
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Mesos: A Platform for Fine-Grained 
Resource Sharing in the Data Center

Authors: Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica

Many slides adapted from Ion Stoica



2

Goals of Mesos

• Fine-grained data sharing

• Support diverse frameworks within a cluster

• High resource utilization

• High scalability, reliability



3

Fine-Grained Data Sharing

• Multiplex tasks on physical nodes

• Tasks share CPU, memory, disk of physical node

• Typical tasks are 10s of seconds to minutes

• Tasks may belong to different jobs

• Jobs may run on different frameworks



4

33%

17%

0%

33%

17%

0%

33%

17%

0%

0%

50%

100%

Hadoop

Pregel

MPI
Shared cluster

Today: static partitioning Mesos: dynamic sharing

Fine-Grained Data Sharing Example



5

Baseline Approach: Global Scheduler

Global 
Scheduler

Organization policies

Resource availability

• Response time
• Throughput
• Availability
• …

Job requirements



6

Baseline Approach: Global Scheduler

• Task DAG
• Inputs/outputs

Job execution plan

Global 
Scheduler

Organization policies

Resource availability

Job requirements



7

Baseline Approach: Global Scheduler

Job execution plan

Global 
Scheduler

Organization policies

Resource availability

Job requirements

• Task durations
• Input sizes
• Transfer sizes

Estimates



8

Baseline Approach: Global Scheduler

• Advantages:

• Can achieve optimal schedule

• Disadvantages:

• Complex, hard to scale and ensure resilience

• Hard to anticipate future framework requirements

• Need to refactor existing frameworks

Job execution plan

Global 
Scheduler

Organization policies

Resource availability

Job requirements

Estimates

Task schedule



9

Mesos: Hierarchical Scheduler

• Advantages:

• Simpler, easier to scale and make resilient

• Easy to port existing frameworks, support new ones

• Disadvantages: 

• Distributed scheduling decision may not be optimal

Mesos
Master

Organization 
policies

Resource 
availability

Framework
scheduler

Task
schedule

Framework
scheduler

Framework
Scheduler

Allocate containers 
to tasks

Schedule tasks 
in containers



10

Mesos Approach: Resource Offers

• Master sends resource offers to frameworks

• A resource offer is a vector of available resources on a node

• E.g.,  node1: <1CPU, 1GB>, node2: <4CPU, 16GB>

• Frameworks choose whether to accept offer or not

• On accepting offer,  framework decides which tasks to run

• Approach pushes task scheduling to frameworks



11

Mesos Example

Hadoop
Scheduler

MPI
Scheduler

8CPU, 8GB

8CPU, 16GB

16CPU, 16GB

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>S2:<8CPU,16GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Slave S1

Slave S2

Slave S3

Mesos Master



12

MPI
Scheduler

Hadoop
Scheduler

Mesos Example

8CPU, 8GB

8CPU, 16GB

16CPU, 16GB

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasksSlave S1

Slave S2

Slave S3

Mesos Master



13

Hadoop
Scheduler

MPI
Scheduler

Mesos Example

8CPU, 8GB

8CPU, 16GB

16CPU, 16GB

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasksSlave S1

Slave S2

Slave S3

Mesos Master



14

Mesos Example

8CPU, 8GB

Hadoop Executortask 1

8CPU, 16GB

16CPU, 16GB

Hadoop Executortask 2

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasks

Framework executors 
launch tasks and may 

persist across tasks

task 2:<4CPU,4GB>

Slave S1

Slave S2

Slave S3

Mesos Master

Hadoop
Scheduler

MPI
Scheduler



15

MPI
Scheduler

Mesos Example

8CPU, 8GB

Hadoop Executortask 1

8CPU, 16GB

16CPU, 16GB

Hadoop Executortask 2

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasks

Framework executors 
launch tasks and may 

persist across tasksSlave S1

Slave S2

Slave S3

Mesos Master

Hadoop
Scheduler



16

Hadoop
Scheduler

MPI
Scheduler

Mesos Example

8CPU, 8GB

Hadoop Executortask 1

8CPU, 16GB

16CPU, 16GB

Hadoop Executortask 2

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasks

Framework executors 
launch tasks and may 

persist across tasksSlave S1

Slave S2

Slave S3

Mesos Master

S1 <2CPU,2GB>



17

Mesos Example

8CPU, 8GB

Hadoop Executor

MPI          Executor

task 1

task 1

8CPU, 16GB

16CPU, 16GB

Hadoop Executortask 2

Allocation Module

S1 <8CPU,8GB>

S2 <8CPU,16GB>

S3 <16CPU,16GB>

S1 <6CPU,4GB>

S2 <4CPU,12GB>

S1 <2CPU,2GB>

Slaves continuously 
send status updates 

about resources

Pluggable scheduler, 
chooses framework to 

send an offer

Framework scheduler 
selects resources and 

provides tasks

Framework executors 
launch tasks and may 

persist across tasksSlave S1

Slave S2

Slave S3

Mesos Master

Hadoop
Scheduler

MPI
Scheduler



18

Hadoop
Scheduler

Why Do Resource Offers Work?

• A framework can just wait for an offer that matches its 
constraints!

• It can reject offers it does not like

• Example: Hadoop’s job input is blue file

S1

S2

S3

Reject: S1 doesn’t 
store blue file

Accept: both S2 and 
S3 store the blue file

Mesos
master



19

Optimization: Filters

• Frameworks can short‐circuit rejection by providing a 
predicate on resources to be offered

• E.g., offer me “nodes from list L” or “nodes with > 8 GB RAM”

• Ability to reject still ensures correctness when needs 
cannot be expressed using filters



20

Mesos API

Scheduler Callbacks

resourceOffer(offerId, offers) 
offerRescinded(offerId) 
statusUpdate(taskId, status) 
slaveLost(slaveId)

Executor Callbacks

launchTask(taskDescriptor) 
killTask(taskId)

Executor Actions

sendStatus(taskId, status)

Scheduler Actions

replyToOffer(offerId, tasks) 
setNeedsOffers(bool) 
setFilters(filters) 
getGuaranteedShare() 
killTask(taskId)



21

Failure Recovery

• Mesos master only keeps soft state

• List of currently running frameworks, slave nodes, 
available resources and tasks

• Master uses zookeeper for leader election

• After master failure, new master rebuilds state when 
frameworks and slaves re-register with new master

• Fault detection and recovery in ~10 sec



22

Evaluation
100 node cluster



23

Scalability

• Mesos only performs inter‐framework scheduling (e.g., 
fair sharing), easier than intra‐framework scheduling

• Result: Scaled to 50,000 emulated slaves, 200 
frameworks, 100K tasks (30s task length)

1

0.8

0.6

0.4

0.2

0
0 10000 20000 30000 40000 50000

Number of Slaves

Ta
sk

S
ta

rt
O

ve
rh

e
a

d
 (s

)



24

Conclusions

• Mesos shares cluster among different frameworks 
efficiently with two key design ideas

• Fine‐grained sharing at the level of tasks

• Use hierarchical scheduling

• Resource manager offers resources to frameworks

• Frameworks control their own task scheduling

• Enables co‐existence of current frameworks and 
development of newer ones

• Hundreds of deployments in productions

• E.g., Twitter, GE, Apple

• Managing 10K node datacenters!



25

Discussion



26

Q1

• Mesos offers resources to frameworks, and frameworks 
accept or reject these offers. For what types of 
frameworks will this approach work well?



27

Q2

• Will the Resource Offers approach work well for tasks 
with small versus large resource requirements? (think 
about a restaurant that needs to serve small versus 
large groups)



28

Q3

• How would you handle the problem in the previous 
slide?



29

Q4

• How can Mesos handle a framework that delays 
responding to a Resource Offer?



30

Q5

• How can Mesos handle a framework that never releases 
resources?


	Slide 1: Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center
	Slide 2: Goals of Mesos
	Slide 3: Fine-Grained Data Sharing
	Slide 4: Fine-Grained Data Sharing Example
	Slide 5: Baseline Approach: Global Scheduler
	Slide 6: Baseline Approach: Global Scheduler
	Slide 7: Baseline Approach: Global Scheduler
	Slide 8: Baseline Approach: Global Scheduler
	Slide 9: Mesos: Hierarchical Scheduler
	Slide 10: Mesos Approach: Resource Offers
	Slide 11: Mesos Example
	Slide 12: Mesos Example
	Slide 13: Mesos Example
	Slide 14: Mesos Example
	Slide 15: Mesos Example
	Slide 16: Mesos Example
	Slide 17: Mesos Example
	Slide 18: Why Do Resource Offers Work?
	Slide 19: Optimization: Filters
	Slide 20: Mesos API
	Slide 21: Failure Recovery
	Slide 22: Evaluation
	Slide 23: Scalability
	Slide 24: Conclusions
	Slide 25: Discussion
	Slide 26: Q1
	Slide 27: Q2
	Slide 28: Q3
	Slide 29: Q4
	Slide 30: Q5

