a partitioned buffer pool, the hit ratio
for Non-BestSeller queries improves from 96.2% to 99.5%,
reaching close to the ideal hit ratio of 99.9%. These results
show that the partitioned buffer pool on a single replica has
similar performance while using fewer physical machines
than isolating the BestSeller and non-BestSeller parts of the
application on two different replicas.

This example shows that our algorithm has the potential
to automatically narrow the problem down to the one query
which causes the performance degradation. We also show
that fine grained targeted actions can minimize the perfor-
mance impact, while maintaining good resource usage.

5.4 Alleviation of memory contention in a
shared buffer pool

Placement Latency Throughput
(s) (WIPS)

TPC-W IDLE 0.45 7.10
TPC-W RUBiS 5.42 4.29
TPC-W RUBiS∗ 1.27 6.44

Table 2. Effect of memory contention in a
shared buffer pool. RUBiS∗ is the RUBiS
workload with the SearchItemsByRegion sched-
uled on a different machine.

In this section, we study a scenario representative of an
environment change where initially only TPC-W is run-
ning within a DBMS, but then the RUBiS workload is also
started within the same DBMS in a shared buffer pool con-
figuration.

Table 2 shows the baseline scenario where TPC-W is al-
located the entire buffer pool. It also shows the case where
TPC-W and RUBiS compete for space in the buffer pool. In
all cases, the database instance is given 128MB buffer pool
space, which corresponds to 8192 memory pages. With
a shared buffer pool, TPC-W’s throughput drops to 4.29
WIPS and its latency increases ten-fold to 5.42s compared
to running alone.
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In the absence of CPU saturation, we check memory
related counters for TPC-W query classes, including page
misses, page accesses and read-ahead requests. Five distinct
TPC-W query classes are detected as mild outliers. How-
ever, after we recompute the MRC curve for each problem
query class, we find that their total memory and acceptable
memory parameters show no change. Hence these query
classes themselves are not the cause of the performance
anomaly.

We compute the MRC curves for the newly added RU-
BiS queries, considering them as potential problem query
classes. Following our heuristic memory alleviation algo-
rithm, we determine whether we can find a memory quota
for each problem query class QC such that the miss ratios
for both QC and the rest of the application queries on the
same server are predicted to meet their respective accept-
able ratios. The top ranking problem query is the RUBiS
SearchItemsByRegion. Its MRC curve is shown in Figure 6,
and its acceptable memory needed is around 7906 pages. It
is clear that this query cannot be co-located with the TPC-W
application in a shared 8192 pages buffer pool, since only
the BestSeller of TPC-W needs at least 6982 pages.

Therefore, we schedule SearchItemsByRegion on a dif-
ferent replica. We show the result of this fine-grained load
balancing change in the last row of Table 2. We see that
after changing the placement of the SearchItemsByRegion
query class, TPC-W recovers to a latency of 1.27 sec, and a
throughput of 6.44 WIPS.

5.5 Alleviation of I/O contention among
VM domains

While virtual machines provide strong isolation guaran-
tees among different domains in terms of faults, security and
privacy, they do not provide performance isolation. This
is evident, for example, when the applications are I/O in-
tensive. We perform an experiment, where two RUBiS in-



stances are placed on a machine running the Xen virtual
machine monitor. We use two virtual machine domains and
place a RUBiS instance in each domain.

Placement Latency Throughput
Domain-1 Domain-2 (s) (WIPS)

RUBiS IDLE 1.50 97.15
RUBiS RUBiS 4.78 30.47
RUBiS RUBiS∗ 1.50 95.37

Table 3. Effect of I/O contention among differ-
ent domains.

We experiment with two different placements shown in
the first two rows of Table 3: (1) a baseline where RUBiS
is placed in domain-1 and domain-2 is kept idle and (2) a
configuration with RUBiS on both domain-1 and domain-2.
In this case each RUBiS application is running on its own
separate data (as if two distinct applications were running
on the system).

In both cases, we set the virtual memory of each domain
to 256MB and set the MySQL buffer pool to 128M. We run
200 clients on each RUBiS instance. As Table 3 shows in
our baseline case, the latency of RUBiS is 1.5 seconds and
the throughput is 97 web interactions per second (WIPS).
If two RUBiS instances are placed on the VMM, there is
a significant drop in throughput (to 30 WIPS) and a sharp
increase in latency (to 4.8s).

Our current techniques do not allow us to automate the
diagnosis of this case. However, by analyzing the logs of
statistics for the respective runs we observe that i) the CPU
usage of each domain is low, ii) by plotting and analyzing
the MRC curves of the two applications we determine that
there is no memory interference and iii) RUBiS is an I/O
intensive application. Thus, we suspect that the problem is
due to I/O contention on domain-0 (the Xen controller) due
to the I/O intensive nature of the two applications.

A naive solution is to schedule the virtual domains of the
two applications on two different physical machine. How-
ever, our heuristic I/O interference alleviation algorithm can
potentially be used in this case to reschedule only a subset
of the queries on a different machine. Indeed, if we remove
queries in decreasing order of their I/O rate, performance
returns to normal. Specifically, the query associated with
the SearchItemsByRegion web interaction in RUBiS con-
tribute a large majority (87%) of the I/O accesses, and thus
is the first query to remove. The third row of Table 3 shows
the benefits with RUBiS on domain-1 and RUBiS∗ (with
SearchItemsByRegion removed) on domain-2. We can see
that after removing the heaviest query, the latency is 1.5s
and the throughput is 95 WIPS, which is almost the same as
the baseline case.

6 Related Work

The management and performance optimization of
database systems by humans is becoming increasingly
costly and time consuming [19]. Therefore, many re-
lated research efforts are studying methods for automat-
ing problem diagnosis through statistical machine learn-
ing approaches to find the root cause of performance prob-
lems [9, 11], to deal with software upgrades and operator
mistakes [19], and to detect failures [8].

In order to track the cause of perceived problems and
to understand the interactions between components in com-
plex systems, several recent methods propose tagging re-
quests as they pass through different layers [7] while oth-
ers determine a causal order using a temporal join of var-
ious logs [3]. [11, 12] correlate various system metrics
to service level objective (SLO) violations. They use a
Tree-augmented Bayesian Network to determine a subset
of metrics that correlate to a SLO violation. Furthermore,
the authors generate signature of different metric combina-
tions [12]. Using the signatures, they determine if the cur-
rent situation is similar to a previously diagnosed problem.
They show that determining a causal order between events
can then be used to detect anomalies. Other papers [8] use
statistical analysis of interactions between components to
detect failures and system evolution.

A number of independent database replication solutions
exist that provide both scaling and strong consistency in
replicated database clusters [23, 15, 20, 14, 18]. With a
few notable exceptions [14] [18] [13], these systems either
do not investigate database replication in the context of dy-
namic adaptation or do not consider fine grain load balanc-
ing or allocation.

Our fine-grained memory allocation algorithm is related
to commercial solutions for dynamic memory allocation,
such as in DB2 9 (Viper) and to previous work [5] on parti-
tion sizing within the buffer pool to accommodate the work-
ing sets and ensure per-class response time goals for queries
from multiple applications.

7 Conclusions and Future Work

Recent industry trends emphasize efficient resource us-
age through server consolidation for reducing the costs of
ownership of large data centers. As a result, multiple ap-
plications are commonly multiplexed on the same hard-
ware. Resource multiplexing may involve hosting multi-
ple database systems within different virtual machines run-
ning on the same physical server or even hosting multiple
database applications on a single database system. These
complex environments make achieving differentiated ser-
vice level agreements for applications challenging due to



the many potential sources of dynamic change. For exam-
ple, the set of applications scheduled on any physical server,
the database system configuration, the application workload
mix, the client load of an application, or an application’s
access patterns may change over time. If the cause of per-
formance degradation cannot be identified, the reaction to
the problem will likely be inaccurate. For example, in or-
der to address a perceived overload problem on a particular
server, the system might overreach and isolate applications
on different physical servers, which is wasteful in terms of
resource usage.

We have designed and prototyped a technique, called
outlier detection, for detecting fine-grained application con-
texts that are likely to contain either the cause of the prob-
lem, or be affected most by it. We have augmented a previ-
ous scheduling technique on replicated database clusters to
isolate fine-grained application contexts pinpointed by the
outlier detection technique. We have further used an exist-
ing memory usage tracking technique at the level of individ-
ual query classes to validate the outlier findings in terms of
memory usage anomalies. We show that fine-grained mem-
ory allocation and load balancing based on outlier detection
are effective methods for alleviating performance problems
due to dynamic change within an application or resource
interference between applications. Our technique is trans-
parent to clients and has negligible overhead.

Finally, outlier detection is a promising approach for
narrowing down the search for other system or application
anomalies, such as invoking a query with the wrong argu-
ments, lock contention or deadlock situations. We are plan-
ning to study such applications in our future work.
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