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Goals of Mesos

• Fine-grained data sharing

• Support diverse frameworks within a cluster

• High resource utilization

• High scalability, reliability
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Fine-Grained Data Sharing

• Multiplex tasks on physical nodes

• Tasks share CPU, memory, disk of physical node

• Typical tasks are 10s of seconds to minutes

• Tasks may belong to different jobs

• Jobs may run on different frameworks
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Baseline Approach: Global Scheduler
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Baseline Approach: Global Scheduler

• Task DAG
• Inputs/outputs

Job execution plan
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Baseline Approach: Global Scheduler

Job execution plan

Global 
Scheduler

Organization policies

Resource availability

Job requirements

• Task durations
• Input sizes
• Transfer sizes

Estimates
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Baseline Approach: Global Scheduler

• Advantages:

• Can achieve optimal schedule

• Disadvantages:

• Complex, hard to scale and ensure resilience

• Hard to anticipate future framework requirements

• Need to refactor existing frameworks

Job execution plan
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Mesos: Hierarchical Scheduler

• Advantages:

• Simpler, easier to scale and make resilient

• Easy to port existing frameworks, support new ones

• Disadvantages: 

• Distributed scheduling decision may not be optimal

Mesos
Master

Organization 
policies

Resource 
availability

Framework
scheduler

Task
schedule

Framework
scheduler

Framework
Scheduler

Allocate containers 
to tasks

Schedule tasks 
in containers
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Mesos Approach: Resource Offers

• Master sends resource offers to frameworks

• A resource offer is a vector of available resources on a node

• E.g.,  node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

• Frameworks choose whether to accept offer or not

• On accepting offer,  framework decides which tasks to run

• Approach pushes task scheduling to frameworks
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Mesos Example
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Mesos Example
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Mesos Example
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Hadoop
Scheduler

Why Do Resource Offers Work?

• A framework can just wait for an offer that matches its 
constraints!

• It can reject offers it does not like

• Example: Hadoop’s job input is blue file

S1

S2

S3

Reject: S1 doesn’t 
store blue file

Accept: both S2 and 
S3 store the blue file

Mesos
master
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Optimization: Filters

• Frameworks can short‐circuit rejection by providing a 
predicate on resources to be offered

• E.g., offer me “nodes from list L” or “nodes with > 8 GB RAM”

• Ability to reject still ensures correctness when needs 
cannot be expressed using filters
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Mesos API

Scheduler Callbacks

resourceOffer(offerId, offers) 
offerRescinded(offerId) 
statusUpdate(taskId, status) 
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor) 
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks) 
setNeedsOffers(bool) 
setFilters(filters) 
getGuaranteedShare() 
killTask(taskId)
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Failure Recovery

• Mesos master only keeps soft state

• List of currently running frameworks, slave nodes, 
available resources and tasks

• Master uses zookeeper for leader election

• After master failure, new master rebuilds state when 
frameworks and slaves re-register with new master

• Fault detection and recovery in ~10 sec
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Evaluation
100 node cluster
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Scalability

• Mesos only performs inter‐framework scheduling (e.g., 
fair sharing), easier than intra‐framework scheduling

• Result: Scaled to 50,000 emulated slaves, 200 
frameworks, 100K tasks (30s task length)

1

0.8

0.6

0.4

0.2

0
0 10000 20000 30000 40000 50000

Number of Slaves

Ta
sk

S
ta

rt
O

ve
rh

e
a

d
 (s

)



24

Conclusions

• Mesos shares cluster among different frameworks 
efficiently with two key design ideas

• Fine‐grained sharing at the level of tasks

• Use hierarchical scheduling

• Resource manager offers resources to frameworks

• Frameworks control their own task scheduling

• Enables co‐existence of current frameworks and 
development of newer ones

• Hundreds of deployments in productions

• E.g., Twitter, GE, Apple

• Managing 10K node datacenters!



25

Discussion
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Q1

• Mesos offers resources to frameworks, and frameworks 
accept or reject these offers. For what types of 
frameworks will this approach work well?
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Q2

• Will the Resource Offers approach work well for tasks 
with small versus large resource requirements? (think 
about a restaurant that needs to serve small versus 
large groups)
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Q3

• How would you handle the problem in the previous 
slide?
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Q4

• How can Mesos handle a framework that delays 
responding to a Resource Offer?
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Q5

• How can Mesos handle a framework that never releases 
resources?
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