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Abstract. In this work, we consider a large-scale dis-

tributed network of servers and a problem of content dis-

tribution across it. We propose a novel algorithm, called
FastReplica, for an efficient and reliable replication of large

files in the Internet environment. There are a few basic ideas

exploited in FastReplica. In order to replicate a large file
among n nodes (n is in the range of 10-30 nodes), the orig-

inal file is partitioned into n subfiles of equal size and each

subfile is transferred to a different node in the group. After
that, each node propagates its subfile to the remaining nodes

in the group. Thus instead of the typical replication of an en-
tire file to n nodes by using n Internet paths, connecting the

original node to the replication group, FastReplica exploits

n×n Internet paths within the replication group where each
path is used for transferring 1

n
-th of the file. We design a

scalable and reliable FastReplica algorithm which can be used

for replication of large files to a large group of nodes. The
new method is simple and inexpensive. It does not require

any changes or modifications to the existing Internet infras-

tructure, and at the same time, it significantly reduces the
file replication time as we demonstrate through experiments

on a prototype implementation of FastReplica in a wide-area

testbed.

1 Introduction

Content Delivery Networks (CDNs) are based on a
large-scale distributed network of servers located closer
to the edges of the Internet for efficient delivery of dig-
ital content including various forms of multimedia con-
tent. The main goal of the CDN’s architecture is to
minimize the network impact in the critical path of con-
tent delivery as well as to overcome a server overload
problem that is a serious threat for busy sites serving
popular content.

For typical web documents (e.g. html pages and im-
ages) served via CDN, there is no need for active repli-
cation of the original content at the edge servers. The
CDN’s edge servers are the caching servers, and if the
requested content is not yet in the cache, this document
is retrieved from the original server, using the so-called
pull model. The performance penalty associated with
initial document retrieval from the original server, such

as higher latency observed by the client and the ad-
ditional load experienced by the original server, is not
significant for small to medium size web documents.

For large documents, software download packages
and media files, a different operational mode is pre-
ferred: it is desirable to replicate these files at edge
servers in advance, using the so-called push model. For
large files it is a challenging, resource-intensive problem,
e.g. media files can require significant bandwidth and
download time due to their large sizes: 20 min media
file encoded at 1 Mbit/s results in a file of 150 MBytes.

The sites supported for efficiency reasons by multi-
ple mirror servers, face a similar problem: the original
content needs to be replicated across the multiple, geo-
graphically distributed, mirror servers.

While transferring a large file with individual point-
to-point connections from an original server can be a
viable solution in the case of limited number of mirror
servers (tenths of servers), this method does not scale
when the content needs to be replicated across a CDN
with thousands of geographically distributed machines.

Currently, the three most popular methods used for
content distribution (replication) in the Internet envi-
ronment are:
• satellite distribution,
• multicast distribution,
• application-level multicast distribution.

With satellite distribution [8, 21], the content distri-
bution server (or the original site) has a transmitting
antenna. The servers, to which the content should be
replicated, (or the corresponding Internet Data Centers,
where the servers are located) have a satellite receiving
dish. The original content distribution server broad-
casts a file via a satellite channel. Among the short-
comings of the satellite distribution method are that it
requires special hardware deployment and the support-
ing infrastructure (or service) is quite expensive.

With multicast distribution, an application can send
one copy of each packet and address it to the group
of nodes (IP addresses) that want to receive it. This
technique reduces network traffic by simultaneously
delivering a single stream of information to hun-
dreds/thousands of interested recipients. Multicast can



be implemented at both the data-link layer and the net-
work layer. Applications that take advantage of multi-
cast technologies include video conferencing, corporate
communications, distance learning, and distribution of
software, stock quotes, and news. Among the short-
comings of the multicast distribution method are that
it requires a multicast support in routers, which still is
not widely available across the Internet infrastructure.

Since the native IP multicast has not received wide-
spread deployment, many industrial and research ef-
forts shifted to investigating and deploying the appli-
cation level multicast, where nodes across the Internet
act as intermediate routers to efficiently distribute con-
tent along a predefined mesh or tree. A growing number
of researchers [7, 9, 12, 13, 17, 10, 6, 14] have advocated
this alternative approach, where all multicast related
functionality, including group management and packet
replication, is implemented at end systems. In this ar-
chitecture, nodes participating in the multicast group
self organize themselves into an scalable overlay struc-
ture using a distributed protocol. Further, the nodes at-
tempt to optimize the efficiency of the overlay by adapt-
ing to changing network conditions and considering the
application level requirements.

An interesting extension for the end-system multi-
cast is introduced in [6], where authors, instead of us-
ing the end systems as routers forwarding the packets,
propose that the end-systems do actively collaborate in
informed manner to improve the performance of large
file distribution. The main idea is to overcome the lim-
itation of the traditional service models based on tree
topologies where the transfer rate to the client is de-
fined by the bandwidth of the bottleneck link of the
path from the server. The authors propose to use ad-
ditional cross-connections between the end-systems to
exchange the complementary content these nodes have
already received. Assuming that any given pair of end-
systems has not received exactly the same content, these
cross-connections between the end-systems can be used
to “reconcile” the differences in received content in or-
der to reduce the total transfer time.

In our work, we consider a geographically distributed
network of servers and a problem of content distribu-
tion across it. Our focus is on distributing large size
files such as software packages or stored streaming me-
dia files (also called as on-demand streaming media).
We propose a novel algorithm, called FastReplica, for
efficient and reliable replication of large files. There are
a few basic ideas exploited in FastReplica. In order to
replicate a large file among n nodes (n is in the range
of 10-30 nodes), the original file is partitioned into n
subfiles of equal size and each subfile is transferred to
a different node in the group (this way, we introduce a
“guaranteed”, predictable difference in received content
as compared to [6]). After that, each node propagates
its subfile to the remaining nodes in the group. Thus in-
stead of the typical replication of an entire file to n nodes
by using n Internet paths connecting the original node

to the replication group, FastReplica exploits n × n di-
verse Internet paths within the replication group where
each path is used for transferring 1

n -th of the file (in
such a way, similarly to [6], we exploit explicitly the ad-
ditional cross-connections between the end-systems to
exchange the complementary content these nodes have
already received).

The paper is organized as follows. Section 2 describes
additional related work. In Section 3.2, we introduce a
core (an induction step) of the algorithm, called Fas-
tReplica in the small, and demonstrate its work in the
small-scale environment, where a set of nodes in a repli-
cation set is rather small and limited, e.g. 10 - 30 nodes.
In Section 3.3, we perform a preliminary analysis of Fas-
tReplica in the small and its potential performance ben-
efits, and outline the configurations and network condi-
tions when FastReplica may be inefficient. Then in Sec-
tion 3.4, using FastReplica in the small as the induction
step, we design a scalable FastReplica algorithm which
can be used for replication of large files to a large num-
ber of nodes. Finally, in Section 3.5, we show how to
extend the algorithm for resilience to nodes’ failures.

Through experiments on a prototype implementa-
tion, we analyze the performance of FastReplica in the
small in a wide-area testbed in Section 4. For com-
parison reasons, we introduce Multiple Unicast and Se-
quential Unicast schemas. Under Multiple Unicast, the
source node simultaneously transfers the entire file to
all the recipient nodes via concurrent connections. This
schema is traditionally used in the small-scale environ-
ment. Sequential Unicast schema approximates the file
distribution under IP multicast. The experiments show
that FastReplica significantly reduces the file replication
time. On average, it outperforms Multiple Unicast by n

2
times, where n is the number of nodes in the replication
set. Additionally, FastReplica demonstrates better or
comparable performance against file distribution under
Sequential Unicast.

While we observed significant performance benefits
under FastReplica in our experiments, these results are
sensitive to a system configuration and bandwidth of
the paths between the nodes.

Since FastReplica in the small represents an induc-
tion step of the general FastReplica algorithm, these
performance results set the basis for performance ex-
pectations of FastReplica in the large.

2 Additional Related Work

The recent work on content distribution can be largely
divided into three categories: (a) infrastructure based
content distribution, (b) overlay network based distri-
bution [7, 9, 12, 13, 17, 10, 6, 14], and (c) peer-to-peer
content distribution [11, 16, 1, 24].

Our work is directly related to the infrastructure
based content distribution network (CDN) (e.g. Aka-
mai), which employs a dedicated set of machines to re-



liably and efficiently distribute content to clients on be-
half of the server. While the entire collection of nodes
in a CDN setting may be varying, we assume that the
set of currently active nodes is known. The sites sup-
ported by multiple mirror servers are referred to the
same category. Existing research on CDNs and server
replication has primarily focused on either techniques
for efficient redirection of user requests to appropriate
servers or content/server placement strategies for reduc-
ing the latency of end-users.

A more recent idea is to access multiple servers in
parallel to reduce downloading time or to achieve fault
tolerance. Several research papers in this direction ex-
ploited the benefits of path diversity between the clients
and the site’s servers with replicated content. Authors
in [20], demonstrate the improved response time ob-
served by the client for a large file download through
the dynamic parallel access schema to replicated con-
tent at mirror servers. Digital Fountain [4] applies Tor-
nado codes to achieve a reliable data download. Their
subsequent work [5] reduces the download times by hav-
ing a client receive a Tornado encoded file from multiple
mirror servers. The target application of their approach
is bulk data transfer.

While CDNs were originally intended for static web
content, they have been applied for delivery of stream-
ing media as well. Delivering streaming media over the
Internet is challenging due to a number of factors such
as high bit rates, delay and loss sensitivity. Most of the
current work in this direction concentrates on how to
improve the media delivery from the edge servers (or
mirror servers) to the end clients.

In order to improve streaming media quality, the lat-
est work in this direction [3, 15] proposes streaming
video from multiple edge servers (or mirror sites), and
in particular, by combining the benefits of multiple de-
scription coding (MDC) [2] with Internet path diversity.
MDC codes a media stream into multiple complemen-
tary descriptions. These descriptions have the property
that if either description is received it can be used to
decode the baseline quality video, and multiple descrip-
tions can be used to decode improved quality video.

One of the basic assumptions in the research papers
referred to above is that the original content is already
replicated across the edge (mirror) servers. The goal of
our paper is to address the content distribution within
this infrastructure (and not to the clients of this infras-
tructure). In this work, we propose a method to effi-
ciently replicate the content (represented by large files)
from a single source to a large number of servers in a
scalable and reliable way. We exploit ideas of parti-
tioning the original file and using diverse Internet paths
between the recipient nodes to speedup the distribution
of an original large file over Internet.

In the paper, we partition the original file in n equal
subsequent subfiles and apply FastReplica to replicate
them. This part of the algorithm can be modified ac-
cordingly to the nature of the file. For example, for a

media file encoded with MDC, different descriptions can
be treated as subfiles, and FastReplica can be applied
to replicate them. Taking into account the nature of
MDC (i.e. that either description received by the re-
cipient node can be used to decode the baseline quality
video), the part of the FastReplica algorithm dealing
with nodes failure can be simplified.

3 FastReplica Algorithm

In this Section, we describe the formal problem defini-
tion and introduce the new algorithm FastReplica for
replicating the large files in the Internet environment.

In Section 3.2, we introduce a core (an induction
step) of the algorithm, called FastReplica in the small,
and demonstrate its work in the small-scale environ-
ment, where a set of nodes to which a file has to be
replicated is rather small and limited, e.g. 10 - 30 nodes.

In Section 3.3, we perform a preliminary analysis of
FastReplica in the small and its potential performance
benefits, and outline the configurations and network
conditions when FastReplica may be inefficient.

In Section 3.4, we describe the general, scalable algo-
rithm, called FastReplica in the large, and demonstrate
its work in the large-scale environment, where a set of
nodes to which a file has to be replicated can be in a
range of hundreds/thousands of nodes.

In Section 3.5, we extend the FastReplica algorithm
to be able to deal with node failures.

3.1 Problem Statement
We use the following notations:
• Let N0 be a node which has an original file F and

let Size(F ) denote the size of file F in bytes;
• Let R = {N1, ..., Nn} be a replication set of nodes.

The problem consists in replicating file F across nodes
N1, ...., Nn while minimizing the overall replication
time.

3.2 FastReplica in the Small

In this Section, we describe a core of FastReplica which
is directly applicable to a case when a set of recipient
nodes N1, ..., Nn is small, e.g. in a range of 10-30 nodes.

File F is divided in n equal subsequent subfiles:

F1, ...., Fn

where Size(Fi) = Size(F )
n bytes for each i: 1 ≤ i ≤ n.

Step 1: Distribution Step.
The originator node N0 opens n concurrent network

connections to nodes N1, ..., Nn, and sends to each re-
cipient node Ni (1 ≤ i ≤ n) the following items:

• a distribution list of nodes R = {N1, ..., Nn} to
which subfile Fi has to be sent on the next step;

• subfile Fi.



The activities taking place on the first step of the Fas-
tReplica algorithm are shown in Figure 1. We will de-
note this step as a distribution step.

Figure 1: FastReplica in the small: distribution step.

Step 2: Collection Step.
After receiving file Fi, node Ni opens n−1 concurrent

network connections to remaining nodes in the group
and send subfile Fi to them as shown in Figure 2 for
node N1.

Figure 2: FastReplica in the small: a set of outgoing con-

nections of node N1 at collection step.

Figure 3: FastReplica in the small: a set of incoming con-
nections of node N1 at collection step.

Similarly, Figure 3 shows the set of incoming con-
current connections to node N1 from the remaining
nodes N2, ..., Nn transferring the complementary sub-
files F2, ..., Fn during the second logical step of the algo-
rithm. Thus at this step, each node Ni has the following
set of network connections:

• there are n−1 outgoing connections from node Ni:
one connection to each node Nk (k �= i) for sending
the corresponding subfile Fi to node Nk.

• there are n − 1 incoming connections to node Ni:
one connection from each node Nk (k �= i) for send-
ing the corresponding subfile Fk to node Ni.

Thus at the end of this step, each node receives all sub-
files F1, ...., Fn comprising the entire original file F . We
will denote this step as a collection step.

In summary, the main idea behind FastReplica is that
instead of the typical replication of an entire file to n
nodes by using n Internet paths connecting the original
node to the replication group, the FastReplica algorithm
exploits n × n different Internet paths within the repli-
cation group where each path is used for transferring
1
n -th of the file. Thus, the impact of congestion on any
particular Internet path participating in the schema is
limited for a transfer of 1

n -th of the file. Additionally,
FastReplica takes advantage of the upload and download
bandwidth of the recipient nodes.

3.3 Preliminary Performance Analysis
of FastReplica in the Small

Let T imei(F ) denote the transfer time of file F from the
original node N0 to node Ni as measured at node Ni.
We use transfer time and replication time interchange-
ably in the text. In our study, we consider the following
two performance metrics:
• Average replication time:

T imeaver =
1
n

n∑
i=1

T imei(F )

• Maximum replication time:

T imemax = max{T imei(F )}, i ∈ {1, · · · , n}

T imemax reflects the time when all the nodes in the
replication set receive a copy of the original file, and
the primary goal of FastReplica is to minimize the max-
imum replication time. However, we are also interested
in understanding the impact of FastReplica on the av-
erage replication time T imeaver.

First, let us consider an idealistic setting, where
nodes N1, ..., Nn have symmetrical (or nearly symmetri-
cal) incoming and outgoing bandwidth which is typical
for CDNs, distributed IDCs, and a distributed enter-
prise environment. In addition, let nodes N0, N1, ...., Nn

be homogeneous, and let each node can support k net-
work connections to other nodes at B bytes per second
on average.
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Figure 4: Uniform-random model: speedup in file replication time under FastReplica vs Multiple Unicast for a different

number of nodes in replication set for a) average replication time, and b) maximum replication time.

In the idealistic setting, there is no difference be-
tween maximum and average replication times. Using
the assumption on homogeneity of nodes’ bandwidth,
we can estimate the transfer time for each concurrent
connection i (1 ≤ i ≤ n) during the distribution step:

T imedistr =
Size(F )

n × B
(1)

The transfer time at the collection step is similar to the
time encountered at the first (distribution) step:

T imecollect =
Size(F )

n × B
(2)

Thus the overall replication time under FastReplica in
the small is the following:

T imesmall
F R = T imedistr + T imecollect = 2 × Size(F )

n × B
(3)

Let Multiple Unicast denote a schema that transfers
the entire file F from the original node N0 to nodes
N1, ...., Nn by simultaneously using n concurrent net-
work connections. The overall transfer time under Mul-
tiple Unicast is the following:

T imesmall
MU =

Size(F )

B
(4)

Thus, in an idealistic setting, FastReplica in the small
provides the following speedup of file replication time
compared to the Multiple Unicast strategy:

Replication T ime Speedup =
T imesmall

F R

T imesmall
MU

=
n

2
(5)

While the comparison of FastReplica and Multiple Uni-
cast in the idealistic environment gives insights into why
the new algorithm may provide significant performance
benefits for replication of the large files, the bandwidth
conditions in the realistic setting could be very differ-
ent from the idealistic assumptions. Due to changing
network conditions, even the same link might have a
different available bandwidth when measured at differ-
ent times. Let us analyze how FastReplica performs

when network paths participating in the transfers have
a different available bandwidth.

Let BW denote a bandwidth matrix, where BW [i][j]
reflects the available bandwidth of the path from node
Ni to node Nj as measured at some time T , and let Var
be the ratio of maximum to minimum available band-
width along the paths participating in the file transfers.
We call Var a bandwidth variation.

In our analysis, we consider the bandwidth matrix
BW to be populated in the following way:

BW [i][j] = B × random(1,Var),

where function random(1,Var ) returns a random inte-
ger var: 1 ≤ var ≤ Var .

While it is still a simplistic model, it helps to reflect
a realistic situation, where the available bandwidth of
different links can be significantly different. We will call
this model a uniform-random model. To perform a sen-
sitivity analysis of how the FastReplica performance de-
pends on a bandwidth variation of participating paths,
we experimented with a range of different values for Var
between 1 and 10. When Var = 1, it is the idealistic
setting, discussed above, where all of the paths are ho-
mogeneous and have the same bandwidth B (i.e. no
variation in bandwidth). When Var = 10, the network
paths between the nodes have highly variable available
bandwidth with a possible difference of up to 10 times.

Using the uniform-random model and its bandwidth
matrix BW , we compute the average and maximum file
replication times under FastReplica and Multiple Uni-
cast methods for a different number of nodes in the
replication set, and derive the relative speedup of the
file replication time under FastReplica compared to the
replication time under the Multiple Unicast strategy.
For each value of Var, we repeated the experiments mul-
tiple times, where the bandwidth matrix BW is popu-
lated by using the random number generator with dif-
ferent seeds.

Figure 4 a) shows the relative average replication
time speedup under FastReplica in the small compared
to Multiple Unicast in the uniform-random model. For



Var=2, the average replication time for 8 nodes un-
der FastReplica is 3 times better compared to Multiple
Unicast, and for 20 nodes, it is 8 times better. While
the performance benefits of FastReplica against Multi-
ple Unicast are decreasing for higher variation of band-
width of participating paths, FastReplica still remains
quite efficient, with performance benefits converging to
a practically fixed ratio for Var > 4.

Figure 4 b) shows the relative maximum replication
time speedup under FastReplica in the small compared
to Multiple Unicast in the uniform-random model. We
can observe that, independent of the values of band-
width variation, the maximum replication time under
FastReplica for n nodes is n

2 times better compared to
the maximum replication time under Multiple Unicast.

It can be explained in the following way:
• Multiple Unicast: The maximum replication time is
defined by the entire file transfer time over the path
with the worst available bandwidth among the paths
connecting N0 and Ni, 1 ≤ i ≤ n.
• FastReplica: Figure 5 shows the set of paths partic-
ipating in the file transfer from node N0 to node N1

under the FastReplica algorithm (we use N1 as a repre-
sentative of the recipient nodes).

Figure 5: FastReplica in the small: a set of paths used in

file F replication from node N0 to node N1.

The replication time observed at node N1 is defined
by the maximum transfer time of 1

n -th of the file over
either:
• the path from N0 to N1, or
• the path with the worst overall available bandwidth

consisting of two subpaths:

– the subpath from N0 to Nj and
– the subpath from Nj to N1,

for some j : 1 ≤ j ≤ n.
In the considered uniform-random model, a worst
case scenario is when both subpaths have a min-
imal bandwidth, and since each path is used for
transferring 1

n -th of the entire file, this would lead
to n

2 times latency improvement under FastReplica

compared to the maximum replication time under
Multiple Unicast.

Now, let us consider a special, somewhat artificial exam-
ple, which aims to provide an additional insight into the
possible performance outcomes under FastReplica when
the values of bandwidth matrix BW are significantly
skewed.

Let N0 be the origin node, and N1, ..., N10 be the
recipient nodes, and the bandwidth between the nodes
be defined by the following matrix:

BW (i, j) =

{ 1
10

× B if i=0, j=1
B if i=0, 2 ≤ j ≤ 10
1
10

× B if 1 ≤ i, j ≤ 10
(6)

In other words, the origin node N0 has a limited band-
width of 1

10 × B to node N1, while the bandwidth from
N0 to the rest of the recipient nodes N2, ..., N10 is equal
to B. In addition, the cross-bandwidth between the
nodes N1, ..., N10 is also very limited, such that any pair
Ni and Nj is connected via a path with available band-
width of 1

10 × B.
At a glance, it seems that FastReplica might perform

badly in this configuration because the additional cross-
bandwidth between the recipient nodes N1, ..., N10 is so
poor relative to the bandwidth available between the
origin node N0 and the recipient nodes N2, ..., N10. Let
us compute the average and maximum replication times
for this configuration under Multiple Unicast and Fas-
tReplica strategies.

• Multiple Unicast:

T imeaver =
19 × Size(F )

10 × B
, T imemax =

10 × Size(F )

B
.

• FastReplica:

T imeaver =
191 × Size(F )

100 × B
, T imemax =

2 × Size(F )

B
.

The maximum replication time in this configuration
is 5 times better under FastReplica than under Multiple
Unicast. In FastReplica, any path between the nodes is
used to transfer only 1

n -th of the entire file. Thus, the
paths with poor bandwidth are used for much shorter
transfers which leads to a significant improvement in
maximum replication time. However, the average repli-
cation time in this example is not improved under Fas-
tReplica compared to Multiple Unicast. The reason for
this is that the high bandwidth paths in this configu-
ration are used similarly: to transfer only 1

n -th of the
entire file, and during the collection step of the Fas-
tReplica algorithm, the transfers of complementary 1

n -th
size subfiles within the replication group are performed
over poor bandwidth paths. Thus, in certain cases, like
considered above, FastReplica may provide significant
improvements in maximum replication time, but may
not improve the average replication time.

The analysis considered in this section outlines the
conditions when FastReplica is expected to perform well,



providing the essential performance benefits. Similar
reasoning can be applied to derive the situations when
FastReplica might be inefficient. For example, let us
slightly modify the previous example. Let the band-
width matrix BW be defined in the following way:

BW (i, j) =

{
B if i=0, 1 ≤ j ≤ 10
1
10

× B if 1 ≤ i, j ≤ 10
(7)

In this configuration, the bandwidth from the origin
node N0 to the rest of the recipient nodes N1, ..., N10

is equal to B, while the cross-bandwidth between the
nodes N1, ..., N10 is very limited: any pair Ni and Nj

is connected via a path with available bandwidth of
1
10 × B. The average and maximum replication times
for this configuration under Multiple Unicast and Fas-
tReplica strategies can be computed as follows:

• Multiple Unicast: T imeaver = T imemax = Size(F )
B .

• FastReplica: T imeaver = T imemax = 11×Size(F )
10×B .

Thus in this configuration, FastReplica does not pro-
vide any performance benefits.

In a general case, if there is a node Nk in the repli-
cation set such that most of the paths between Nk

and the rest of the nodes have a very limited avail-
able bandwidth (say, n times worse than the minimal
available bandwidth of the paths connecting N0 and Ni,
1 ≤ i ≤ n) then the performance of FastReplica during
the second (collection) step is impacted by the poor
bandwidth of the paths between Nk and Ni, 1 ≤ i ≤ n,
and FastReplica will not provide expected performance
benefits. Note, that n (the number of nodes in the
replication group) plays a very important role here: a
larger value of n provides a higher “safety” level for Fas-
tReplica efficiency. A larger value of n helps to offset
a higher difference in bandwidth between the available
bandwidth within the replication group and the avail-
able bandwidth from the original node to the nodes in
the replication group.

To apply FastReplica efficiently, the preliminary
bandwidth estimates are useful. These bandwidth es-
timates are also essential for correct clustering of the
appropriate nodes into the replication subgroups in Fas-
tReplica in the large discussed in the next section.

3.4 FastReplica in the Large
In this Section, we generalize FastReplica in the small
to a case where a set of nodes to which a file has to be
replicated can be in the range of hundreds/thousands
of nodes.

Let k be a number of network connections chosen for
concurrent transfers between a single node and multi-
ple receiving nodes (i.e. k limits the number of nodes
in the group for Multiple Unicast or FastReplica strate-
gies). An appropriate value of k can be experimentally
determined via probing. Heterogeneous nodes might be
capable of supporting a different number of connections.

Let k be the number of connections suitable for most of
the nodes in the overall replication set.

A natural way to scale FastReplica in the small to a
large number of nodes is:

• partition the original set of nodes into replication
groups, each consisting of k nodes;

• apply FastReplica in the small iteratively: first,
replicate the original file F to a group of k nodes,
and then use these k nodes as the origin nodes with
file F to repeat the same procedure to a new groups
of nodes, etc.

Schematically, this procedure is shown in Figure 6,
where circles represent the nodes, and boxes represent
the replication groups. The arrows, connecting one node
with a set of other nodes, reflect the origin node and the
recipient nodes, involved in communications on a par-
ticular iteration of the algorithm.

N1
1G1

1 Nk
1

G1
2 ...

G3
k

N0

G1
3 G3

2

N2
1

k

...
... ......

G2 ... ...G2
2

Figure 6: FastReplica in the large: iterative replication
process.

At the first iteration, node N0 replicates file F to
group G1

1, consisting of k nodes, by using the Fas-
tReplica in the small algorithm.

At the second iteration, each node N1
i (1 ≤ i ≤ k) of

group G1
1 can serve as the origin node propagating file

F to another group G2
i .

Thus in two iterations, file F can be replicated to
k× k nodes. Correspondingly, in three iterations, file F
can be replicated to k × k × k nodes.

The general FastReplica algorithm is based on the
reasoning described above. Let the problem consist in
replicating file F across nodes N1, ...., Nn and let n

k =
m. Then all the nodes are partitioned into m groups:

G1, G2, ..., Gm

where each group has k nodes.
Any number m can be represented as

m = c1 × ki1 + c2 × ki2 + ... + cj × kij (8)

where i1 > i2 > ... > ij ≥ 0 and 0 < c1, ..., cj < k.
Practically, it is a k-ary representation of a number m.



This representation defines the rules for constructing
the tree structure similar to the one shown in Figure 6.
In particular, the height of such a tree is i1+1, and it de-
fines the number of iterations in the general FastReplica
algorithm.

From this representation, the rules for construct-
ing the corresponding distribution lists of nodes are
straightforward. We omit the technical details of the
distribution lists construction in order to keep the de-
scription of the overall algorithm concise.

If the targeted number n of nodes for a file replication
is not a multiple of k, i.e.

n

k
= m + r

where r < k, then there is one “incomplete” group Ĝ
with r nodes in it. The best way to deal with this
group is to arrange it to be a leaf-group in the shortest
subtree. Let G′ = {N ′

1, ..., N
′
k} be a replication group

in the shortest subtree.

1 Fk
Fi

N1 Ĝ

Ni
/

Nk
/N1

/

Ni
^

r

F

N
^ ^

. . . . . .

. . . . . .

G
/

Figure 7: Communications between the nodes of regular
replication group G′ and incomplete replication group
Ĝ: special step.

The communications between groups G′ and Ĝ fol-
low a slightly different file exchange protocol. All the
nodes in G′ have already received all subfiles F1, ...., Fn

comprising the entire original file F . Each node N ′
i of

group G′ opens r concurrent network connections to
all r nodes of group Ĝ for transferring its subfile Fi as
shown in Figure 7. In this way, at the end of this step,
each node of group Ĝ has all subfiles F1, ...., Fk of the
original file F . We will denote this step as a special step.

Example. Let k = 10. How many algorithm itera-
tions are required to replicate the original file to 1000
nodes? Using Formula (8) above, we derive the follow-
ing representation for 1000 nodes:

1000 = 10 × 102

Thus, in three algorithm iterations (10 × 10 × 10), the
original file can be replicated among all 1000 nodes.
At each iteration, the replication process follows Fas-
tReplica in the small, i.e. the iteration consists of 2
steps, each used for transferring the 1

k -th portion of the
original file F .

Let Multiple Unicast follow a similar recursive repli-
cation tree as the one defined above in general Fas-
tReplica and shown in Figure 6, with the only dif-
ference being that communications between the origin

nodes and the recipient nodes follow the Multiple Uni-
cast schema, i.e. the origin node transfers the entire file
F to the corresponding recipient nodes by simultane-
ously using k concurrent network connections. Thus, in
three algorithm iterations, by using Multiple Unicast re-
cursively, the original file can be replicated among 1000
nodes.

3.5 Reliable FastReplica Algorithm

In this Section, we extend the FastReplica algorithm to
be able to deal with node failures. The basic algorithm
presented in Sections 3.2, 3.4 is sensitive to node fail-
ures. For example, if node N1 fails during either trans-
fer shown in Figures 1, 2 then this event may impact
all nodes N2, ..., Nn in the group because each node de-
pends on node N1 to receive subfile F1. In the described
scenario, node N1 is acting as a recipient node in the
replication set. If a node fails when it acts as the ori-
gin node, e.g. node N1

1 in Figure 6, this failure impacts
all of the replication groups in the replication subtree
rooted in node N1

1 .
The reliable FastReplica algorithm proposed below

efficiently deals with node failures by making the local
repair decision within the particular group of nodes. It
keeps the main structure of the FastReplica algorithm
practically unchanged while adding the desired property
of resilience to node failures.

In reliable FastReplica, the nodes of each group are
exchanging the heartbeat messages with their origin
node. The heartbeat messages from nodes to their ori-
gin node are augmented with additional information on
the corresponding algorithm step and group (list) of
nodes to which the nodes currently perform their trans-
fers.

Figure 8: Heartbeat group: the recipient nodes in G′ =
{N ′

1, ..., N
′
k} send heartbeat messages to the origin node

N ′
0.

In Figure 8, the nodes N ′
1, ..., N

′
k of group G′ form

the heartbeat group with their origin node N ′
0. Each

node N ′
i sends to N ′

0 the heartbeat messages with addi-
tional information on node state in the replication pro-
cess. Similarly, node N ′

0 belongs to group G with the
corresponding origin node N̂0. Thus node N ′

0 sends the



heartbeat messages and its node state to N̂0.
There are different repair procedures depending on

whether a failed node was acting as a recipient node,
e.g. node N ′

i in replication set G′, or a failed node was
acting as an origin node, e.g. N ′

0 for replication set G′.

• If node N ′
i fails while acting as a recipient node

in replication set G′ during the distribution step
then the communication pattern is similar to the
pattern shown in Figure 1. In this case, node N ′

0 is
aware of the node N ′

i failure. Node N ′
0 performs the

following repair step: it uses k − 1 already opened
connections to the rest of the nodes in group G′ to
send the missing Fi file to each node in the group
as shown in Figure 9.

Figure 9: Repair procedure for node N ′
i failed during

distribution step.

In this way, each node in group G′ receives all of
the subfiles of the original file F .

Additionally, node N ′
0 acts as a “substitute” for

the failed node N ′
i in the next algorithm step. If

node N ′
i was supposed to serve as the origin node

to group G′′ for the next algorithm iteration, then
node N ′

0 acts as the origin node to group G′′ for
this iteration.

• If node N ′
i fails while acting as a recipient node in

replication set G′ during the collection step then
the communication pattern is similar to the pat-
tern shown in Figure 2. Using the heartbeat mes-
sages, the failure of node N ′

i is detected by node
N ′

0. Node N ′
0 performs the following repair step: it

opens connections to the impacted nodes in group
G′ to send missing file Fi (similar to the repair step
shown in Figure 9). In this way, each node in group
G′ receives all of the subfiles of the original file F .

Analogously, node N ′
0 acts as a substitute for the

failed node N ′
i in the next algorithm step.

• If node N ′
0 fails while acting as the origin node for

replication group G′ during the distribution step
then replication group G′ should be “reattached”

to a higher-level origin node. Let N̂0 be the cor-
responding origin node for N ′

0 from the previous
iteration step as shown in Figure 8. From heart-
beat messages, node N̂0 detects node N ′

i failure.
Node N̂0 analyzes what was the node N ′

0 state in
the replication process preceding its failure. Then
node N̂0 acts as a replacement for N ′

0: it opens
connections to the impacted nodes in group G′ to
send corresponding missing files. Additionally, N̂0

updates every node in G′ about the change of the
origin node (for future exchange of heartbeat mes-
sages).

Reliable FastReplica, described above, aims to minimize
the impact of node failures by making the local repair
decision within the particular group of nodes. These
groups are relatively small, e.g. 10-30 nodes. Each
group has the origin node (with the original file for repli-
cation) and the recipient nodes. The number of heart-
bit messages in such a group is very small because only
the recipient nodes send heart-bit messages to their ori-
gin node, and there are no heart-bit messages between
the recipient nodes. This structure significantly sim-
plifies the protocol. Proposed failure mechanism easily
handles a single node failure within the group with min-
imal performance penalty. The main structure of the
FastReplica algorithm is practically unchanged during
the repair steps.

4 Performance Evaluation

We outlined the potential performance benefits of Fas-
tReplica in the small in Section 3.3. The goal of this
section is to analyze the FastReplica performance in the
real Internet environment. Through experiments on a
prototype implementation, we will demonstrate the effi-
ciency of FastReplica in the small in a wide-area testbed.
Since FastReplica in the small defines the iteration step
in the general algorithm, these results will set the ba-
sis for performance expectations of FastReplica in the
large.

Using the generous help of summer interns at
HPLabs, we built an experimental testbed with 9 nodes.
Table 1 and Figure 10 show the 9 hosts participating in
our experiments and their geographic locations.

N0 hp.com Palo Alto, CA

N1 utexas.edu Austin, TX
N2 umich.edu Ann Arbor, MI
N3 gatech.edu Atlanta, GA
N4 duke.edu Durham, NC
N5 uci.edu Irvine, CA
N6 berkeley.edu Berkeley, CA
N7 mit.edu Cambridge, MA
N8 uiuc.edu Urbana-Champaign, IL

Table 1: Participating nodes.
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Figure 11: Average replication time for files of different size and a different number of nodes in replication set a) 4 receivers,
b) 6 receivers, c) 8 receivers.

The source node is N0 and is located at the HP
site, while the nodes-receivers are at different univer-
sity sites. In order to perform the sensitivity analysis,
we vary the number of participating hosts: in experi-
ments with k participating hosts in replication set, the
receivers are N1, ..., Nk ordered as shown in Table 1.

Figure 10: Geographic locations of hosts.

Using the experimental testbed, we compare the fol-
lowing distribution schemes:

• FastReplica in the small: we used the FastReplica
algorithm designed for small, limited number of
nodes and introduced in Section 3.2.

• Sequential Unicast: this scheme approximates the
“best possible overlay tree” for the entire set of
group members. For the evaluation, we use the Se-
quential Unicast test which measures the file trans-
fer time from the source to each recipient indepen-
dently (i.e. in the absence of other recipients). Note
that Sequential Unicast is not a feasible overlay,
but a hypothetical construction used for compari-
son purposes. The measurements under Sequential
Unicast approximate the file distribution using IP
multicast.

• Multiple Unicast: under this scheme, the original
node simultaneously transfers the entire file to all
the recipient nodes by using the concurrent con-
nections. Assuming an infinite bandwidth at the
original node, this scheme can be considered as a
feasible solution for the above “best possible over-
lay tree”.

The experiments are conducted at an application level.
Ideally, the transfer time at each recipient node should
be measured from the beginning of the transfer at the
source node to the completion of the file download at
the recipient node. However, due to clock synchroniza-
tion problems at different nodes, we measure the file
transfer time at each recipient node from the beginning
of file download to the end of file download at the cor-
responding recipient node. Since we are interested in
large file transfers, the omission of one-way latency of
the first packet from the source to the recipient cannot
impact the accuracy of the results.

In our study, we consider the two performance met-
rics introduced in Section 3.3: average replication time
and maximum replication time.

To analyze the efficiency of FastReplica, we per-
formed its sensitivity analysis for replication of dif-
ferent size files and across different numbers of nodes
in the replication set. We experimented with 9 file
sizes: 80 Kbytes, 750 Kbytes, 1.5 MBytes, 3 MBytes,
4.5 MBytes, 6 MBytes, 7.5 MBytes, 9 MBytes, and
36 MBytes, and varied the number of nodes in the repli-
cation set from 2 to 8. When running experiments with
different parameters and strategies, the experiments for
the same file size were clustered in time as closely as pos-
sible to eliminate biases due to short time scale changes
in network and system conditions. In order to eliminate
the biases due to longer time scale changes in network
and system conditions, we performed the same set of
experiments at different times of the day. Each point in
the results is averaged over 10 different runs which were
performed over a 10 day period.

Figure 11 shows the average file replication time for
experiments with 4, 6, and 8 recipient nodes in the
replication set and files of different sizes. For file sizes
larger than 80 Kbytes, FastReplica significantly outper-
forms Multiple Unicast. The replication time under Fas-
tReplica is 2-4 times better than under Multiple Unicast.

Additionally, in most experiments, FastReplica out-
performs Sequential Unicast, which approximates the
file replication with IP multicast. The explanation is
that when Sequential Unicast replicates file F to n
nodes, it uses n Internet paths connecting the source
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Figure 12: Maximum replication time for files of different size and a different number of nodes in replication set a) 4
receivers, b) 6 receivers, c) 8 receivers.
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Figure 13: FastReplica: average vs maximum replication time for a different number of nodes in replication set a) 4

receivers, b) 6 receivers, c) 8 receivers.

nodes to the recipient nodes (while sending only one
packet over each common link in those paths). Thus
the overall performance is defined by the end-to-end
properties of the n paths. Congestion in any of those
paths impacts the overall performance of the Sequential
Unicast. FastReplica uses the same n paths between
the source and recipient nodes to transfer only 1

n -th of
file F . FastReplica takes advantage of using the addi-
tional (n− 1)× n paths between the nodes in the repli-
cation set, and each of those paths is used for sending
1
n -th of file F . Thus, the congestion in any of those
paths impacts FastReplica performance for transfer of
only the 1

n -th of file F .

While the average replication time provides an inter-
esting metric for distribution strategy characterization,
the metric representing the maximum replication time
is critical, because it reflects the worst case of the repli-
cation time among the recipient nodes. Figure 12 shows
the maximum replication time for experiments with 4,
6, and 8 recipient nodes in a replication set and files
of different sizes. The maximum replication times un-
der Multiple Unicast, as well as Sequential Unicast, are
much higher than the corresponding average times for
these strategies. For a case of 8 nodes in the replication
set, the maximum times under Multiple Unicast and Se-
quential Unicast are almost 2 times higher than the cor-
responding average times. The reason is that there is
a very limited bandwidth on the path from the source
node N0 to the recipient node N8. The performance
of this path is practically the same for both Multiple
Unicast and Sequential Unicast. This path defines the

worst (maximum) replication time among all the recip-
ient nodes in the set. Since FastReplica uses this path
to transfer only 1

n -th of file F , this “bad” path has a
very limited impact on maximum replication time and
overall performance of FastReplica.

Figure 13 shows how close the average and maximum
replication times under FastReplica are. These results
demonstrate the robustness and predictability of per-
formance results under the new strategy.
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Figure 14: Replication time measured by individual receiv-
ing nodes for 9 MB file and 8 nodes in replication set.

Figure 14 shows the average replication time mea-
sured by the different, individual recipient nodes for a
9 MB file and 8 nodes in the replication set (the other
graphs for different file sizes and a different number
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Figure 15: Average file replication time for a different number of nodes in replication set and a) File size of 1.5 MB, b)
File size of 9 MB, c) File size of 36 MB.
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Figure 16: Speedup in average and maximum file replication time under FastReplica vs Multiple Unicast for a different

number of nodes in replication set and a) 1.5 MB file, b) 9 MB file, c) 36 MB file.

a)
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6 7 8

T
im

e 
(s

ec
)

Number of Nodes

Average Replication Time, File 80 KB

FastReplica
SeqUnicast

MuptipleUnicast

b)
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

2 3 4 5 6 7 8

T
im

e 
(s

ec
)

Number of Nodes

Average Replication Time, File 750 KB

FastReplica
SeqUnicast

MuptipleUnicast

c)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 3 4 5 6 7 8

S
pe

ed
up

Number of Nodes

Average and Maximum Speedup, File 750B

AverSpeedup
MaxSpeedup

Figure 17: Average file replication time for a different number of nodes in replication set and a) File size of 80 KB, b) File

size of 750 KB, c) Speedup in file replication time under FastReplica vs Multiple Unicast for 750 KB file.

of nodes in the replication set reflect similar trends).
There is a high variability of replication time under Mul-
tiple Unicast and Sequential Unicast. This is somewhat
expected because the file replication times at the indi-
vidual nodes highly depend on the available bandwidth
of the path connecting the source and receiver node.
The limited bandwidth of the path between the origi-
nal node N0 and the receiver node N8 can be observed
from these measurements, and it severely impacts the
overall performance of both Multiple Unicast and Se-
quential Unicast. The file replication times under Fas-
tReplica across different nodes in the replication set are
much more stable and predictable since each node per-
formance is defined by the bandwidth of n paths, each
transferring 1

n -th of the original file F .

Figure 15 shows the average replication time for files
of 1.5 MB, 9 MB, and 36 MB for a different number
of nodes in the replication set. While Multiple Unicast

shows a growing replication time for an increasing num-
ber of nodes in the replication set, FastReplica and Se-
quential Unicast demonstrate good scalability for repli-
cation sets of different sizes. Additionally, FastReplica
consistently outperforms Sequential Unicast for most of
the points.

Figure 16 shows the average and maximum speedup
of file replication time under proposed FastReplica in the
small relative to the replication time of Multiple Unicast
for files of 1.5 MB, 9 MB, and 36 MB, and a different
number of nodes in the replication set. The results con-
sistently show the significant speedup both in average
and maximum replication times across considered dif-
ferent file sizes.

Finally, Figures 17 a) and b) show the average repli-
cation time for 80 KB and 750 KB files and a different
number of nodes in the replication set. The files of
80 KB and 750 KB are the smallest ones used in our
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Figure 18: Different configuration with N1 (utexas.edu) being the origin node: speedup in average and maximum replication
times under FastReplica vs Multiple Unicast for a different number of nodes in replication set and a) 1.5 MB file, b) 9 MB

file, c) 36 MB file.

experiments. For the 80 KB file, FastReplica is not effi-
cient, and the replication time (both average and maxi-
mum) is higher than under Sequential Unicast and Mul-
tiple Unicast. For the 750 KB file, the replication time
under FastReplica is better than under Sequential Uni-
cast and Multiple Unicast strategies, and the average
and maximum speedup shown in Figure 17 c) is again
significant. These results help to outline the “border”
parameters for new strategy usage: in our case study,
FastReplica works most efficiently for replicating files
larger than 0.5 MB. For n > 8, the “border” file size,
where FastReplica works most efficiently, may increase
correspondingly.

The results presented in Figure 16 show the signifi-
cant speedup both in average and maximum replication
times under the FastReplica strategy. The additional
analysis reveals that the available bandwidth of the
paths between the origin node N0 (hp.com) and nodes
N1, ..., N7 (universities’ machines) is significantly lower
than the cross bandwidth between nodes N1, ..., N7.
only node N8 has a limited incoming bandwidth from
all the nodes N0, N1, ..., N7, while the outgoing band-
width from node N8 to N1, ..., N7 is again significantly
higher. In such a configuration, FastReplica utilizes the
abundance of additional available bandwidth between
the replication nodes in the most efficient way to pro-
duce the spectacular results.

It is interesting to see how FastReplica would perform
when a different node with high bandwidth paths to the
rest of the nodes is used as the origin node. We changed
the configuration and made node N1 (utexas.edu) to be
the origin node, and rerun the experiments again.

Figure 18 shows the average and maximum speedup
of file replication time under the proposed FastReplica
in the small relative to the replication time of Multiple
Unicast for files of 1.5 MB, 9 MB, and 36 MB, and a
different number of nodes in the replication set in the
new configuration.

In the new configuration, the average replication
times under FastReplica and Multiple Unicast are sim-
ilar, but the maximum replication time under Fas-
tReplica is still significantly better than the maximum

replication time under Multiple Unicast.
The bandwidth analysis reveals that node utexas.edu

is connected to the rest of the nodes via high bandwidth
paths with low bandwidth variation across these paths.
Our analysis in Section 3.3 with a specially designed ex-
ample, where the bandwidth matrix BW is defined by
equations (6), demonstrates that when the cross band-
width between some replication nodes is significantly
lower than the bandwidth of the original paths from N0

to the recipient nodes N1, ..., N8 then FastReplica im-
proves the maximum replication time but may have no
significant improvement in average replication time.

5 Conclusion
In recent years, the Web and Internet services have
moved from an architecture where data objects are lo-
cated at a single origin server or site to the an architec-
ture where objects are replicated across multiple, geo-
graphically distributed servers. Client requests for con-
tent are redirected to a best-suited replica rather than
the origin server. For large files, the replication process
across this distributed network of servers is a challeng-
ing and resource-intensive problem on its own.

In this work, we introduce FastReplica for efficient
and reliable replication of large files in the Internet en-
vironment. FastReplica partitions an original file into
a set of subfiles and uses a diversity of Internet paths
among the receiving nodes to propagate the subfiles
within the replication set in order to speedup the over-
all download time for the original content. We scale the
algorithm by clustering the nodes in a set of replication
groups, and by arranging efficient group communica-
tions among them, i.e. by building the overlay tree on
top of those groups.

Through experiments on a prototype implementa-
tion, we demonstrate the efficiency of FastReplica in the
small in a wide-area testbed. Since FastReplica in the
small defines the iteration step in the general algorithm,
these performance results set the basis for performance
expectations of FastReplica in the large.

The interesting and important issues for future re-



search are “how to better cluster the nodes in replica-
tion groups?” and “how to build an efficient overlay tree
on top of those groups?” Recent research [19, 14, 22]
shows that the large-scale Internet application could
benefit from incorporating IP-level topological informa-
tion in the construction of the overlay to significantly
improve overlay performance. In [19], a new distributed
technique is introduced where the nodes partition them-
selves into bins in such a way that nodes within a given
bin are relatively close to one another in terms of net-
work latency. It might be an interesting technique for
clustering “close” nodes into replication groups in Fas-
tReplica.

To analyze and validate future optimization for Fas-
tReplica, a large-scale Internet environment or testbed
is needed. In recent work [23], authors propose Model-
Net as a comprehensive Internet emulation environment
to evaluate Internet-scale distributed systems. A new
initiative within the research community around Plan-
etLab [18] is aiming to build a global testbed for devel-
oping and accessing new network services. The intro-
duction of such environments and large-scale testbeds
will help to support interesting scalability experiments
in the near future.
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