Transparent Caching with Strong Consistency in Dynamic
Content Web Sites

Cristiana Amza
Department of Electrical and
Computer Engineering
Toronto, Canada

amza@eecg.toronto.edu

Abstract

We consider a cluster architecture in which dynamic content is gen-
erated by a database back-end and a collection of Web and appli-
cation server front-ends. We study the effect of transparent query
caching on the performance of such a cluster. Transparency requires
that cached entries be invalidated as a result of writes. We start with
a coarse-grain table-level automatic invalidation cache. Based on
observed workload characteristics, we enhance the cache with the
necessary dependency tracking and invalidations at the finer gran-
ularity of columns. Finally we reduce the miss penalty of invalida-
tions through full and partial coverage of query results.

In terms of system design, a query cache may be located at the
database back-end, on dedicated machines, on the front-ends, or
on a combination thereof. This paper evaluates the tradeoffs of the
different cache designs and the cache location using the TPC-W
benchmark.

Our experiments show that our transparent query cache improves
performance very substantially by up to a factor of 1.5 in through-
put and 4.2 in response time overall compared to the baseline table-
based invalidation scheme. An important contributor to this end
result, our optimization for reducing the miss penalty through full
and partial coverage detection of query results from the cache im-
proves response time by up to a factor of 2.9 compared to a cache
with fine-grained column-based invalidations alone. Thus, the ben-
efits of the higher hit ratio in our optimizations outweigh the costs
of additional processing. The results are less clear-cut in terms of
where to locate the cache. Performance differences when varying
the cache location and the number of caches are small.

1 Introduction

A dynamic content web server generates responses to user requests
by a combination of a web server, application logic, and a database
(see figure 1). The web server receives the request, and causes the
appropriate application logic to be executed. The application in
turn sends a number of queries to the database, and constructs a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. 1CS’05, June 20-22, Boston,
MA, USA. Copyright (©2005, ACM 1-59553-167-8/06/2005...$5.00

Gokul Soundararajan

Department of Electrical and INRIA

Computer Engineering
Toronto, Canada

gokul@eecg.toronto.edu

Emmanuel Cecchet

Rhone-Alpes, France
Emmanuel.Cecchet@inrialpes.fr

reply based on the results of those queries. The web server then
returns that reply to the requester. For the purpose of this paper
we consider the combination of the web server and the application
logic collectively as the front-end and the database as the back-end.

Database query caching has been proposed as a means for speeding
up dynamic content generation [5, 8, 10, 12, 13, 18, 21]. The results
of recent queries are cached, and re-used on subsequent queries,
improving latency and reducing load on the back-end. If the back-
end is the bottleneck, query caching also improves throughput of
the overall server. Caching dynamic content is more complex than
caching static content, because the cached entries may become in-
valid as a result of database writes.

Most of the earlier designs for query caching in dynamic con-
tent servers require extensive manual intervention [5, 9]. In these
existing solutions a programmer or site administrator explicitly
specifies the cacheable fragments of web pages and their lifetime.
Other query caching solutions assume relaxed consistency seman-
tics [2, 12] forcing the user to handle inconsistent results. Motivated
by the strong consistency requirements of e-commerce workloads,
we study their common workload characteristics with the goal to
design a fully transparent query cache providing both performance
enhancements and strict consistency guarantees to the user. We start
from a basic transparent caching technique which provides strong
consistency, but uses coarse-grained table-based invalidations, cur-
rently present as a feature inside our database [14]. We imple-
ment a similar cache with table-based invalidations, but outside the
database for flexibility and portability, then we add a couple of op-
timizations based on observed workload characteristics.

First, we observe that in compute-intensive queries that involve ta-
ble joins and sorting or grouping, only a couple of salient attributes
are of interest to the user. These few selected attributes are disjoint
from the set of database attributes that are typically updated in the
same tables. Hence, we introduce caching with column-based in-
validations that invalidates at the granularity of database attributes.

Next, we reduce the impact of automatic invalidations by either
making them unnecessary or reducing the penalty of a cache miss
through full or partial coverage of query results. Full or partial cov-
erage occurs when a query response is fully or partially contained
within one or more cached responses. We call these optimizations
semantic caching because we use per-query knowledge to check for
containment of the current query response within an already cached
response.

Furthermore, we maximize the probability of significant partial
coverage for read-only queries from the cache, by keeping track

Client

Web server

of newly inserted rows in separate small temporary tables. A query
result is then obtained from merging an existing cached response
with one or more lightweight residual query results that may need
to be computed on the temporary tables. By keeping the temporary
tables small, the overall perceived response time for a query is low.

We evaluate the tradeoffs between the different cache designs and
the system’s architectural trade-offs between the various locations
at which such cache(s) can be positioned. To transparently main-
tain consistency, the cache maintains, for each cached entry, a "de-
pendency set” of database data items on which the cached entry
depends. If one of the underlying database items changes, then
the cached entry may no longer be valid. The underlying database
data items may be specified at the granularity of database tables or
database columns. Invalidation at the granularity of a table incurs
little overhead when the dependency set is computed but triggers a
large number of invalidations. Invalidation at the column level re-
quires more elaborate parsing of the query to determine the depen-
dency set, but reduces the number of invalidations. Similarly, our
semantic cache optimizations can reduce the miss penalty through
providing a full or partial response to the query from the cache. On
the down side, these optimizations come at the expense of addi-
tional processing for containment checking, filtering responses for
useless rows in cases of partial coverage and even reimplementing
a limited fraction of the database functionality, such as, re-ordering,
or re-counting rows during merging results.

The second tradeoff explored in this paper revolves around the lo-
cation of the cache. The cache can either be co-located with the
front-end or the back-end or it can reside on a separate machine.
The more "upfront” the cache, the shorter the latency on a cache hit
under low load. Throughput may, however, suffer if the front-end is
the bottleneck. This tradeoff becomes more interesting if there are
multiple front-end machines. If a cache is located on each front-end
machine, then a cache only sees the traffic going through it, result-
ing in lower hit rates and consistency between the caches becomes
an issue. Another alternative is to use a two-level cache, the first
level resident at and private to each front-end, and the second level
resident on a separate machine or on the database, and shared by all
front-ends.

We have implemented a transparent query result cache that can use
various granularities of invalidation and semantic cache enhance-
ments based on partial query result coverage. The cache can be lo-
cated at various locations in a dynamic content Web server. We have
implemented our cache in various dynamic content servers running
on common freeware software platforms. We have versions of the
cache running with the Apache web server [1], the MySQL [14]
relational database, and either PHP [17] or Java servlets for the ap-
plication server. We use TPC-W [20] with the standard browsing
and shopping mixes as our benchmark application. It models an
online bookstore, such as amazon.com. We evaluate the tradeoffs
discussed above by measurements of the throughput, the response
time, and the hit rate in this implementation.

Our conclusions are as follows:

e Transparent query caching provides very substantial benefits

Application Database
Server server

Figure 1. Common Architecture for Web Sites Serving Dynamic Content

in throughput and response time improvement respectively,
without any changes to the Web server or the database, and
without any hand-tuning of the application logic.

e Fine-grain invalidation is essential. The benefits of a cache
with coarse-grain table invalidation similar to the one avail-
able in our base MySQL platform are much smaller.

e Our semantic cache extensions for partial coverage of query
results adds up to a factor of 2.9 improvement to response
time.

e The location of the cache has less impact on performance.
The preferred strategy in the case of multiple caches depends
on the workload. With a heavily read-dominated workload, a
two-level cache, on the web servers and on a dedicated ma-
chine, is preferable. With more writes, a single shared cache
on a dedicated machine performs best.

The outline of the rest of the paper is as follows. Section 2 describes
the design of the cache, focusing on the different invalidation al-
gorithms. Section 3 describes our enhancements for transparent
partial query result coverage from the cache. Section 4 discusses
the tradeoffs between different locations of the cache and the con-
sistency protocol used in the case of multiple caches. Section 5
describes the experimental environment. Section 6 presents the re-
sults. Section 7 discusses related work. Section 8 concludes the

paper.
2 Cachedesign

2.1 Overview

Logically, our dynamic content Web server consists of a front-end,
containing both the web server and the application logic, a cache,
and a database back-end. The cache functions as a transparent
proxy between the application logic and the database: to the ap-
plication logic, the cache appears as the database; to the database it
appears as the application. The cache takes as its input the database
queries generated by the application logic. On a read query, the
cache checks whether the results of the query reside in the cache,
and, if so, returns them immediately to the application. Otherwise,
it forwards the query to the database. The database returns the re-
sults of the query to the cache, where they are inserted in the cache
and forwarded to the application. On an update query, the cache
performs the necessary invalidations and forwards the update to
the database. The cache may be located on the same machine as
the front-end, on a separate machine, or on the same machine as
the database. There may be multiple machines executing the web
server and the application logic. There may also be multiple cache
machines.

2.2 Datastructures

Figure 2 depicts the main cache data structures. The primary struc-
ture is a large hash table containing cache entries. Each entry con-
tains the SQL query string, the state of the entry, the query result,
the query’s dependencies, and some additional fields to implement
the cache replacement algorithm. The SQL query string serves as

Database Schema

H

DatabaseTable

lableColumn DatabaseTable

Query Cache
(hashtable)

S

Unique

TableColumn

I
|
Dependencies Unique i
I
Dependencies 1
TableColumn !
Unique |
TableColumn .

Dependencies Unique L

Dependencies

TableColumn

Unique

Dependencies

Cache Entry Cache Entry Cache Entry
SQL Query SQL Query SQL Query
State State State
Result Result Result
: Dependencies H Dependencies Dependencies

Figure 2. Cache Data Structures

the key to the hash table. A cache entry exists in one of the fol-
lowing states: valid, invalid, or single-row. The valid and invalid
states correspond to their normal meanings. The single-row state
reflects a cache entry that must contain exactly one row. It is used
to implement an optimization to reduce invalidations described in
Section 2.5. The query’s dependencies record the data items in the
database on which the result is dependent. For coarse-grain invali-
dation, these dependencies are recorded in terms of database tables,
for fine-grain invalidation in terms of database columns. A second
data structure records the schema of the database. It consists of a
number of table objects, each one corresponding to a table in the
database. In the case of coarse-grain invalidation, each table ob-
ject contains references to the cache entries that are dependent on
this table. In the case of fine-grain invalidation, each table object
contains a number of column objects, each one corresponding to a
column in the corresponding table. Each of these column objects
contains references to the cache entries depending on this column.
It additionally contains an indication of whether the column must
contain a unique value. This field is used in the optimization de-
scribed in Section 2.5.

2.3 Read query handling

If an incoming read query matches a valid entry in the cache, the
cache simply returns the cached query results to the application. If
there is no matching cached query, a new cache entry is allocated.
The query is then forwarded to the database. While the database
is performing the query, the cache parses the query string to deter-
mine its dependencies. In the case of coarse-grained cache inval-
idation, it parses the FROM clause in the query to determine the
tables accessed. In the case of fine-grained invalidation, it parses
the SELECT and WHERE clauses of the query to determine which
columns of the tables named in the FROM field are used. In ei-
ther case, appropriate references are inserted in the dependencies
field of the cache entry, and in the references emanating from the
database schema data structure. When the results of the query are
received from the database, they are inserted in the cache entry, its
state is marked valid, and the results are returned to the front-end.

24 Handling update, delete, and insert

queries

When an update, insert or delete query is received, the query string
is parsed to determine its dependencies, as in Section 2.3. Using
the references in the database schema data structure, the cache in-
validates all cache entries dependent on either the affected tables or
the affected columns. These references are then deleted from the
database schema data structure. The query is then forwarded to the
database. When the response from the database is received, it is
forwarded to the front-end.

2.5 Optimization for single-row cache entries

An insert can never invalidate a cache entry that represents a single
row in the database. When parsing a read query, the cache can
determine that a query must result in (at most) a single row being
returned. A query returns at most a single row if the WHERE clause
of the query contains a logical AND in which for each table named
in the query there is an equality test of a unique column with a
constant. Although there may be other circumstances under which
no more than a single row can be returned, this test is conservative
but easy to implement. When the cache discovers such a query, it
sets the state of the cache entry to single-row rather than to valid.
When an insert is processed, cache entries in single-row state are
not invalidated.

2.6 Replacement policy

The cache implements an LRU replacement strategy by threading a
doubly-linked list through the cache entries. The linked list main-
tains the cache entries in order of last access. When cache replace-
ment is needed, the cache entry at the tail of the list is evicted.

3 Semantic Cachewith Full and Partial
Coverage of Query Results

Semantic caching is using per-query knowledge to check for con-
tainment of the current query response within an already cached
response. For this purpose, we parse each query to infer query re-

sult ranges and possible coverage or partial coverage for all queries
that match a specific template.

An orthogonal but related transparent cache optimization is based
on addressing the invalidations caused by the addition of new items
to a database table in a cache with table or column-based automatic
invalidations.

We maximize the probability that a read-only query can be largely
satisfied from the cache through partial coverage, by keeping track
of newly inserted items in separate small temporary tables. A query
result is then obtained from merging an existing cached response
with one or more lightweight residual query results that may need
to be computed on the temporary tables. By keeping the temporary
tables small, the overall perceived response time for a query is low.

The combination of partitioning the new and old items through the
use of temporary tables driven by application patterns and using
per-query semantic information for detecting coverage work in syn-
ergy. In particular, partitioning increases opportunities for partial
coverage for each individual query. We explain the table partition-
ing scheme, our method for detecting coverage of query results, fil-
tering unwanted parts of responses and merging cached responses
with residual query responses in more detail in the following sec-
tions.

3.1 Partitioning Schemefor Alleviating I nsert
Induced Invalidations

We keep newly inserted rows in separate tables called temp tables,
one temp table per regular database table. The value of each field in
the temp table rows (including key values) is the same as if the rows
were present in the main table. Upon receiving a select query, the
cache splits it into two queries: the original query and one or more
residual queries. The original query is the unmodified query work-
ing on the regular table. A residual query is the same query on the
corresponding temp_table. These separate results are obtained and
cached as usual. The final query result is obtained by merging these
query results. This optimization potentially benefits query results
that would otherwise be invalidated by inserts into the accessed ta-
bles. In the example shown in Figure 4, a SELECT which fetches
a large number of rows (A) would be invalidated by a subsequent
I NSERT query. By placing newly inserted rows in a temporary ta-
ble, we avoid invalidating the result of the first SELECT and we can
compute the result for a subsequent matching SELECT quickly by
merging the cached response (A) with a small residual response
(B) computed from the corresponding temporary table (Figure 5).

Although the residual queries on the temporary tables are
lightweight, we choose to cache their results as well. Hence, these
residual results could either be returned from the cache if valid or
otherwise would need to be recomputed at the database similarly to
the treatment of any other query.

Upon an | NSERT query, the cache redirects the query to insert it
in the temporary table. For UPDATE and DELETE queries the cache
sends them to both the original and the temporary tables. In the
case of queries containing joins of two or more tables, the query is
split into the corresponding sub-queries necessary to compute the
join according to the formula shown in Figure 3.

Partitioning a select query could lead to O(2") partitioned queries,
where nis the number of tables referenced in the query. However, in
practice, only certain tables are partitioned at any given time (usu-

A B (AUtA) 1 (BUB)
(A1B)U (AtB)

U(tA B)U (tApatB)

Figure 3. Join Formula for Partitioned Tables (shown for 2 ta-
bles)

ally 1 or 2). Their number depends on how many of a query’s tables
registered inserts in the recent past. Furthermore, the joins that in-
volve the temporary tables are fast since these tables contain a few
rows (a maximum of 100 in our scheme). When an insert table ex-
ceeds the threshold size of 100 rows, we remove and reintegrate all
entries from the insert table into the corresponding regular table.
Since the number of sub-queries is kept low and the temp tables are
small, computing the residual queries in the case of joins is rela-
tively fast compared to recomputing the original result.

ORDERS
[SELECT * FROM
‘ ORDERS
A 10000 A
SELECT * FROM
ORDERS
10,001 => A4+B

Figure 4. Incremental change for a query response (A) upon
inserting a new row (B)

ORDERS

SELECT * FROM
A ORDERS

= A

SELECT * FROM

ORDERS
TEMP
URUERS SELECT * FROM
5] TEMPORDERS
=B

Figure 5. Using a separate temporary table for new inserts al-
lows reuse of previous query response (A) for partial coverage

3.2 Detecting Coverage for Query Results

The cache can detect both Full Coverage and Partial Coverage of a
query response. In Full Coverage (see Figure 6), the query response
of the current query is fully contained within a cached response. In
this case, (at least) one of the cached query responses is a superset
of the current query response. In Partial Coverage, a query result
is obtained from merging an existing cached response with one or
more residual query results that may need to be computed at the
database.

ORDERS
PRICE SELECT*
0 FROM ORDERS
WHERE PRICE <
i 50
-
100 SELECT *
FROM ORDERS
WHERE PRICE <
75

Figure 6. Coverage of Query Results: The response for the
“PRICE < 50” query is fully contained within a previous
cached entry

Full coverage is classified as a cache hit, while partial coverage is
currently classified as a cache miss. Checks for either full or partial
coverage are done for all types of queries (including sub-queries
of a partitioned query). The cache first checks whether there is an
exact match with a previously cached query. If not, the algorithm
proceeds to check if any previously cached query can provide a full
answer (full coverage). If full coverage is detected, the cache filters
out any rows that are not necessary to satisfy the current query from
the cached entry and returns the resulting query response.

Otherwise, the cache algorithm proceeds to check if any previously
cached query can provide a partial answer. If such a query ex-
ists, the cache sends a remainder query to the database. When
the database returns the result for the remainder query, the cache
merges the result with the partial result obtained from the cache. In
the following section we provide more detail on how we determine
whether a cached result satisfies the incoming query (i.e., how we
implement full coverage and partial containment checks), how to
generate a remainder query in the case of partial coverage and the
merging algorithm.

3.2.1 Coverage Checking

We follow the general coverage testing described by Larson et
al. [11] which defines that a query Qi covers Q; if the following
three conditions hold:

1. Attribute Coverage: This states that the columns in the
SELECT clause of Q, should be a subset of Q;.

2. Tuple Coverage: This means that the tuples addressed by
Q> should be a subset of the tuples addresses by Q;. In
other words, for the WHERE predicates, P; of Q1 and P, of
Qy, V(ttupleof Q)P — P.

3. Sdectability: This requires that the query must be entirely
evaluated using the cache entries. That is, Q» should not refer
to any columns in other SQL constructs (such as ORDER BY,
and WHERE) that is referred by Q.

We currently consider only conjunctive WHERE clauses for contain-
ment (coverage) checking. Furthermore, we can detect coverage
only conservatively for queries matching a given query template
(e.g., differing only in the inequality expressions appearing in the
VHERE clause).

In more detail, the containment checking algorithm takes as input
the incoming query Q and a list of cached queries C matching Q’s
template. Each query contains a list of predicates P contained in the
VHERE clause. For each cached query, the algorithm checks whether
all the equality constraints are satisfied. Any cached query not sat-

isfying an equality constraint is removed from further consideration
for this match. Then, for each inequality predicate, the algorithm
selects the cached query that covers the most tuples. In case of ties,
the first query on the list is returned.

3.2.2 Generation of the Remainder Query

To complete the result obtained from the cache, a remainder query
obtains the missing tuples from the database. Formally, the remain-
der query is described as R= Q— C where Q is the incoming query
and C is the cached partial result. The remainder query is generated
in a straightforward way. We consider the inequality predicates, one
at a time. For each predicate, if the cached query does not cover the
incoming query, the predicate is rewritten to fetch the tuples not
referred by the cached query.

For example, consider the following queries conforming to template
T below, where the new query Q is presented to the cache, while the
results of C1, C2 and C3 are already cached (only the WHERE clause
is shown for these queries):

T: (SUBJECT = ?) AND (PRICE < ?)
Q (SUBJECT = ‘KIDS') AND (PRICE < 100

)
Cl: (SUBJECT = 'KIDS') AND (PRICE < 50)
C2: (SUBJECT = 'KIDS') AND (PRICE < 75)
C3: (SUBJECT = ' ARTS') AND (PRI CE < 100)

The containment checking algorithm first checks whether the equal-
ity constraints are satisfied. After this stage, C3 can be removed
from future consideration. Then, we proceed to check if there are
any overlapping regions between Q and any of the cached queries.
In this example, it is easy to see that both C1 and C2 partially cover
Q but C2 is a better candidate since it contains a larger percentage
of the final result. Therefore, C2 is selected as the best result from
the cache. Qis rewritten to

Q@: (SUBJECT = 'KIDS') AND
(PRICE >= 75 AND PRICE < 100)

The rewritten query is sent to the database and its results are merged
with the cached results to form the final answer that is returned to
the client.

3.2.3 Efficient Merging

Since results have to be merged for every partitioned query, special
care needs to be taken for queries that contain special clauses such
as ORDER BY, COUNT, MAX and other SQL functions. For sorting
necessary in ORDER BY clauses, we use an algorithm that merges the
results in O(ndc) time where d is the number of partitioned tables in
the query and c is the number of ORDER BY columns. Our algorithm
is based on merge-sort [7] and uses the fact that the query result
sets to be merged are pre-sorted by the database. The algorithm
then generates the sorted final result by interweaving the different
streams.

4 Location of the cache(s)

The second tradeoff explored in this paper revolves around the lo-
cation of the cache. The cache can either be co-located with the
front-end or the back-end or it can reside on a separate machine.
The more "upfront” the cache, the shorter the latency on a cache hit
under low load. Throughput may, however, suffer if the front-end is
the bottleneck. This tradeoff becomes more interesting if there are

multiple front-end machines. If a cache is located on each front-end
machine, then a cache only sees the traffic going through it, result-
ing in lower hit rates and consistency between the caches becomes
an issue.

4.1 Consistency between multiple front-end
caches

Consider a scenario with one cache per front-end machine. There is
no dedicated cache machine, and there is no cache on the back-end
machine. Consistency is maintained between the different caches
using an invalidation protocol implemented by reliable group com-
munication. When an update, insert or delete query arrives at a
particular front-end, it is first forwarded to the back-end. The query
is then parsed as before to determine its dependencies. An invalida-
tion message containing these dependencies is sent to all the other
caches by means of reliable group communication. The front-end
to which the query was initially sent then waits for the multicast to
be acknowledged by all the other caches and for the response from
the database to come back. At that point, it sends the response back
to the client. In this way, the invalidations are usually overlapped
in time with back-end access and do not contribute to the latency
seen by the client. They do, however, still contribute to the CPU
load on the front-ends. In addition, each cache only sees the read
traffic arriving locally, thereby limiting its hit rate. The next section
describes a two-level cache that addresses this problem.

4.2 Two-level cache

In this scenario, there is a cache at each individual front-end, as
before, but, in addition, there is a single shared cache, either on
a dedicated cache machine or on the database. An incoming read
query is first checked for a match in the cache of the front-end at
which it is received, and served from there in the case of a hit. In
the case of a miss, a cache entry is allocated for it, and the query
is forwarded to the shared cache. The second-level cache behaves
identically to the first-level cache. On a hit, it returns the cached
results to the first-level cache. On a miss, it allocates a cache en-
try and forwards the query to the back-end. The returned results
are then stored in the caches as necessary. An incoming update,
insert or delete query is handled as before. The receiving front-end
forwards it to the shared cache, and then initiates the group inval-
idation protocol among the front-ends. The shared cache forwards
the query to the back-end, and performs its own invalidations. The
back-end response is forwarded, when all the necessary invalida-
tions have been completed.

5 Experimental Platform

5.1 Hardware Platform

We use the same hardware for all machines running the client em-
ulator, the Web servers, the cache and the database. Each machine
has an AMD Athlon 800Mhz processor, 256MB SDRAM, and a
30G ATA-66 disk drive. All machines are connected through a
switched 100Mbps Ethernet LAN. We have verified that the amount
of memory on the machines, the disks, and the network never be-
come the bottleneck.

5.2 Software Environment

All machines run FreeBSD 4.1. We use Apache v.1.3.22 as our Web
server, configured with the PHP v.4.0.1 module, providing server-

side scripting for generating dynamic content. We use MySQL
v.3.23.43-max as our database server. We increase the maximum
number of Apache processes to 512. With that value, the number
of Apache processes is never a limit on performance.

5.3 TPC-W Benchmark

We use an industry-standard e-commerce benchmark, TPC-W, from
the Transaction Processing Council [20]. Several interactions are
used to simulate the activity of a retail store. We implemented the
14 different interactions specified in the TPC-W benchmark specifi-
cation. Of the 14 scripts, 6 are read-only, while 8 cause the database
to be updated. The read-only interactions include access to the
home page, listing of new products and best sellers, requests for
product detail, and two interactions involving searches.

TPC-W specifies three different workload mixes, differing in the ra-
tio of read-only to read-write interactions. The browsing mix con-
tains 95% read-only interactions, the shopping mix 80%, and the
ordering mix 50%.

The database size is determined by the number of items in the inven-
tory and the size of the customer population. We use 10,000 items
and 2.8 million customers which results in a database of about 4
GB.

5.4 Measurement Methodology

We use the browsing and shopping workloads of TPC-W to inves-
tigate the various caching trade-offs. We use a client-browser em-
ulator that allows us to vary the load on the web site by varying
the number of emulated clients. To select the load for each exper-
iment, we are driving the server without the cache with increasing
the number of clients, until performance peaks. Then we use the
same number of clients to drive the server with the cache enabled,
for all cache locations and invalidation granularies. Each experi-
ment with a particular workload mix is run for one hour, where the
first half of the run is used for warming up the cache, and mea-
surements are performed during the second half of the run. Each
experiment also starts with an identical database. Differences be-
tween repeated runs of the same experiment were minimal. To mea-
sure resource utilization we use the vmstat utility that collects CPU,
memory, and disk usage every second.

6 Results

We study the application access patterns relevant to scaling opti-
mizations for a transparent caching approach for e-commerce using
the TPC-W benchmark in section 6.1. Then we study the impact
of our various cache optimizations compared to a query cache with
table-based automatic invalidations.

6.1 Preliminary Results: Workload Charac-
teristics Relevant to Caching

In the following, we describe the e-commerce workload character-
istics that we found relevant for query caching. Our design is driven
by the features below.

Heavyweight Database Processing: Table 1 shows the breakdown
of the average total client response time for all TPC-W interactions
into percentage of total response time spent at the Database, in Ap-
plication server processing and in Web Server processing for the

Mix DB | App Server | Web Server
Browsing | 95% 4.0% 1.0%
Shopping | 94% 4.4% 1.5%

Table 1. Breakdown of response time into percentage of to-
tal response time spent at the Database, in Application Server
processing and in Web Server processing for the Browsing and
Shopping mixes

two TPC-W workload mixes. We see that most of the time is spent
in processing queries at the database, resulting in high potential per-
formance impact for database query result caching.

Workload Locality: This is a motivator for dynamic content
caching in general. The queries are repeatable and conform to pre-
defined query templates. All read-only interactions exhibit locality
in their access patterns, which ranges from hot-spot rows satisfying
a condition (such as top-k published items and top-k best Sellers),
to larger sets of frequently accessed rows in the item and customer
tables for bestseller, new product and promotional items, and return
customers respectively. The measured total size of all possible re-
sponses for all complex repeatable queries (BestSellers, NewProd-
ucts, Search by Subject) across all subjects was less than 300 KB.
Hence, the read queries consuming the most database resources can
be satisfied with a low total cache size.

Few Interesting Attributes for Heavyweight Browse Queries:
This characteristic encourages use of a transparent query cache
with automatic column-based invalidations. A column-based cache
avoids performing cache invalidations as a result of updates in this
case, as explained below. Complex read-only queries access only
a few interesting attributes out of a high total number of attributes
for the accessed tables. Specifically, a BestSeller query selects only
the book title and author name ignoring any other attributes from
the book and author tables such as the author biography, the book
stock and the publication date. The interesting attribute set for
these browsing queries is different from the attribute set accessed
in update queries for the same tables. For instance, a book order
will update a book’s stock, but the book stock is typically not ac-
cessed in BestSeller, Newproduct and Search by Subject queries.
Thus, a cache organization that distinguishes objects at the level of
a database attribute (column) will not invalidate the results of the
complex join queries as a result of updates occurring on the same
tables.

One-shot Browse Queries: As opposed to the database hogs
above, one-shot database queries involved in Product Detail or Cus-
tomer Information type queries typically select all book or customer
attributes respectively. However, only one such row is selected, typ-
ically based on the unique key of the particular row (e.g., Customer
Info for customer with ID = 1000). These type of query results
should not be affected by inserts of new rows into the respective
tables such as adding new customers to the store’s database.

High Fraction of Inserts: Of all write queries occurring in the
standard shopping workload mix, 52% are inserts, 37.4% are up-
dates and 11% are deletes. Furthermore, we observe that in dy-
namic content web applications, the most recently inserted rows
will also be typically accessed in complex browse-type queries.
For example, the newest orders for books in a bookstore influences
BestSeller rankings for the books in the corresponding categories.
Hence, as opposed to updates, inserts will typically invalidate the
results of the database hogs (BestSellers, NewProducts, Searches)
causing hefty cache miss penalties.

Method WIPS | RespT | Hit%
NoCache 10.51 2.72

Table 13.50 184 | 11.10
Column 19.14 0.98 | 50.40
Column + single-row | 18.81 1.00 | 50.50

Table 2. Throughput in web interactions per second, response
time, and hit rate for browsing mix with dedicated cache ma-
chine

Method WIPS | RespT | Hit %
NoCache 18.71 1.05

Table 19.51 0.94 4.40
Column 22.57 0.64 | 37.20
Column + single-row | 22.99 0.61 | 38.20

Table 3. Throughput in web interactions per second, response
time, and hit rate for shopping mix with dedicated cache ma-
chine

Subject-based Complex Queries: Most complex read-only
queries are subject-based. They are either top-k type of queries by
category (e.g., top 50 romantic BestSellers) or searches by category
(e.g., the titles and authors of books with subject ’ARTS”). Hence,
semantic caching that understands regions in the query result space
is likely to improve the transparent query cache effectiveness.

In the following, we evaluate the performance impact of our cache
optimizations and the cache location. In Section 6.2 we consider
the scenario with a single cache located on a dedicated machine,
and we vary the invalidation granularity.

In Section 6.3 we stay with a single cache, we pick the best invali-
dation granularity from Section 6.2, and we vary the location of the
cache. In Section 6.4 we consider the case of multiple caches.

In Section 6.5 we consider the best location of the cache scenario
and we enhance the cache with full and partial coverage of query
results through table partitioning, coverage detection and merging
of results.

6.2 Single cache - varying the invalidation
granularity

This section reports on the results of a set of experiments with a sin-
gle cache on a dedicated machine, while varying the cache granular-
ity. The experiments use either no caching or caching with coarse-
grain invalidation, with fine-grain invalidation, and with fine-grain
invalidation with the optimization for single-row cache entries. Ta-
ble 2 provides throughput, latency and hit rate, for the browsing
mix, and Table 3 provides the same information for the shopping
mix.

No matter what invalidation strategy is used, caching improves both

Mix Qres. | Query | Meta | Total
Browsing | 11.27 3.52 | 13.40 | 28.19
Shopping | 12.69 439 | 1593 | 33.01
Table 4. Average cache size for the browsing and shopping
mixes with column based invalidations and single row optimiza-
tion with dedicated cache machine. The total data stored in the
cache is broken down into the average storage used for query
results, query strings and cache metadata, respectively. All sizes
are in MB.

Location Throughput | Response Time
Database 18.91 1.01
Dedicated 19.14 0.98
Web server 19.14 0.90

Table 5. Throughput and response time for various locations of
the cache with the browsing mix and column-based invalidation

Location Throughput | Response Time
Database 22.47 0.64
Dedicated 22.99 0.61
Web server 21.43 0.78

Table 6. Throughput and response time for various locations of
the cache with the shopping mix and column-based invalidation

throughput and response time for both workload mixes. Fine-grain
column-based invalidation substantially outperforms coarse-grain
table-based invalidation. The gain in hit rate is very substantial,
and outweighs the small extra cost in more complicated parsing.
Hit rates improve from 11.1% to 50.4% for the browsing mix, and
from 4.4% to 37.2% for the shopping mix. There is a larger frac-
tion of writes in the shopping mix, which explains both the lower
overall hit rate and the greater difference between column-based
and table-based invalidation. Average response time for the brows-
ing mix improves from 2.72 seconds without a cache, to 1.84 sec-
onds with table-based invalidation and 0.98 seconds with column-
based invalidation. For the shopping mix, very little improvement
results from using a cache with table-based invalidation, from 1.05
to 0.94 seconds, because the hit rate is very low. The much higher
rates of the cache with column-based invalidation lead to a signifi-
cantly improved average response time of 0.64 seconds. Since the
database becomes the bottleneck during some periods of the ex-
periment, the cache improves throughput, in addition to producing
better response times. For the browsing mix, throughput increases
from 10.51 interactions per second in the absence of a cache, to
13.50 with table-based invalidation, and 19.14 with column-based
invalidation. For the shopping mix, the corresponding throughputs
are 18.71, 19.51, and 22.57. Again, throughput improvement is
small for table-based invalidation with the shopping mix, because
the hit rates are small. With column-based invalidation, the im-
provements are significant for both mixes. The single-row opti-
mization improves the performance of fine-grain invalidation by
an insignificant amount. The increases in hit rates are small (from
50.4% to 50.5% for browsing and from 37.2% to 38.2% for shop-
ping). In subsequent performance results, we only present results
for the column-based invalidation strategy without the single-row
optimization.

We also present measurements of the size of the cache for the best
strategy in table 4. We can see that all cache sizes were small total-
ing less than 40 MB.

6.3 Single cache - varying the cache location

The relatively small cache sizes and the small CPU load on the
dedicated cache machine, observed in the experiments described in
Section 6.2, motivate an investigation of the effect of locating the
cache on the front-end or on the back-end machine. Table 5 shows
the throughput and the response time with the cache on the (single)
front-end, on a dedicated machine (as in Section 6.2), or on the
database for the browsing mix. Table 5 shows the corresponding
results for the shopping mix.

The results show that depending on the other possible locations of

Location WIPS | RespT Hit %
Dedicated 20.79 0.86 51.00
Web server | 16.66 1.35 26.90
Two-level 20.80 0.80 | 29.70 + 29.40

Table 7. Throughput, response time, and hit rate for the brows-
ing mix for 4 Web servers, with a single shared cache, a private
cache on each Web server, and a two-level cache consisting of a
private cache on each front-end and a shared cache on a dedi-
cated machine

Location WIPS | RespT Hit %
Dedicated 271.77 0.39 40.30
Web server | 24.96 0.55 21.10
Two-level 26.88 0.42 | 21.10 +29.60

Table 8. Throughput, response time, and hit rate for the shop-
ping mix for 4 Web servers, with a single shared cache, a private
cache on each Web server, and a two-level cache consisting of a
private cache on each front-end and a shared cache on a dedi-
cated machine

the cache, the results differ only by small amounts. We have also es-
tablished that our cache with table-based invalidations, when placed
at the database, has very similar performance results and hit rates
to enabling the MySQL internal cache alone (not shown). For the
browsing mix, the database is the bottleneck during substantial peri-
ods of the execution. Compared to a cache on a dedicated machine,
putting the cache on the database therefore reduces throughput and
increases response time, both by a small amount, from 19.14 in-
teractions per second to 18.91 for the throughput, and from 0.98
seconds to 1.01 for the response time. In contrast, moving the
cache to the front-end improves response time, again by a small
amount, from 0.98 to 0.90 seconds, because of one fewer network
round-trip in the case of a hit. For the shopping mix, the database
and the front-end alternate in being the bottleneck during the ex-
ecution. Therefore, putting the cache on either machine slightly
degrades performance compared to the dedicated cache. Through-
put goes down from 22.99 interactions per second on a dedicated
machine, to 22.47 on the database and 21.43 on the front-end. Re-
sponse time goes up from 0.61 seconds to 0.64 and 0.78 seconds,
for the database and the front-end, respectively. Summarizing these
results, the low overhead of the cache makes performance relatively
insensitive to the placement of the cache.

6.4 Multiplecaches

With a single front-end, as in Section 6.3, it appears that small gains
are possible by locating the cache on the front-end versus locat-
ing it elsewhere. This result has to be re-examined when there are
multiple front-ends, because of the need to enforce consistency be-
tween the front-end caches and because of the fact that each front-
end cache only sees the traffic going through its front-end. Table 7
shows throughput, response time and hit rate for the browsing mix
for a single shared cache on a dedicated machine, a private cache on
each of the front-ends, and a two-level cache consisting of a private
cache on each front-end and a shared cache on a dedicated machine.
Table 8 reports the corresponding results for the shopping mix.

First, putting only a private cache on each Web server does not per-
form as well as a single shared cache on a dedicated machine. The
hit rates decrease because each web server only sees a fraction of
the overall traffic compared to the shared cache. Both throughput
and response time deteriorate as a result. For the two-level cache
with private caches on the Web servers and a shared cache on a

dedicated machine, the results differ between the browsing mix and
the shopping mix. The differences result from the differing frac-
tions of writes in the workloads. The shopping mix has four times
more writes than the browsing mix, resulting in four times more
consistency messages. The cost of these messages causes a slight
reduction in performance from a single cache on a dedicated ma-
chine to a two-level cache. For the browsing mix, in contrast, a
small improvement results from a two-level cache. This result mer-
its some further discussion. First, an application that puts a heavier
load on the front-end may produce different results. Regardless of
caching, the benefits of adding extra front-ends for such an applica-
tion should be larger than for TPC-W, which puts a heavy load on
the database. Second, our implementation of caching on the front-
end resides in a separate process from the Web server, so that the
cache can be shared between the different Apache processes. A
more integrated solution may produce better results. Finally, the
current implementation of consistency communication uses TCP. A
more efficient communication mechanism may alter the tradeoff.

6.5 Semantic Caching Results

08

o~ W Semantic Cache
MW Column Cache

04

02

Normalized Response Time

Shopping Browsing

Figure 7. Normalized latency comparison for column-based
cache and semantic cache, normalized to the column-based
cache.

Figure 7 shows a latency comparison for our cache with column-
based invalidation and the semantic cache for the TPC-W browsing
and shopping mixes, respectively. The latency represents the aver-
age response time for a page as perceived by the client normalized
to the response time with the column-based cache. The results indi-
cate that semantic caching further lowers the latency significantly,
by a factor of 2.9 for the shopping mix and by a factor of 1.2 for
the browsing mix. The shopping mix contains a higher fraction
of writes compared to the browsing mix (20% vs. 5%), hence a
higher number of automatic invalidations. The latency gains are
mostly due to faster computation of query responses from partial
and residual results compared to re-executing the original query.

Semantic caching also improves the hit-rate of the cache due to full
coverage detection. For the browsing mix, the hit-rate is improved
by 8% and for the shopping mix by 4%. These increases in hit rate
are not significant because they result only from additional cases of
full coverage of query results and servicing these directly from the
cache. We currently classify partial coverage as misses.

Thus, most of the latency improvements come from partial cover-
age cases rather than additional hits due to full coverage. Partial
hits, especially for queries that involve multiple table joins (e.g.,
the best seller query that retrieves the books that were ordered the

most in recent purchases) make a difference in terms of latency im-
provements for the shopping mix. The performance improvements
brought about by semantic caching translate in throughput increases
as well, however to a lesser extent than for latency, with throughput
increases only up to 10% for both mixes.

7 Reated Work

7.1 Overview of dynamic data caching

Dynamic Web data can be cached at different stages in its produc-
tion: the final HTML page (e.g., [4, 10], intermediate HTML or
XML fragments (e.g., [8]), database queries (e.g., [13]), or database
tables (e.g., [12, 15]). Combination of various caches are also pos-
sible (e.g., [5, 21]). Intuitively, caching at the database stage typ-
ically offers higher hit ratios, while caching at the HTML or XML
stage offers greater benefits in the case of a hit. There is no conclu-
sive evidence at this point that caching at any single stage dominates
the others. For instance, Labrinidis and Roussoulos use a synthetic
workload and conclude that HTML page caching is superior [10],
but Yagoub et al. use TPC-D and conclude that database query
caching is more effective [21]. It appears that the different caches
are complimentary [18, 21]. This paper is concerned with database
query caching. Our methods can be extended to record dependen-
cies between HTML pages or fragments and database data items,
and we intend to investigate this in further work.

7.2 Non-transparent approaches

Luo et al. [12] require the database designer to specify which ta-
bles are cached. Updates to the cache are performed once a minute.
Oracle 9i also provides table-level caching in the middle-tier and
invalidation based on time and events (database triggers), but no
generalizable solution for generating invalidations [15]. Yagoub
et al. [21] describe a declarative system for specifying a web site
that allows a designer control over HTML, XML and query caches,
including what to insert or to remove from the cache and how to
invalidate or update items in the cache. Challenger et al. propose a
cache API to control the contents of the API [9, 5]. Datta et al. [8]
propose annotating the application logic to inform the cache which
HTML fragments are cacheable. In contrast, our approach is trans-
parent, can be applied without additional effort to an existing web
site design, and automatically maintains consistency at all times.
Nonetheless, we have been able to demonstrate substantial perfor-
mance benefits.

7.3 Caching in clusters of dynamic web
servers

To the best of knowledge, this paper is the first in-depth evaluation
of query caching in a cluster of web server front-ends. Our previous
work [3] studies the ortogonal aspect of database clustering and
combinations of database clustering and transparent query caching.
Challenger et al. [5] use an analytical cost model to evaluate how
many web servers can be supported by a single cache, based on
the CPU cost of executing queries on one hand and maintaining
the cache on the other hand. They describe no implementation or
experimental evidence in support of their numbers.

7.4 Multiple caches

Our consistency maintenance algorithm is similar to the ones com-
monly used in small shared-memory systems. An alternative used

in larger shared-memory systems is to use a directory-based rather
than a multicast-based invalidation protocol. For configurations
with larger number of front-ends, this is a plausible avenue for fur-
ther exploration. Alternatively, one could also use weaker consis-
tency semantics present in some shared-memory systems. We use
a second-level shared cache to augment the hit rate with caches on
multiple front-ends. This allows us to use a simple round-robin
request distribution for directing incoming client requests. More
complicated request distribution strategies such as LARD [16] can
potentially further increase the hit rate in the front-end cache, but
they need support from the switch. Cooperative caching is another
approach to improve cache hit rates, but we prefer the simplicity of
the shared cache.

7.5 Semantic Caching

The concept of semantic caching has been examined in the con-
text of database design [11, 19]. This approach has been explored
for LDAP (Lightweight Directory Access Protocol) with existing
studies [6] focusing on how to reuse results from existing LDAP
queries to answer future queries. More recently, Amiri et al. [2] has
proposed using semantic information to generate results based on
cached query results for dynamic content queries sharing the same
query template. Their cache shares similarities with our per-query
semantic information optimizations, but it lacks the ability to gen-
erate partial results. Furthermore, their intended deployment is in
caches with loose consistency at the client edge of the network,
while our focus is on providing strong consistency for a central
server cache.

8 Conclusions

We have demonstrated that transparent dynamic caching substan-
tially improves the performance of dynamic content Web servers.
For the TPC-W benchmark, we have shown factors of up to 1.5
cumulative improvement in throughput and factors of up to 4.2 cu-
mulative improvement in response time, compared to a basic table
invalidation scheme without requiring changes to the Web server or
the database, and without any hand-tuning of the application logic.
In order to provide these substantial improvement, cache invalida-
tions must occur at the grain of a database column. Very small
additional benefits can be obtained from specializing the case of a
single-row cache entry. We have also shown that a more coarse-
grained table-based invalidation scheme currently used by MySQL,
provides little improvement by itself, compared to an architecture
with no cache because the resulting hit rates are too low.

As a further improvement we presented a method of using seman-
tic information to retrieve partial results for queries from the cache.
This method has several new features. First, the tables are parti-
tioned to reduce misses due to | NSERT queries. Second, informa-
tion from previous queries is used to generate partial results.

The location of the cache appears less critical to performance.
When there is only a single front-end, a dedicated machine is prefer-
able, but the differences with other locations are small. With multi-
ple front-ends, caches at the front-ends are appealing only in com-
bination with a shared cache and when the write component of the
workload is sufficiently small not to cause significant consistency
overhead.

9 References

[1] The Apache Software Foundation. http://www.apache.org/.

[

(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]
[18]

[19]

[20]
[21]

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. Scalable template-
based query containment checking in web semantic caches. In Pro-
ceedings of the |EEE International Conference on Data Engineering
(ICDE), Bangalore, India, 2003.

C. Amza, A. Cox, and W. Zwaenepoel. A Comparative Evaluation
of Transparent Scaling Techniques for Dynamic Content Servers. In
Proceedings of the 21st International Conference on Data Engineer-
ing, April 2005.

K. Selcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and
Divyakant Agrawal. Enabling dynamic content caching for database-
driven web sites. In Proceedings of the 2001 ACM SGMOD Interna-
tional Conference on Management of Data, May 2001.

Jim Challenger, Arun lyengar, and Paul Dantzig. A scalable system
for consistently caching dynamic web data. In Proceedings of IEEE
INFOCOM' 99, pages 294-303, March 1999.

Sophie Cluet, Olga Kapitskaia, and Divesh Srivastava. Using LDAP
directory caches. pages 273-284, 1999.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to algorithms (second edition). McGraw-Hill and MIT
Press.

Anindya Datta, Kaushik Dutta, Helen M. Thomas, Debra E. Van-
derMeer, Krithi Ramamritham, and Dan Fishman. A Comparative
Study of Alternative Middle Tier Caching Solutions to Support Dy-
namic Web Content Acceleration. In Proceedings of the 27th Interna-
tional Conference on Very Large Databases, pages 667-670, Septem-
ber 2001.

Arun lyengar and Jim Challenger. Improving web server performance
by caching dynamic data. December 1997.

Alexandros Labrinidis and Nick Roussopoulos. WebView Material-
ization. In Proceedings of the 2000 ACM S GMOD International Con-
ference on Management of Data, pages 367-378, May 2000.

P-A. Larson and H. Z. Yang. Computing Queries from Derived Re-
lations. In Proceedings of the 11th International Conference on \Very
Large Databases, pages 259-269, August 1985.

Q. Luo, S. Krishnamurty, C. Mohan, H. Pirahesh, HWoo, B. Lindsay,
and J. Naughton. Middle-tier database caching for e-business. In Pro-
ceedings of the 2002 ACM International Conference on Management
of Data, pages 600-611, June 2002.

Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for
database-backed web sites. In Proceedings of the 27th International
Conference on Very Large Databases, pages 667-670, September
2001.

MySQL. http://www.mysgl.com.
Oracle. Oracle9i Application Server Web Caching, October 2000.

Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter
Druschel, Willy Zwaenepoel, and Erich Nahum. Locality-aware re-
quest distribution in cluster-based network servers. In Proceedings of
the Eighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 205-216, Octo-
ber 1998.

PHP Hypertext Preprocessor. http://www.php.net.

Karthick Rajamany. Multi-tier caching of dynamic content for
database-driven web sites. PhD thesis, Rice University, August 2000.

Daniel J. Rosenkrantz and Harry B. Hunt IIl. Processing conjunc-
tive predicates and queries. In Sxth International Conference on Very
Large Data Bases, October 1-3, 1980, Montreal, Quebec, Canada,
Proceedings, pages 64-72. IEEE Computer Society, 1980.

Transaction Processing Council. http://www.tpc.org/.

Khaled Yagoub, Daniel Florescu, Valerie Issarny, and Patrick Val-
duriez. Caching strategies for data-intensive web sites. In Proceedings
of the 26th International Conference on Very Large Databases, pages
188-199, September 2000.

