
An Efficient Synchronization Mechanism for Mirrored
Game Architectures

Eric Cronin Burton Filstrup Anthony R. Kurc Sugih Jamin
∗

Electrical Engineering and Computer Science Department
University of Michigan

Ann Arbor, MI 48109-2122

{ecronin,bfilstru,tkurc,jamin}@eecs.umich.edu

ABSTRACT
Existing online multiplayer games typically use a client-
server model, which introduces a single bottleneck and point
of failure to the game. Distributed multiplayer games re-
move the bottleneck, but require special synchronization
mechanisms to provide a consistent game for all players.
Current synchronization methods have been borrowed from
distributed military simulations and are not optimized for
the requirements of fast-paced multiplayer games. In this
paper we present a new synchronization mechanism, trail-
ing state synchronization (TSS), which is designed around
the requirements of distributed first-person shooter games.

We look at TSS in the environment of a mirrored game
architecture, which is a hybrid between traditional central-
ized architectures and the more scalable peer-to-peer archi-
tectures. Mirrored architectures allow for improved perfor-
mance compared to client-server architectures while at the
same time allowing for a greater degree of centralized ad-
ministration than peer-to-peer architectures.

Keywords
Consistency, Game Platforms, System Architectures

1. INTRODUCTION
Online multiplayer games typically take one of two basic

forms: centralized client-server (all commands go through a
single server), shown in Fig. 1(a), or distributed peer-to-peer
(commands go directly to other players), shown in Fig. 1(b).
Client-server architectures are usually simpler, but are also
less efficient and scalable. Every command must go from

∗This project is funded in part by NSF CAREER Award
ANI-9734145, the Presidential Early Career Award for Sci-
entists and Engineers (PECASE) 1998, and the Alfred
P. Sloan Foundation Research Fellowship 2001. Additional
funding is provided by equipment grants from Sun Microsys-
tems Inc. and Compaq Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames2002April 16-17, 2002, Braunschweig, Germany
Copyright 2002 ACM 1-58113-493-2/02/0004 ...$5.00.

the client to the server and then be re-sent by the server
to other clients in the form of update messages. This adds
additional latency over the minimum cost of sending com-
mands directly to other clients (ignoring possibilities such
as asymmetric routing). In addition, the server becomes a
single point of failure in the game. Unlike centralized games,
where there is a single authoritative copy of the game state
kept at the server, distributed game architectures require a
copy of the entire game state to be kept at each client. As a
result, these architectures require some form of synchroniza-
tion between clients to ensure that each copy of the game
state is the same. Without synchronization, due to network
delay and other factors, clients’ game states would diverge
over time, leading to inconsistencies.

Common synchronization techniques used in existing dis-
tributed simulation environments include bucket synchro-
nization, breathing bucket synchronization, and Time Warp
synchronization [5, 13]. Many of these synchronization mech-
anisms were initially designed for use in large-scale military
simulations, and then were later adapted for use in mul-
tiplayer games as games gained popularity. In this paper
we present a novel new synchronization mechanism, trail-
ing state synchronization (TSS), which is designed with dis-
tributed first-person shooter games such as Quake [7] in
mind. First-person shooters are the most latency-sensitive
class of multiplayer games, and have a different set of op-
timization parameters than large military simulations. Ex-
isting synchronization techniques either introduce too much
additional latency or provide only loosely consistent syn-
chronization. TSS is designed to execute commands as quickly
as possible while at the same time maintaining a consistent
copy of the game state at all players.

The remainder of the paper is organized as follows: in
Section 2 we provide background on multiplayer game ar-
chitectures, including the mirrored game architecture, and
previously proposed synchronization methods. In Section 3
we introduce trailing state synchronization. Section 4 shows
some preliminary performance figures on TSS and finally
Section 5 concludes.

2. BACKGROUND

2.1 Synchronization Techniques
In peer-to-peer games, instead of sending commands to

a central server which computes the game state and issues
updates, clients send messages directly to each other. In
order for each client to have a consistent view of the game

Command
State Update

(a) Client-Server

Command

(b) Peer-to-Peer

Command
State Update

Private

Network

(c) Mirrored Server

Figure 1: Multiplayer Game Architectures.

state, there needs to be some mechanism to guarantee a
global ordering of events [8]. This can either be done by
preventing misordering outright (by waiting for all possible
commands to arrive), or by having mechanisms in place to
detect and correct misorderings. How this synchronization
is performed is very important to the success of the game;
if it is not possible to maintain ordering within a reasonable
delay, no one will be willing to play the game.

2.1.1 Conservative Algorithms
Lockstep synchronization [4], used in military simulations,

is by far the simplest technique to ensure consistency. No
member is allowed to advance its simulation clock until all
other members have acknowledged that they are done with
computation for the current time period. This takes the first
approach to providing a global ordering of events: prevent-
ing out of order events from even being generated. In this
system, it is impossible for inconsistencies to occur since no
member performs calculations until it is sure it has the ex-
act same information as everyone else. Unfortunately, this
scheme also means that it is impossible to guarantee any
relationship between simulation time and wall-clock time.
There is no way to guarantee that the game will advance at
a regular rate, much less at a fast enough rate for interactive
gameplay. In a multi-player game, this is not an acceptable
tradeoff. There are a number of similar algorithms which
perform better than lockstep but are still unable to main-
tain a constant rate in all situations. One of these is fixed
time-bucket synchronization, where a synchronization delay
is used to reduce the dependency on latency between mem-
bers. An optimistic version of this algorithm is discussed
below. For the reasons mentioned above, these “conserva-
tive” algorithms perform poorly in fast-paced games where
a constant rate of simulation is important, although they
are still suitable for slower turn-based games.

2.1.2 Optimistic Algorithms
The second approach to ensuring consistency is to de-

tect and correct any differences. These algorithms execute
events optimistically before they know for sure that no ear-
lier events could arrive, and then repair inconsistencies when

they are wrong. This class of algorithms is far better suited
for interactive situations. It is worth looking at several ex-
amples of existing optimistic algorithms and their shortcom-
ings for use with Quake before describing TSS.

Time Warp synchronization [13] works by taking a snap-
shot of the state at each execution, and issuing a rollback
to an earlier state if an event earlier than the last executed
event is ever received. On a rollback, the state is first re-
stored to that of the snapshot, and then all events between
the snapshot and the execution time are re-executed. Peri-
odically, all members reset the oldest time at which an event
can be outstanding, thereby limiting the number of snap-
shots needed. One complication with rollbacks is that Time
Warp assumes that events directly generate new events. As
part of the rollback, anti-messages are sent out to cancel pre-
viously generated events that have become invalid (which in
turn trigger other rollbacks if these messages have already
been executed, which in turn trigger more anti-messages and
so on). This explosion of anti-messages can bog down the
network and tie up servers with anti-message processing in-
stead of executing the game.

Another limiting feature of Time Warp synchronization
in a game such as Quake is the requirement to checkpoint
at every message. A Quake context consumes about one
megabyte of memory, and new messages arrive at a rate of
one every thirty milliseconds from each client (more recent
games have higher frame rates and larger contexts). Ad-
ditionally, copying a context involves not just the memory
copy but also repairing linked lists and other dynamic struc-
tures. Copying state on every command requires both a fast
machine and large amounts of memory. One optimization
to remove this limitation is to only take snapshots of the
state periodically [10], which reduces the memory and copy
overheads, but makes rollbacks potentially more costly since
there is no longer always a snapshot from exactly before the
inconsistency occurred.

“Breathing” algorithms [12] attempt to solve the prob-
lem of excessive rollbacks seen in Time Warp by restrict-
ing the amount of execution that can be done optimisti-
cally. Instead of fully optimistic execution, breathing algo-
rithms limit their optimism to events within an event hori-

zon. Events beyond the horizon can not be guaranteed to be
consistent, and are therefore not executed. A problem with
applying this to Quake is that nearly all events in Quake
are not directly generated by other events. Instead, they
are generated by user actions (which may be influenced by
earlier events), and it is therefore not clear how to accurately
define an event horizon.

The algorithm implemented in MiMaze [5] is an opti-
mistic version of the conservative bucket synchronization
algorithm. Events are delayed for a time that should be
long enough to prevent misorderings before being executed.
If events are lost or arrive later than expected, however,
MiMaze does not attempt to detect inconsistencies or re-
cover in any way. If no events from a member are available
at a particular bucket, the previous bucket’s event is dead
reckoned, for example by replaying the previous command;
if multiple events are available in a bucket, only the most
recent one is used. Late events are scheduled for the next
available bucket; however, late events are not likely to be
used because only one event per bucket is executed. For
a simple game such as MiMaze, these optimizations at the
cost of consistency may be acceptable. Movement is limited
to a confined maze where positional errors are minimal, and
interactions between players are limited enough that any in-
consistencies do not dramatically impact gameplay. With a
game like Quake though, where interactions between play-
ers are much more frequent, small inconsistencies are likely
to combine to lead to larger divergences between different
states. It is possible to decrease the number of inconsisten-
cies in bucket synchronization, but only by increasing the
synchronization delay which decreases responsiveness. TSS
uncouples these two parameters, allowing for better control.

2.2 Mirrored Game Servers
Despite the added latency, single point of failure, and

scalability problems in the client-server architectures men-
tioned in the introduction, they are by far the most com-
monly used architecture in current multiplayer games. We
believe there are a number of reasons behind the popular-
ity of client-server architectures. First, the networking code
is simpler since complicated synchronization processes can
be avoided. Often a single player version of a game can
be quickly adapted for client-server play with only minor
changes. Second, and usually more importantly, control-
ling the server gives the game publisher more administrative
control. Having control over game servers lets publishers
perform authentication and copy protection and to easily
update clients. Third, to reap all the benefits of a peer-
to-peer architecture, a multicast connection between clients
is needed to reduce the bandwidth requirements. Unfortu-
nately, IP multicast is not yet widely available, and most ex-
isting peer-to-peer games resort to sending a separate copy
of each message to every player, greatly increasing the band-
width required [9]. End-host multicast [6] can be used to re-
duce this problem, but to our knowledge has not been used
in multiplayer games.

The mirrored server architecture (Fig. 1(c)) that we first
proposed in [2] is a hybrid architecture designed to address
the problems with client-server and peer-to-peer architec-
tures. Instead of a single central server, there are multiple
distributed servers for each game. Clients connect to the
mirror closest to themselves in a traditional client-server
fashion. Players can either pick a mirror manually, or the

game client could make use of an Internet distance service [3]
to automatically select a mirror close to the client. If the
mirrors are well placed, the additional latency overhead of
the client-server architecture is greatly reduced. The mirrors
themselves are then connected to each other over a private,
low-latency multicast network used only for game traffic.
The mirrors exchange commands using a peer-to-peer ar-
chitecture, with each mirror maintaining its own copy of the
game state. The use of a private network allows IP multicast
to be used.

Since there are now multiple servers for the same game,
the single point of failure in traditional client-server archi-
tectures is eliminated. If any one of the servers crashes, the
clients connected to it will be disconnected, but the other
servers and clients can continue with the game. Unlike peer-
to-peer games, the networking complexity in the mirrored
server architecture lies in the servers not in the client. In
fact, in our prototype mirrored server version of Quake de-
scribed in Section 4, the Quake client itself is not changed
at all. Unlike a fully distributed game architecture, the mir-
rored servers are still under the game publisher’s control.
This allows for authentication copy protection as well as the
ability to trust mirrors. The ability to trust the clients of a
peer-to-peer architecture is important because cheating can
become easier in distributed architectures [1].

The use of mirrored servers does place some restrictions
on the synchronization algorithm used. Each mirror must
be able to handle multiple clients which could be located in
any part of the game’s world at any given time. As a conse-
quence, it is not straitforward to perform interest manage-
ment between mirrors. In a purely peer-to-peer architecture,
two clients who are not interacting with each other need not
be tightly synchronized with each other, reducing the consis-
tency requirements. It is, however, still possible for mirrors
to do interest management to individual clients as is com-
mon in client-server architectures, reducing the bandwidth
required between mirror and client and preventing clients
from knowing information they do not absolutely need (re-
ducing the opportunities to cheat).

3. TRAILING STATE SYNCHRONIZATION
As described above, none of the existing distributed game

or military simulation synchronization algorithms are en-
tirely suited to a game such as Quake which has very fre-
quent updates, has a need for strong consistency, and is very
latency sensitive. Our solution to this problem is trailing
state synchronization (TSS). Similar to Time Warp, TSS is
an optimistic algorithm, and must execute rollbacks when
inconsistencies are detected. However, it does not suffer
from the high memory and processor overheads of Time
Warp.

When rollbacks are required, instead of copying the state
from a snapshot taken just prior to the offending command
as Time Warp does, TSS copies the state from a second copy
of the same game which is running at a delay relative to
the inconsistent state. This second copy of the game state,
since it is trailing the first in execution, has had more time
to reorder commands and does not have the inconsistency
that is to be repaired (in fact, it is this second state which
detects that an inconsistency has occurred).

Instead of keeping snapshots at every command (or every
few commands as in [10]), TSS keeps multiple copies of the
same game state, each at a different simulation time. These

Simulation Time

100ms 200ms 300ms Executed Commands

Pending Commands
Leading State S0

Trailing State S1

Trailing State S2

Command A:
MOVE, issued at t=150ms
Received on-time

Command B:
FIRE, issued at t=200ms
Received when leading
 state at t=225ms

Execution Time
(sim. time - synch. delay)

d0 = 0ms

d1 = 100ms

d2 = 200ms

0ms

Figure 2: Trailing State Synchronization Execution.

copies, referred to as states, each execute every command,
but after differing synchronization delays. Only the lead-
ing state, which has the shortest synchronization delay, is
rendered to the screen, while the other trailing states are
used to detect and correct inconsistencies. At simulation
time t, if the leading state S0 is executing a command from
simulation time t − d0, then the first trailing state S1 will
be executing commands up to simulation time t − d1, the
second trailing state S2 commands up to t − d2 and so on,
where d0 < d1 < d2 < In this manner, only one snap-
shot’s worth of memory is required for each trailing state,
reducing and bounding the memory requirements.

TSS is able to provide consistency because each trailing
state will see fewer misordered commands than the state pre-
ceding it by waiting longer for delayed commands to arrive
before executing. The leading state executes with little or no
synchronization delay (d0). The synchronization delay for a
state is defined as the difference between the current sim-
ulation time (with which new commands are timestamped
before being sent) and the execution time of the state. The
simulation time is used to allow commands to be reordered
properly in each state before execution. If a command is
stamped with simulation time t at the generating client,
then it cannot be displayed until simulation time t + d0,
even at that same client. With a synchronization delay of
zero, the leading state will provide the fastest updates, al-
lowing clients to see their own commands immediately and
preserving the “twitch” nature of the game. However, with
a synchronization delay of zero, the leading state will also
frequently be incorrect in its execution, which later states
will have to detect and correct.

Informal usability tests performed during the evaluation
of TSS show that rollbacks of less than 100 ms are unnotice-
able to most players. When a rollback occurs, the player’s
position will jump from the incorrect position to the correct
position and gameplay continues. Occasionally, rollbacks
will cause more drastic changes, such as the player coming
back to life when they thought they had been killed. The
impact of these events can be lessened by delaying the noti-
fication that the player has been killed slightly in case there
is a rollback. These problems are no worse in TSS than in
any other dead reckoned game which repairs inconsistencies.

As commands arrive (or are generated) at a client, they
are placed on a pending list for each trailing state. Late
moves whose timestamps are earlier than the current execu-
tion time for a state are placed at the head of the event list
for a state and executed immediately. The different copies of
a command in each trailing state are linked together so that
the command from state Sn can find the copy of the same
command that was executed in the preceding state Sn−1. In
order to detect inconsistencies, each trailing state looks at
the changes in game state that the execution of a command
produced, and compares them with the changes recorded at
the directly preceding state. When a command is executed
in the last of the trailing states, the command is deleted
from all states since it will never be needed again. The last
state has no trailing state to synchronize it, and therefore
any inconsistencies there will go undetected. However, if it
is assumed that the longest synchronization delay, as in the
other bounded optimistic algorithms, is large compared to
expected command transit delays, this is unlikely to pose a
problem.

In Quake, there are two basic classes of events that a
command can generate. The first type we refer to as weakly
consistent, and consists of move commands. With these
events, it is not essential that the same move happened at
the same time as much as that the position of the player in
question is within some small margin of error in both states.
The other class is strictly consistent, and for these events,
such as weapons being fired (particularly projectiles), it is
important that both states agree on exactly when and where
the event occurred.

If an inconsistency is discovered, a rollback from the incor-
rect leading state to the correct trailing state is performed
in the leading state. This consists of copying the game state
from the trailing state to the leading state, as well as adding
back to the leading state’s pending list any commands which
were executed in the incorrect state after the rollback time.
The next time the leading state executes, it will re-execute
the commands and return to the proper execution time. If
a rollback occurs between states Sn and Sn−1, it is possi-
ble that once Sn−1 re-executes to correct the inconsistency,
new inconsistencies between Sn−1 and Sn−2 will be found.
In this fashion, any inconsistencies in a trailing state that

Simulation Time

100ms 200ms 300ms Executed Commands

Pending Commands

Command B:
FIRE, issued at t=200ms
Received when leading
 state at t=225ms

Leading State S0

Trailing State S1

Execution Time
(sim. time - synch. delay)

Leading State S0

Copy

0ms

Trailing State S1

(a) pre-rollback

(b) post-rollback

Figure 3: Trailing State Synchronization Rollback

the leading state also shares will be corrected. The prob-
lem of anti-messages present in Time Warp is avoided in
TSS because new commands are not directly related to any
single previous command. Without this direct relationship,
there is no straightforward way to create anti-messages. In-
stead we take the same approach often used in dead reckoned
games, applying the new commands to the corrected state.

There is a tradeoff in TSS between how many states are
used (and the synchronization delay gap between them) and
the number of commands which must be re-executed on a
rollback because the inconsistency is not detected until it is
executed in the trailing state. However, with weakly consis-
tent events, it is possible that not every late or misordered
command will require a rollback, and TSS is able to take
advantage of this while other algorithms may not be.

3.1 An Example of TSS
Fig. 2 and Fig. 3 depict a simple example of TSS. There

are three states in the example with delays of 0 ms, 100 ms,
and 200 ms respectively. We focus on two commands. Com-
mand A is a MOVE, issued (locally) at simulation time
t = 150 and executed immediately in the leading state. At
time t = 250, the first trailing state reaches an execution
time of 150 and executes command A. Since A was on time,
its execution matches the leading state’s execution and no
inconsistency occurs. Similarly, at time t = 350, the final
trailing state reaches execution time 150 and executes com-
mand A. It too finds no inconsistency, and no one is left to
check it (this is a contrived example, in real life a longer
delay than 200ms on the last trailing state would likely be
used) so the command is removed from all three states.

Command B is a FIRE event, issued at simulation time
t = 200 by a remote client. By the time it arrives, the
simulation time locally is t = 225. The command is executed
immediately in the leading state and placed in the proper
position in the two trailing states since they are at execution

times 100 and 0 respectively. At time t = 300, the first
trailing state executes B. When it compares its results with
the leading state’s results, it is unable to find a FIRE event
from the same player at time 200, and signals the need for
a rollback. Fig. 3 zooms in on the recovery procedure. The
state of the trailing state is copied to the leading state, which
places it at execution time 200 (moves up to t = 200 have
been executed, moves later than t = 200 have not). The
leading state then marks all commands after time 200 as
unexecuted, which is seen in Fig. 3(b). The leading state
will then re-execute the commands in the shaded area up to
the current execution time, which has not changed during
the rollback. This example exposes one of the features of
TSS. It is possible that there were other inconsistencies in
the gap between times 200 and 300 (a burst of congestion
perhaps). The recovery of the first inconsistency at time 200
in effect canceled any future recoveries in this window since
all commands between 200 and 300 are re-executed.

3.2 Analysis of TSS
Although similar to many other synchronization algorithms,

TSS has key differences with each of them. TSS is clearly
very different from any of the conservative algorithms, since
its execution is based on when the synchronization delay
schedules a move and not when all events for a time pe-
riod have arrived. It is also clearly different from MiMaze’s
bucket synchronization since it provides absolute synchro-
nization as long as events are delayed no more than the
longest synchronization delay. MiMaze on the other hand
does not really detect, let alone recover from, any inconsis-
tencies that may occur. TSS and Time Warp both execute
commands as soon as they arrive. They differ however in
their methods of recovering from inconsistencies. TSS is a
little more optimistic than Time Warp in that it does not
keep a snapshot of the state before executing every com-
mand so that it can recover as soon as a late command ar-

Run Synchronization Executed Execution Rollbacks Rollback Total Command Rollback
Delays (ms) Commands Time (sec) Time (sec) Time (sec) Cost (ms) Cost (ms)

1 0,50 40,780 6.14 817 1.15 8.95 0.15 1.41
2 0,100 45,401 6.37 870 1.23 9.32 0.14 1.41
3 0,50,100 59,981 9.02 938 1.32 12.30 0.15 1.40
4 0,100,1000 331,687 26.20 6,687 10.11 43.77 0.08 1.51
5 0,50,100,150 79,357 12.15 1,092 1.53 15.90 0.15 1.41
6 0,50,100,500 99,730 13.26 2,370 3.36 19.38 0.13 1.42
7 0,50,500,1000 251,044 23.22 6,995 10.51 39.27 0.09 1.50

Table 1: Trailing State Synchronization Execution Times

rives. Instead, it catches inconsistencies by detecting when
the leading state and the correct state diverge, and correct-
ing at that point. It is possible, especially with weakly con-
sistent events, that though executed out of order, commands
may not cause an inconsistency. Other synchronization algo-
rithms, which look only at the command and not the results
of the command, are unable to take advantage of this.

TSS performs best in comparison to other synchronization
algorithms when three situations are present in the game:
the game state is large and expensive to snapshot, the gap
between states’ delays is small and easy to repair, and event
processing is easy. The first is definitely present in Quake
and other first-person shooters, with one megabyte or more
of data per context. The second is a parameter of TSS and
can be tuned (see Section 3.2.1). The cost of processing
each command is not immediately apparent, and must be
determined experimentally. We present a preliminary study
of the performance of TSS in Section 4. For games like
Quake, the results indicate that it is significantly cheaper to
execute a command multiple times than to make snapshots
of the game state.

3.2.1 Choosing Synchronization Delays
Picking the correct number of states and the synchroniza-

tion delay for each state is critical to the optimal perfor-
mance of TSS. In order to provide a large enough window
of synchronization the gaps between states must necessarily
be large if too few states are used. This leads to greater de-
lay before an inconsistency is detected, which in turn leads
to more drastic and noticeable rollbacks. Conversely, if too
many states are used, the memory savings provided by TSS
will be eliminated. Additionally, rollbacks will likely be more
expensive since a longer cascading rollback is needed before
reaching the leading state. Given information on the net-
work and client parameters (delay distribution, message fre-
quency, the cost of executing a message, the cost of a context
copy, etc.), it should be possible to build a model to calcu-
late how many states should be used and with what delays.
The states and synchronization delays could also be adjusted
dynamically by the servers, adapting to changing network
conditions. This aspect of TSS has not been fully explored,
we presently select parameters which we think may be good
choices.

4. PERFORMANCE EVALUATION

4.1 Implementation
As part a project studying the feasibility of mirrored server

architectures, TSS was implemented in the open-source Quake-
Forge [11] server for the Quake I first-person shooter. In
these experiments there are two mirrored servers with three
clients connected to each (see Fig. 1(c)). The servers run

TSS to synchronize the commands from the six clients. There
is a very low-latency connection between clients and servers,
approximately simulating TSS operating at the client in a
fully distributed version of Quake. The latency of the server-
to-server connection is 50 ms.

The first step in implementing TSS in Quake was to alter
the server so that all game state data was within a context,
and create functions capable of copying one context onto
another. Although for performance reasons Quake uses al-
most no dynamic memory, within the statically allocated
structures the developers of Quake use numerous tricks to
avoid extraneous dereferencing of pointers. These optimiza-
tions make the encapsulation and copying of game state a
non-trivial task. In addition, changes had to be made to the
game to account for the use of random numbers for events
such as item placement. Ideally, a per-state pseudo-random
number generator (RNG) with the same initial seed in each
state would be used to provide consistent random numbers
in each state. On rollbacks, the RNG state is included in the
copied state in case the leading state had incorrectly used
more random numbers. Unfortunately, Quake was not de-
signed this way and preserving random events turned out to
be a major difficulty in implementing and evaluating TSS.

Once the Quake server had been altered to use contexts,
it was fairly simple to add synchronization. Instead of exe-
cuting client packets immediately, they are intercepted and
sent out over a multicast channel. Upon receiving a mul-
ticast command, it is inserted back into Quake’s network
buffer and parsed by the normal Quake functions. In the
main event loop, each of the states is checked. Any pending
commands that are ready are executed, and inconsistencies
between the executing trailing state and its leading state are
checked for. In addition to mirroring and synchronization,
we also added a trace feature to the server. This logs to a
file every command sent to the multicast channel and allows
games to be replayed exactly in the future for deterministic
simulations.

4.2 Simulation
To test the performance of TSS, we ran a series of simula-

tions using the trace feature described above with different
network and synchronization parameters. Unfortunately,
due to difficulties accounting for all random events, incon-
sistencies often occurred when they shouldn’t have. Even
in cases where no inconsistencies should occur, such as with
a single server and two states, where there are no remote
commands to arrive late, numerous inconsistencies were seen
upon simulation. Hence, detailed and accurate study of the
behavior of TSS with different configurations and different
network conditions on the private multicast network has not
been performed because of this.

Nevertheless, we were able to gather some useful results on
the cost of rollbacks in Quake. The results in Table 1 show
seven runs, all using the same trace file with three users con-
nected to each of two mirrors. The statistics were gathered
at mirror one, which saw 18,593 commands from local clients
and the multicast group. The “Executed Commands” col-
umn shows the total number of Quake moves executed by the
mirror, including the 18, 593·#states commands that would
be executed with no rollbacks plus any additional commands
re-executed due to rollbacks. The “Execution Time” col-
umn shows the total time (system and user) spent execut-
ing these commands, measured by the instrumented server.
The “Rollbacks” column shows the number of rollbacks that
occurred during the simulation, and the “Rollback Time”
column shows the system and user time spent performing
the context copy, repairing data structures within the con-
text, and moving events back to the event queue to be re-
executed. “Total Time” is for the entire server, which in-
cludes command execution, rollback, and other functions of
the server such as providing reliable multicast. Finally, per-
command and per-rollback costs are calculated by dividing
the execution time and rollback time by number of com-
mands and rollbacks respectively.

The command cost is dominated by the actual execution
of the command in the Quake simulator. The TSS event
queue management and other bookkeeping turn out to be
minor components of the time. Similarly, the rollback cost
is dominated by the time to copy the context and repair
data structures, while the time spent moving executed com-
mands back to the event queue for re-execution is minor. In
all seven of the runs these costs were nearly identical, with
command execution being an order of magnitude less expen-
sive than rollback. The large jumps in number of commands
executed and rollbacks incurred for the fourth and seventh
runs are due to a combination of the large gap between the
last two states combined with the spurious inconsistencies
due to the RNG (there should not have been any real incon-
sistencies later than 50 ms in these simulations with a 50 ms
server-to-server latency). In both of these runs, any incon-
sistencies between the final two states required 900 ms and
500 ms worth of commands to be re-executed after a roll-
back. Similarly, each of these re-executed commands was
subject to the same RNG caused inconsistencies, so there
were additional cascading rollbacks generated in these two
runs as well.

Despite the inability to obtain full simulation results, these
results are promising for the suitability of TSS in first-person
shooters. Performing a snapshots, which involves the same
basic tasks as a rollback, is an order of magnitude more
expensive than executing a command in Quake. From our
analysis in Section 3.2, TSS should be able to perform well
in these games if the difference in synchronization delays
between states is not too large.

5. CONCLUSION
In this paper we have presented TSS, an optimistic syn-

chronization mechanism designed for multiplayer games with
low latency but strong consistency requirements. It provides
for low-latency consistent gameplay through the use of mul-
tiple copies of the game state and rollbacks. We have shown
that because of its design characteristics, this form of syn-

chronization can perform well in high-speed games where
there is a large game state and many commands to be syn-
chronized. There are still a number of unexplored areas for
future work. As discussed above, a more thorough exami-
nation of the parameter space for synchronization delays is
needed, as well as dynamically determining the number of,
and delays for, needed states. Additionally, building off the
distinction between weakly and strongly consistent events,
it would be interesting to look at the effect of compensating
for weak inconsistencies in future states as opposed to per-
forming a full rollback as the current implementation does.

6. REFERENCES
[1] N. Baughman and B. Levine. Cheat-proof playout for

centralized and distributed online games. In Proc.
Infocom 2001, April 2001.

[2] E. Cronin, B. Filstrup, and A.R. Kurc. A distributed
multiplayer game server system. UM EECS589 Course
Project Report,
http://www.eecs.umich.edu/∼bfilstru/quakefinal.pdf,
May 2001.

[3] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz,
Y. Shavitt, and L. Zhang. IDMaps: A global Internet
host distance estimation service. IEEE/ACM
Transactions on Networking, 9(5):525–540, October
2001.

[4] T.A. Funkhouser. RING: A client-server system for
multiuser virtual environments. In Proc. 1995
Symposium on Interactive 3D Graphics, pages 85–92.
ACM SIGGRAPH, April 1995.

[5] L. Gautier, C. Diot, and J. Kurose. End-to-end
transmission control mechanisms for multiparty
interactive applications on the Internet. In Proc. of
IEEE Infocom 1999, volume 3, March 1999.

[6] D. A. Helder and S. Jamin. End-host multicast
communication using switch-tree protocols. In Proc. of
GP2PC, May 2002.

[7] id Software. Quake.
http://www.idsoftware.com/.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[9] P. Lincroft. The Internet sucks: Or, what I learned
coding X-Wing vs. TIE Fighter. In Proc. of Game
Developers Conference 1999, March 1999.

[10] M. Mauve. How to keep a dead man from shooting. In
Proc. of the 7th International Workshop on Interactive
Distributed Multimedia Systems, pages 199–204,
October 2000.

[11] The QuakeForge Project. QuakeForge.
http://www.quakeforge.net/.

[12] J. S. Steinman, R. Bagrodia, and D. Jefferson.
Breathing time warp. In Proc. of the 1993 Workshop
on Parallel and Distributed Simulation, pages
109–118, May 1993.

[13] J. S. Steinman, J. W. Wallace, D. Davani, and
D. Elizandro. Scalable distributed military simulations
using the SPEEDES object-oriented simulation
framework. In Proc. of Object-Oriented Simulation
Conference (OOS’98), pages 3–23, 1998.

