
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

MillWheel: Fault-Tolerant Stream 
Processing at Internet Scale

Authors: 

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, 
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, Sam Whittle (Google)

Many slides adapted from Amir H. Payberah



2

Motivation

• Google’s Zeitgeist pipeline tracks trends in web queries

• Builds a historical model of each query

• Shows queries that are spiking in real time



3

Millwheel DataFlow

• A graph of user-defined computations connected by 
streams

• Computations perform application logic

• Stream is a sequence of (key, value, timestamp) records

• Timestamps are user defined but typically close to wall clock 
time when the event occurred (event-time)

• A computation subscribes to zero or more input 
streams and publishes one or more output streams

• Keys of these streams may be same or different

• Computations can be added or removed from the graph 
dynamically



4

Zeitgeist

• Input is continuously arriving search queries

• Output is the set of queries that are spiking or dipping



5

Key Extraction Function

• A computation specifies a key extraction function for 
each input stream to assign keys to input records

• Multiple computations can extract different keys from 
the same stream



6

Computation

• Each computation

• Runs in the context of a single (extracted) key

• Can only access state that is associated with the key

• All processing over the same key is serialized

• Processing over different keys can run in parallel

• MillWheel distributes key ranges to different workers



7

Persistent State

• For each computation, per-key state is stored in a row 
in Bigtable or Spanner

• Allows atomic state updates

• Common use: per-key aggregation, joins, ...



8

Computation API



9

Low Watermarks

• Recall records has timestamps

• In practice, out-of-order records are the norm

• Need to distinguish between events that were not generated 
versus events that are delayed in some time interval

• Millwheel provides each computation a low watermark 

• Sets watermark so most input records have larger timestamps

• Also, guarantees each computation’s watermark is monotonic

• Computations can use low watermark to perform operations

• E.g., output window counts when low watermark crosses window 
boundary, which ensures that all data within window is processed



10

Low Watermarks

• Low watermarks are “seeded” by injectors

• New records appear as pending work in the system

• A computation may perform
pending work out-of-order

• As work completes in the system,
low watermark is increased

• At each node, minimum of:
1. pending work at the node
2. watermarks of upstream nodes

watermark



11

Read and update per-key state:
[(window1, count1),
 (window2, count2), …]

Set timer to fire when 
low watermark crosses 
window_boundary

When timer for window1 fires, 
returns count1

Produce 
(count1, window_boundary) for 
DipDetector



12

Fault Tolerance

• MillWheel ensures that computations are processed 
exactly-once

• Greatly simplifies programming model because user code can 
be non-idempotent (system ensures it behaves idempotently)

• A requirement for MillWheel’s revenue-processing customers

• MillWheel guarantees that each computation

• Performs per-key update atomically

• Delivers records exactly once

• Together, guarantees same behavior as failure-free 
operation



13

Exactly-Once Record Processing

• Exactly-once record processing:

1. Check duplicate incoming record ID

2. Perform computation

3. Atomically checkpoint

1. Incoming record ID

2. Updated per-key state

3. All outgoing records

4. ACK incoming record to upstream node

5. Send outgoing records to downstream node(s)

• On failure:

1. Restore consistent state of the computation from checkpoint

2. Replay outgoing messages (downstream will filter duplicates)



14

At-Least-Once Record Processing

• Exactly-once record processing is expensive

• Requires 1) duplicate detection, 2) checkpointing before 
sending outgoing records

• If user code is idempotent, both can be avoided

• At-least-once record processing:

1. Perform computation

2. Send outgoing records to downstream node(s)

3. Atomically write per-key state

4. Wait for ACKs of outgoing messages

5. ACK incoming messages



15

At-Least-Once Record Processing

• However, with at-least-once processing, every node 
waits for the completion of all downstream nodes

• Increases end-to-end latency since failures may require 
resending more data

• Increases resource requirements (e.g., state in memory)



16

At-Least-Once Record Processing

• Solution: checkpoint outgoing messages at selected 
computations

• Computation A can free resources after receiving ACK 



17

Evaluation



18

Conclusions

• MillWheel provides a dataflow-based programming 
model for stream processing

• Each computation runs in the context of a single key

• Enables low-latency processing

• Enables parallelizing operations across keys

• Low watermarks enable processing events out-of-order

• Uses fine-grained (per-key) checkpoints to provide 
exactly-once delivery semantics

• Simplifies programming model



19

Discussion



20

Q1

• Say upstream node U has a low watermark Wu and 
downstream node D has a low watermark Wd. Does 
Millwheel ensure any relation between Wu and Wd?



21

Q2

• What can Millwheel do about records that arrive behind 
the low watermark?



22

Q3

• How does this ordering ensure exactly-once semantics?

1. Check duplicate incoming record ID

2. Perform computation

3. Atomically checkpoint

1. Incoming record ID

2. Updated per-key state

3. All outgoing records

4. Ack incoming record to upstream node

5. Send outgoing records to downstream node(s)



23

Q4

• What is the purpose of Step 4 below?

1. Check duplicate incoming record ID

2. Perform computation

3. Atomically checkpoint

1. Incoming record ID

2. Updated per-key state

3. All outgoing records

4. Ack incoming record to upstream node

5. Send outgoing records to downstream node(s)



24

Q5

• The incoming record ID and outgoing records in the 
checkpoint need to be garbage collected. When can 
that be done?

1. Check duplicate incoming record ID

2. Perform computation

3. Atomically checkpoint

1. Incoming record ID

2. Updated per-key state

3. All outgoing records

4. Ack incoming record to upstream node

5. Send outgoing records to downstream node(s)


	Slide 1: MillWheel: Fault-Tolerant Stream Processing at Internet Scale
	Slide 2: Motivation
	Slide 3: Millwheel DataFlow
	Slide 4: Zeitgeist
	Slide 5: Key Extraction Function
	Slide 6: Computation
	Slide 7: Persistent State
	Slide 8: Computation API
	Slide 9: Low Watermarks
	Slide 10: Low Watermarks
	Slide 11
	Slide 12: Fault Tolerance
	Slide 13: Exactly-Once Record Processing
	Slide 14: At-Least-Once Record Processing
	Slide 15: At-Least-Once Record Processing
	Slide 16: At-Least-Once Record Processing
	Slide 17: Evaluation
	Slide 18: Conclusions
	Slide 19: Discussion
	Slide 20: Q1
	Slide 21: Q2
	Slide 22: Q3
	Slide 23: Q4
	Slide 24: Q5

