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Abstract 
Peer-to-peer (P2P) architectures are commonly 
used for file-sharing applications. The reasons 
for P2P’s popularity in file sharing – fault 
tolerance, scalability, and ease of deployment – 
also make it a good model for distributed data 
management. In this paper, we introduce a 
scalable P2P framework for distributed data 
management applications using mutant query 
plans: XML serializations of algebraic query 
plan graphs that can include verbatim XML data, 
references to resource locations (URLs), and 
abstract resource names (URNs). We show how 
we can build distributed catalogs based on multi-
hierarchic namespaces that can efficiently handle 
content indexing and query routing. We also 
discuss how peers can convey the currency and 
coverage of their data, and how queries can use 
this information to manage the inherent tradeoffs 
between answer completeness, timeliness, and 
latency. 

1. Introduction 
Many file-sharing systems today use peer-to-peer (P2P) 
architectures, where participants simultaneously serve and 
receive files. Most P2P systems handle file sharing in a 
decentralized P2P fashion. Some systems however fall 
back to a client-server architecture for indexing and 
searching. There are thus two main approaches, which we 
will name after the first popular systems that implemented 
them:  
• The “Napster” (also called hybrid in [YG01]) 

approach: A centralized group of servers indexes 

filenames, and all queries must go through them. 
• The “Gnutella” (or pure) approach: No central 

indices are maintained; queries are broadcast to a 
node’s “neighbors” (which then broadcast them to all 
of their neighbors, and so on, up to a fixed number of 
steps, called the horizon).  

P2P systems are successful for several reasons, including: 
• Ease of deployment: Each user installs a single 

package that encompasses both client and server 
code; its initial configuration depends only on 
knowing a fixed index server or a single other 
installation; servers need not be continuously active. 

• Ease of use: The server code is bundled with a user 
interface application to publish, search and retrieve 
content. 

• Fault tolerance: Failure or unavailability of a single 
server (other than a central index) does not disable 
the system. It might render some content unavailable, 
but much of the content ends up being heavily 
replicated. 

• Scalability: As the number of users and amount of 
content increase, so does the number of servers; 
protocols do not require “all-to-all” communication 
or coordination. 

However, there are limitations that come with these 
advantages. The schema and queries for searching for 
content are typically hardwired into the application; there 
can be bottlenecks at the centralized index; there are no 
mechanisms for combining or otherwise manipulating the 
content itself. Recently there is interest in adapting the 
P2P model to distributed data management scenarios. We 
see two major issues for current P2P approaches here: 
weak query capabilities, and limitations in index 
scalability and result quality.  

Current P2P systems offer very limited querying 
functionality: simple selection on a predefined set of 
index attributes, IR-style string matching or containment, 
no manipulation of content. These limitations are 
acceptable for file-sharing applications, since people find 
ways to encode metadata about a file in the filename, but 
more general P2P applications will require a richer query 
model. We want to enable content publishers to export 
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structured or semi-structured views of their data (for 
example using XML), and allow users to query them 
using a full-featured query language. 

In terms of index scalability and result quality both the 
Napster and Gnutella approaches have serious limitations. 
Centralized index servers don’t scale with the number of 
clients. Query broadcasting wastes network bandwidth 
and hurts result quality by limiting the availability of rare 
content. Again, file-sharing networks thrive despite these 
limitations: Finding 10 out of the 100 available copies of 
the same file is usually good enough, but for general-
purpose P2P query systems, we will have to do better.  

The assumption usually made by file-sharing 
implementations is that any file can potentially be 
replicated at any node in the system. This is a reasonable 
assumption for file-sharing systems, but not necessarily 
true for P2P applications in general, and database-style 
applications in particular. A content provider might not 
want its content replicated in bulk; the natural unit of 
retrieval (e.g. a record) might be at too small a level of 
granularity for a file-based approach; effective evaluation 
of query conditions may require having certain content 
aggregated (lowest price, closest location). 

In this paper, we describe a peer-to-peer architecture 
for distributed querying that works well for application 
domains where content providers have specific affinities 
for storing, replicating, or indexing different subsets of a 
global data namespace. Peers express their preferences for 
the data they are serving or looking for using a name 
space of multiple hierarchical categories. Queries are 

routed efficiently, without depending on centralized index 
servers or query broadcasting, and peers can make 
intelligent choices about query latency, data completeness 
and currency tradeoffs. 

For example, consider different biomedical research 
groups hosting on-line repositories of gene-expression 
data (such as those obtained from microarray 
experiments). Emerging data interchange standards such 
as MIAME [BHQ+01] allow groups to exchange and 
replicate expression data. Groups choose what data to 
host, generally based on their own research interests. In 
our approach, groups can indicate their interest areas 
relative to organism and cell-type hierarchies. In Figure 1 
we see interest areas of three groups: one for neural cells 
in fruit flies, a second for connective and muscle cell in 
rodents, and a third with all cell types for humans. Given 
this coverage information, a site processing a query 
related to cardiac muscle cells in mammals can route the 
query to the second or third site (where it might find 
relevant data), but can ignore the first site (where it surely 
will not). More generally, interest areas can describe 
indexing coverage of other groups' data, or even "meta-
coverage" of other groups data and index interest areas.  
(Note that MIAME defines many more metadata 
attributes for expression data, such as anatomical location 
and developmental stage. We used just two categories 
here because it is easy to depict graphically.) 

We will often use the terms client and server for 
participants in our system. There are some activities 
where participants act as peers, and others, most notably 
query submission and processing where there is clearly a 
client and a server. The important distinction between the 
P2P model and the client-server model is not that such 
roles do not exist, but that they are not fixed or pre-
assigned; this query’s client may well become the next 
query’s server. 

Here is an overview of the rest of this paper. In 
Section 2 we introduce our running example, a P2P 
“garage-sale” application, and present mutant query 
plans, our coordinator-less distributed query execution 
framework. In Section 3 we present multi-hierarchic 
namespaces and explain their use in P2P indexing and 
querying. Section 4 discusses how peers can reason about 
answer completeness, redundancy, and currency of 
answers, and tradeoffs versus query latency. Section 5 
covers issues and extensions to our framework. Section 6 
presents related work, and Section 7 concludes.  

2. Mutant queries and the P2P garage sale 
We will use a distributed garage sale as our running 
example. A garage sale is the real world situation that 
most closely resembles a P2P network. People sell and 
buy things without middlemen, or predetermined 
seller/buyer (server/client) roles. 
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Figure 1: Of Mice and Men. Using hierarchies to 
describe and query repositories of gene expression data. 
A query about mammalian heart cells partially covers a 
database on connective and muscle rodent cells, and a 
database on human cells. 



In the P2P garage sale, data about items in garage 
sales, second hand stores, and auctions come online. The 
system simply brings together people who want to sell or 
buy used items; the actual transactions happen outside the 
system. We posit a collection of local consignment shops 
that handle the actual storage, sales and delivery of goods 
for a commission, and which can co-operate with each 
other to transfer items closer to a potential buyer for 
inspection and purchase. Most participants who post 
information to our system will have registered to sell 
through a particular shop, but nothing prevents someone 
from selling directly, say, out of his or her garage. 

Each for-sale item has an associated data bundle with 
various information in it: item name, seller location, 
description, condition, images, quantity, price, etc. We 
will assume that sellers export these data bundles in 
XML. Notice that our data are more structured and varied 
than the typical file description, and support much more 
meaningful queries; our query language therefore should 
be more powerful than the typical IR-based string 
matching interfaces found in most P2P systems. A seller 
can run his or her own server to publish items for sale, or 
can post them to a server run by a consignment shop. 

Many queries will combine data residing in multiple 
peers. Transferring all relevant data to a central location 
wastes time and bandwidth. For-sale data is likely to have 
locality in terms of geographic location or category of 
merchandise (e.g., a consignment shop/server that 
specializes in used clothing). We need a distributed query 
execution mechanism, so that we can run our queries 
“closer” to the relevant data.  

In the remainder of this section we will briefly 
describe Mutant Query Plans (MQPs), a framework for 
coordination-free distributed query execution. (You can 
find additional information about MQPs in [PM02a, 
PM02b]). We have implemented an MQP prototype with 
the basic features described in this section using the 
NIAGARA system [NDM+01] as our XML query engine.  

A mutant query plan is an algebraic query plan graph, 
encoded in XML, that may also include verbatim XML-
encoded data, references to resource locations (URLs), 

and references to abstract resource names (URNs). Each 
MQP is tagged with a target: a network address to send 
the result to, once the MQP is fully evaluated.  

The ability of mutant query plans to package together 
query operators and data means that we can use them to 
represent all the stages in the evaluation of a distributed 
query. An MQP starts out as a regular query operator tree 
at the client, and is then passed around from server to 
server, accumulating partial results, until it is fully 
evaluated into a constant piece of XML data and returned 
to the client. 

A server can choose to mutate an incoming MQP in 
two ways. It can resolve a URN to one or more URLs, or 
a URL to its corresponding data. The server can also 
reduce the MQP by evaluating a sub-graph of the plan 
that contains only data at the leaves, and substituting the 
results in place of the sub-plan. If the plan is now 
completely evaluated (i.e., it has been reduced to a 
constant piece of XML-encoded data), the server sends it 
to the target, otherwise it routes the plan to another server 
that can continue processing. 

Figure 2 shows this process in more detail. An MQP 
arrives at a server encoded in XML. The server parses the 
plan into an in-memory graph, and determines the URNs 
that it can resolve. The optimizer finds the locally 
evaluable sub-plans (a sub-plan is locally evaluable if all 
its leaves are verbatim XML data, URLs, or resolvable 
URNs), optimizes them and estimates their costs. A 
policy manager component decides which of those sub-
plans to evaluate, and forwards them for execution to the 
query engine. The server then substitutes the resulting 
XML fragments as verbatim XML data in the place of the 
evaluated sub-plans, serializes the mutated plan in XML 
and sends it to some other server that can continue the 
plan’s evaluation. 

As an example, suppose we are looking for CDs for 
$10 or less in the Portland area. Sellers publish lists that 
include CD titles. Our P2P client has a list of our favorite 
songs, and we can use an online track-listing service, such 
as CDDB [CDB] or FreeDB [FDB], to connect these two 
resources. 
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Figure 2: Mutant Query Processing. 



Figure 3 shows a mutant query plan for this request. 
The plan includes regular query operators such as select 
and join, a display pseudo-operator that specifies the 
query plan’s target, a constant piece of XML with the 
songs we are looking for, and two URNs: 
urn:ForSale:Portland-CDs,  
and urn:CD:TrackListings. 

There are no reduction steps we can perform on the 
MQP of Figure 3, unless we resolve one of the two 
abstract resources (URNs) to specific URLs or to raw 
data. Figure 4 shows two steps in this process. In Figure 
4(a), a server resolves the ForSale URN to a union of 
two seller URLs, pushes the select operator through the 
union, and forwards the plan to one of the seller servers. 
In Figure 4(b) the server substitutes its CD data for its 
URL, evaluates the select and reduces its part of the plan 
to a constant piece of XML data. This series of URN-to-
URL-to-data resolutions and sub-plan reductions will 
continue until the whole plan is evaluated, and forwarded 
to its target. 

Resolution drives the query evaluation process of 
MQPs. Resolving URLs is straightforward: we can either 
connect to the specified server to fetch the data, or 
forward the whole MQP to it. In our current 
implementation, we resolve URNs by consulting a 
catalog, which we maintain locally at each peer. A 
catalog contains mappings from URNs to (sets of) URLs, 
or from URNs to servers that know how to resolve them. 

Traditional distributed query processing depends on 
coordinators, servers that must know all about data 
replication and statistics, to optimize a query. Mutant 
query plans have no need for such omniscient 
coordinators as they allow query optimization and source 
discovery to work with whatever information is available 
locally, and to proceed in parallel with query execution. 

Compared to traditional, distributed query processing, 
mutant query plans trade away pipelining and parallelism 
for robustness, autonomous optimization at each peer and 
reduced deployment costs. A preliminary performance 
comparison, and ideas on how to hedge this bet and get 
some parallelism back are described elsewhere [PM02a]. 

MQPs present interesting new optimization issues 
(more elsewhere [PM02b]). Here is an example. Each 
server must materialize its partial results to ship the 
mutated query plan to the next server. We have to transfer 
these partial results over the network; their size matters. 
We can come up with query rewritings which would help 
MQP optimization that regular query optimizers would 
not normally consider. Suppose resources A and B are 

available locally, while X is not. If we know that |A � B| 

� |A| we can reduce network traffic by rewriting (A � X) 

� B into (A � B) � (X � B), and evaluating the left 
branch. Depending on the number of B tuples that join 
with A, we may also opt to evaluate only the right outer 
join of A and B locally, by rewriting the plan to:  

�����	
�������	
���
 where 	�������
 
Mutant query execution, where each server in turn 

optimizes the plan, executes it and materializes the 
temporary results is reminiscent of INGRES-style query 
evaluation [SWK+76,WY76], where query decomposition 
interleaves sub-query execution and optimization. 
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Figure 3: A mutant query plan. 
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Figure 4: Two steps in the evaluation of a mutant query: (a) resolution and rewriting, (b) reduction. 



3. Distributed Catalogs 
In the previous section we glossed over an important issue 
with mutant query plans (and P2P systems in general): 
How do peers find out about resources available in other 
peers? In our example, how did we know that we could 
resolve the ForSale URN of Figure 3 into the union of 
two URLs in Figure 4(a)? For that matter, how did the 
user formulating the query know there was a 
Portland-CD resource to query over?  

We want the P2P network to maintain distributed 
catalogs that can efficiently route queries to peers with 
relevant data. This index structure cannot scale unless it is 
itself distributed or partitioned among peers. 

We believe that the main obstacle for building such 
distributed catalogs for file-sharing systems is the flat 
“filename” namespace, where any peer can potentially 
serve any file. In many applications, such as the P2P 
garage sale, we have much richer, structured metadata 
about our content. 

In this section we describe how peers can use multi-
hierarchic namespaces to categorize data; data providers 
use multi-hierarchic namespaces to describe the kind of 
data they serve and data consumers use them to formulate 
queries. We then detail the different roles that peers can 
play in the system, and the resource resolution process. 

3.1. Multi-hierarchic namespaces  

There are many ways we can use data attributes to 
organize data. For example we could use location to place 
items in the P2P garage sale into categories based on the 
seller’s country, state, or city. This categorization is by no 
means the only one possible: we could also choose one of 
the various categorization schemes you find at online 
auction sites, or define categories based on price, weight, 
color, etc. 

These categorization schemes can be flat (e.g. 
categorizing by price into items costing more than $100 
vs. items costing less than $100), or hierarchical, with 
categories specified at different granularities or levels. 
USA/OR/Portland (all items located in Portland) is a 
city-level category, while France is a country-level 
category. We will call such multi-level categorizations 
categorization hierarchies. Within a categorization 
hierarchy, each item belongs to one (and only one) 
category called its most-specific category, and to all of its 
parents. For example every item in the 
USA/OR/Portland category also belongs in the 
USA/OR and USA categories. 

The main idea behind our distributed catalogs is that 
for many P2P applications, the distribution of the 
underlying data among servers is not random. It is often 
the case that data are stored, grouped, replicated and 
queried according to one or more categorization 
hierarchies that are natural for the application. All the 
items sold by the same seller in the P2P garage sale will 

usually have the same address. If this address is in 
USA/OR/Portland, most prospective buyers will 
come from Portland, or locations close to Portland in the 
location hierarchy. People collect things: baseball cards, 
CDs, books, … If I am trading baseball cards, chances are 
that I have more than one.  

Whenever this assumption holds, we can use these 
“natural” categorization hierarchies to build distributed 
indices for query routing. We call the set of categorization 
hierarchies relevant to an application domain a multi-
hierarchic namespace. We will also borrow some OLAP 
terminology and call each hierarchy in a multi-hierarchic 
namespace a dimension. We assume that each dimension 
has an all-inclusive “top” category, called “*”. 

For simplicity in our example we will focus on just 
two dimensions: merchandise and location. Merchandise 
is the typical categorization scheme you can see in online 
auction sites such as eBay. An armchair, for example, 
might be classified under “Furniture/Chairs”. 
Location is a three level country-state-city hierarchy. We 
can visualize dimensions as axes in a coordinate system. 
You can see parts of this multi-hierarchic namespace in 
Figure 5. The “coordinates” of an item in this system are 
expressed as n-tuples, e.g., [USA/OR/Portland, 
Furniture/Tables].  

In Figure 5 you can see two interest areas, subsets of 
the cross product of the two dimensions. An interest area 
is made up of interest cells. An interest cell is the cross 
product of a category in the location dimension with a 
category in the merchandise dimension. Interest cells are 
also expressed as n-tuples. For example [USA, 
Furniture] is a cell that includes all pieces of furniture 
in the United States. Interest area (a) covers furniture in 
Vancouver ([USA/WA/Vancouver, Furniture]) 
and Portland ([USA/OR/Portland, Furniture]), 
while area (b) covers every item for sale in Portland 
([USA/OR/Portland, *]). 

We say that an interest cell x covers an interest cell y 
if, for every dimension in our namespace, the category of 
x for that dimension is a parent of, or the same as, the 
corresponding category of y. An interest area a covers an 
interest area b if every interest cell in b is covered by an 
interest cell in a. Two interest areas overlap if there exists 
a cell that they both cover. 

Data providers use interest areas to describe the kind 
of data they serve. Data consumers also use interest areas 
to form queries. Suppose we are looking for second-hand 
armchairs in the Portland area. Our interest area is then 
[USA/OR/Portland, Furniture/Chairs] and 
we only have to contact servers whose interest areas 
overlap with ours to find out about all pertinent items. 

3.2. Peer roles 

At this point, we have defined enough terminology to 
describe the various roles that peers can perform in our 



system. Peers can choose to perform one or more of the 
following roles:  
• A base server maintains or replicates named collections 
of data within an interest area. A seller in our P2P garage-
sale example might have an interest area of 
[USA/OR/Portland, Music/CDs]. 
• An index server keeps track of base servers, and other 
index servers with interest areas overlapping its own. An 
index server for the P2P garage sale could index, for 
example, servers overlapping [USA/OR, *]. Index 
servers can also maintain indices on data attributes not 
used for categorization, e.g., price.  
• A meta-index server is an index server that maintains 
only multi-hierarchic namespace indices, keeping track of 
base, index and meta-index servers with interest areas 
overlapping its own.  
• A category server can answer queries about the 
dimensions themselves (e.g., “What are the immediate 
subcategories of Furniture? ”).  

An index server’s entry for a base data item includes a 
URL (containing host name and port number of the base 
server) and an XPath [CD99] expression (the base 
server’s identifier for the collection). For example, an 
index server for [USA/OR, SportingGoods] might 
include a reference to golf clubs available at a seller’s site 
as (http://10.3.4.5, /data[id=245]). 

Note that a server’s interest area completely describes 
its data, but this does not guarantee that the server stores 
or indexes all the data in that interest area; there is no way 
to make such a statement in our system (although we do 
allow relative statements such as “Server A contains all of 
Server B’s data, for this interest area” – see Section 4). 

There is a tradeoff between a server’s index area, and 
the detail of the indices it maintains, which is the reason 
for having both an index server, and a meta-index server 
role. The richer these extra indices are, the better we can 
route a query. On the other hand, extra indices use up 
resources, and have to be updated when their base data 
change, thus limiting their scalability. Meta-index servers 
can afford to cover much larger interest areas than index 
servers, because they only maintain multi-hierarchic 
namespace indices. 

Peers can maintain caches with index and meta-index 
servers they used in the past. A peer that joins the P2P 
network for the first time will have to discover category 
servers, and also meta-index servers that serve top-level 
categories, for example a meta-index server that covers 
[France, *], and it obviously cannot use the P2P 
network for that. Peer software can either include 
hardwired locations of such servers, or preferably 
discover them out-of-band, for example by doing a search 
on a web search engine. 

3.3. Authoritative servers  

An authoritative server strives to know about all base 
servers within its area of interest. Routing a plan through 

an authoritative index or meta-index server will allow it to 
find out the known base servers in a particular interest 
area. A more realistic scenario is that a group of servers 
chooses to stay authoritative for an area, guaranteeing that 
the union of their answers includes paths to the relevant 
base servers. 

A base server joining the P2P network needs to 
register with index or meta-index servers that intersect 
with its interest area, to make their data available to other 
peers. Ideally, the servers it registers with should include 
authoritative servers whose union covers its interest area. 
Thus servers with more specific interest areas push the 
data about their existence to an authoritative server that 
covers them. We can also have a complementary pull 
process, where index servers query their base servers for 
their data, to build more detailed indices.  

An index or meta-index server that wishes to become 
authoritative for an interest area must first find the most 
detailed authoritative server group that covers it. At that 
point, the server must register with the other servers in 
that group so that it can start receiving registrations and 
updates from servers within its interest area, and also start 
receiving queries. Again, update propagation can be a 
pull, or a pull process. 

3.4. Resource resolution 

To form queries, we can encode interest areas into the 
“namespace-specific string” part of URNs, which we will 
from now on treat as structured entities instead of opaque 
strings. For example we can encode interest area (a) in 
Figure 5 as: 
“urn:InterestArea:(USA.OR.Portland,Furn
iture)+(USA.WA.Vancouver,Furniture)” 
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Figure 5: A multi-hierarchic namespace with two 
categorization dimensions and two highlighted interest 
areas: (a) Vancouver-Portland furniture, (b) items in 
Portland. 



Encoding is a purely lexical process of transliterating our 
interest area notation to URN syntax. 

A server trying to resolve such a URN should first 
seek an authoritative index or meta-index server that 
covers it, and recursively follow the index references until 
it finds all the relevant base servers and data items (or 
until it finds enough data items, in case the user asked a 
top-n type of query). 

In our example query of Figure 3, the URN we are 
trying to resolve has an interest area of 
[USA/OR/Portland, Music/CDs]. Our client may 
already know an authoritative meta-index server for 
[USA, *], so it sends the query plan there. This server 
may forward the query plan to a server for [USA, 
Music], which may then forward it to a server that 
knows about [USA/OR, Music] and so on, until we 
reach an index server that will replace the URN with a 
combination of URLs, such as the one in Figure 4(a). To 
avoid flooding high-level servers with plans, peers 
maintain caches of index and meta-index servers for 
interest areas, so that they can route plans more efficiently 
in the future. 

There is no guarantee that we can find an authoritative 
server for every query. It may very well be that we cannot 
find any servers for some part of a query’s interest area, 
or that, to get a complete answer, we may have to contact 
multiple servers that collectively cover an interest area. It 
is usually in a data provider’s best interest to register its 
data with one or more authoritative servers (sellers in our 
garage-sale example would do that to reach the widest 
possible audience). However, unless we are in a restricted 
context (e.g. a corporate intranet) where data providers 
can be compelled to do so, we cannot provide any 
absolute service guarantees. Fortunately, as with most 
internet services, users have learned not to expect them. 

3.5. Category servers 

Category servers maintain data about the categorization 
hierarchies themselves. Categorization hierarchies can be 
administered independently of each other (you can 
imagine a location hierarchy managed by the Post Office). 

Since our system uses categories for both index 
construction and query formulation, it is important that 
they are relatively stable and consistent. Fortunately, we 
can expect hierarchy nodes at higher levels to be more 
stable (countries and state names will change less 
frequently than zip codes or road names). Also, since 
nodes in a hierarchy properly contain their descendents, 
we can approximate a reference to a hierarchy node we 
don’t know about with a reference to one of its ancestors. 
For example, we could rewrite a reference to 
USA/OR/Portland into USA/OR, with a possible loss 
of precision, but no loss of recall. 

As with index and meta-index servers, category 
servers can cooperate with each other to manage their 
namespaces. Category servers can delegate portions of the 

namespace they manage to other category servers, much 
like the way DNS servers can delegate sub-domains to 
other servers.  

4. Completeness, Redundancy, Currency and 
Latency 
In this section we discuss how index and meta-index 
servers can convey the relationships between the data they 
cover, and how mutant queries can use this information to 
make intelligent choices about completeness, currency 
and latency tradeoffs.  
To simplify the formulas, from now on we will specify 
coordinates using only their most detailed levels, for 
example we will write Portland instead of 
USA/OR/Portland wherever the meaning is clear 
from context. We will also use res(E)to denote the 
result of evaluating the query expression E.  

4.1 Completeness and Redundancy 

In the distributed catalog architecture we described in the 
previous section, meta-index servers map interest areas to 
collections of URLs at index or base servers (or possibly 
other meta-index servers). The implicit semantics is that 
the interest area is covered by the union of those URLs. 
This simple interpretation is problematic for two reasons. 
One is that some of the servers may be wholly or partially 
redundant with others. For example, an index server on 
[Portland, Sporting Goods] and a server on 
[Oregon, Golf Clubs] could be redundant on a 
query involving [Portland, Golf Clubs]. The 
second problem is that one can’t know for sure when one 
has consulted enough meta-index servers. Will the next 
one reveal previously unknown index or base servers for 
an interest area, or just previously discovered ones? Our 
catalog scheme can thus benefit if servers can also 
announce their policies to replicate or index information 
at other servers. The simplest such “intensional 
statement” for a server is for it to say that it will exactly 
duplicate the contents of another server (meta-index, 
index or base). More useful is an intension to replicate on 
an area of interest. For example, server R might replicate 
everything from server S for the Portland category of 
the Location hierarchy. We can express this intensional 
statement as 

base[Portland, *]@R =  
base[Portland, *]@S. 

(Such a statement is a an instance of a coordination 
formula, as defined by Bernstein et al. [BGK+02], with a 
simplified syntax.) 

A more complicated relationship between R and S 
might be 

base[Oregon, Sporting Goods]@R = 

base[Portland, Golf Clubs]@S ∪ 
 base[Eugene, Golf Clubs]@S. 



Here we see that the only Oregon sporting goods 
information that R holds is for Portland and Eugene golf 
clubs at S. Note that this intensional statement is not 
equivalent to the pair 

base[Portland, Golf Clubs]@R = 
base[Portland, Golf Clubs]@S 
 base[Eugene, Golf Clubs]@R = 
base[Eugene, Golf Clubs]@S. 

With those statements, R might also contain data items for 
[Oregon, Sporting Goods] that are not from 
Portland or Eugene, or that are not golf clubs. 

The replication can occur at the meta-index or index 
levels as well, for example 

index[Portland, *]@R =  
index[Portland, *]@S. 

We can also capture connections across different 
levels at different servers. For example, to indicate that 
R’s index on Oregon golf clubs covers exactly the base 
records at S, we write 

index[Oregon, Golf Clubs]@R = 
base[Oregon, Golf Clubs]@S. 

More likely, R will index several base servers. If for 
example, it covers base data at servers S, T and U, the 
intensional statement is 

index[Oregon, Golf Clubs]@R = 

base[Oregon, Golf Clubs]@S ∪ 

base[Oregon, Golf Clubs]@T ∪ 
base[Oregon, Golf Clubs]@U. 

In general, exact replication will be too strict. It may 
be that R wants to replicate everything for Portland at S, 
but also possibly keep additional data about Portland. In 
that case, the intensional statement is 

base[Portland, *]@R ≥  
base[Portland, *]@S. 

That is, R knows everything that S does about Portland, 
and possibly more. 

4.2 Utilizing Intensional Statements 

How are such intensional statements used in the 
processing of MQPs? First of all, whenever a server 
registers an interest area with a meta-index server, it can 
also provide intensional statements that the meta-index 
server can retain. Servers can then use such information in 
binding and routing MQPs. To incorporate information 
from intensional statements into an MQP, we allow a new 
operator, “or”, in plans. An “or”, written as ‘|’, can be 
viewed as a “conjoint union”, saying that either 
expression it connects holds the necessary data (or index 
information). The essential semantics of “or” are captured 
by the pair of rewrite rules 

A | B → A 

 A | B → B. 
Example 1: Assume meta-index server M knows about 
servers R and S, with interest areas [Portland, 
Recreation] and [Oregon, Sporting Goods], 

respectively. Suppose M receives an MQP that contains 
the resource name [Portland, Golf Clubs]. With 
the basic catalog structure, as described in Section 3, that 
name could be bound to 

base[Portland, Golf Clubs]@R ∪ 
base[Portland, Golf Clubs]@S. 

If in addition M knows the intensional statement 
base[Portland, Sporting Goods]@R = 
base[Portland, Sporting Goods]@S, 

it could bind to 
base[Portland, Golf Clubs]@R | 
base[Portland, Golf Clubs]@S. 

Then the MQP could be routed to either R or S, but it 
need not go to both. 

 
Example 2: Consider this intensional statement about 
index coverage: 

index[Oregon, Golf Clubs]@R = 

base[Oregon, Golf Clubs]@S ∪ 

base[Oregon, Golf Clubs]@T ∪ 
base[Oregon, Golf Clubs]@U. 

In an MQP, the resource name [Portland, 
Putters] can be bound to 

index[Oregon, Golf Clubs]@R | 

base[Oregon, Golf Clubs]@S ∪ 

base[Oregon, Golf Clubs]@T ∪ 
base[Oregon, Golf Clubs]@U. 

The MQP can then be routed to R (and to S, T and U as 
needed) or directly to all of S, T and U, in some order. 

 
Example 3: Let us consider containment statements. 
Assume a meta-index server M knows about servers R 
and S, and the intensional statement 

base[Portland, *]@R ≥  
base[Portland, *]@S. 

Suppose M receives an MQP with resource name 
[Portland, CDs]. One possible binding for this 
name is 

base[Portland, CDs]@R. 
However, 

base[Portland, CDs]@R | 

base[Portland, CDs]@R ∪  
base[Portland, CDs]@S 

is also correct. This second binding might not seem 
particularly useful at first glance. However, there are 
conditions where it makes sense. One is if the MQP 
passes through server S for other reasons, and evaluation 
at S can reduce intermediate result size. Consider if the 
MQP contains the (partially evaluated) sub-expression 
res(E) - πC(base[Portland, CDs]@R ∪ 

base[Portland, CDs]@S). 
That expression can be transformed to 
(res(E) - πC(base[Portland, CDs]@S)) - 

πC(base[Portland, CDs]@R, 



in which the first difference can be evaluated, and may be 
much smaller than res(E) itself. Other reasons to prefer 
the second binding is that R may be unavailable at some 
point, and we can use S for a partial answer to the query, 
or that R replicates S with a delay (see the next section) 
and we want a more current answer. 

4.3. Currency and Latency 

In a loosely coupled Internet setting, it is impossible to 
guarantee that queries run instantly against the complete, 
latest information. There will be compromises on latency, 
completeness and currency. However, we would like a 
query issuer to have some control over the tradeoffs 
made. For example, a user may be willing to sacrifice 
completeness for a fast answer, or prefer completeness to 
currency in a query with a fixed time budget. 

We also recognize that replication between servers 
cannot be both scalable and instantaneous. More likely, 
servers will periodically contact other servers to update 
content. We therefore extend intensional statements to 
include a possible delay factor. For example, suppose 
server R polls every 30 minutes to update the data it 
replicates from S. We can express that intension as: 

base[Portland, *]@R ≥  
base[Portland, *]@S{30}, 

saying that R replicates everything at S for Portland, but 
can be up to 30 minutes out of date. Referring back to 
Example 3, a binding for resource [Portland, 
CDs]might then be 

base[Portland, CDs]@R{30} | 

(base[Portland, CDs]@R ∪ 
base[Portland, CDs]@S){0}. 

This binding indicates that one can get an answer (more) 
quickly by just routing the MQP to R, but that answer 
could be up to 30 minutes out of date. Alternatively, by 
routing the MQP to both R and S, one can have a 
complete and current answer (modulo the delay to finish 
evaluating the MQP and routing it back to the client). The 
latency for query evaluation will likely be longer in the 
second case, because of the need to visit two sites rather 
than one. 

One can imagine quite rich schemes for expressing 
user preferences among latency, completeness and 
currency, and query processing strategies to meet those 
preferences. Our initial inclination is to start with 
something simple: a query carries a target evaluation time 
(e.g., 30 seconds) plus a binary preference for complete 
versus current answers. Even with such a simple 
expression of tradeoffs, we expect to develop non-trivial 
methods for binding, evaluation and routing. 

5. Issues and Extensions 
In this section we discuss several possible extensions to 
our framework, as well as issues of security and privacy. 

5.1. Carrying Additional Information in MQPs 

We have described the process of MQP evaluation in 
terms of binding URNs to URLs of indexes and data, 
thence to the data itself, and replacing evaluable sub-
expressions with their results. Our initial implementation 
works in this manner. However, we see reasons to support 
annotation of URNs and URLs, and also to retain a copy 
of the original query plan in the MQP as it gets evaluated. 
We describe two uses of such information. 

Accumulating catalog and statistics information. As 
an MQP passes through a server, that server may have 
information about portions of a query it chooses not to 
evaluate, but that may be useful at later processing steps. 
For example, consider a server S that gets an MQP P = 

πC(σD(A) � B) to evaluate, and has B but not A. Suppose 
B has a million elements in it. S may decline to evaluate B 
at this point, because of the size of res(B). Rather than 
forwarding P intact to another server, S could annotate B 
with its cardinality, the unique cardinality of the join 
column, or even a histogram. Other servers could then 
avoid sending P back to S (or another server for B) until 
there was enough additional data in P to give a smaller 
result at S. Maintaining the original query along with the 
partially evaluated query also allows a server to improve 
or enhance bindings (or even undo them). For example, a 
server could add other possible URLs for a URN that it 
knows. A server can also improve its catalog information 
by examining a URN in the original query and its set of 
URLs in the partially evaluated query. 

Maintaining provenance. An MQP can also carry 
along a history of all the servers it has visited, as well as 
what each one did (provided bindings, provided data, re-
optimized the MQP, evaluated a sub-expression, or 
merely forwarded the MQP), when it did it, and how 
current the information was. That provenance can then be 
used at the final destination or at intermediate servers for 
a variety of purposes: 

Judging the quality of an answer: Knowing the 
processing history of a query can allow judgment about 
the currency or completeness of the result. 
• Rewards system: If server S observes that many of 
the queries it is getting for its data are because of indexes 
maintained at server T, S might reward T in some way. 
For example, S might devote a larger percentage of its 
index space to T’s data in return. 
• Meta-index updating: If server S is getting a lot 
of MQPs forwarded from server T that it just ends up 
forwarding to server R, S might be able to send T a meta-
index entry to allow it to route some of those queries 
directly to R. Or S might observe that T declines to bind 
source B even though T holds a copy of B. S might then 
decide to route MQPs needing B elsewhere in the future. 
• Detection of spoofing: To this point, we have 
been assuming that MQP servers behave correctly, and 
certainly not maliciously. But what if server S tried to 
tinker with queries to the detriment of a competitor’s 



server T? For example, server S may get an MQP P with 
an expression σD(A) ∪ σD(B), where A has data records 
at S and B has records at T. S could bind A to its actual 
value, but bind B to the empty set, making it appear that T 
has no qualifying items. If provenance is recorded, the 
resulting MQP would show that P never visited T (or any 
other site for B). If A also spoofs the provenance, to make 
it appear T participated, then it possible to construct a 
verification query (e.g., count(σD(B))) to send to T to 
check the result in P. To make the provenance more 
trustworthy, each addition to it could be digitally signed 
by the server that adds it and encrypted with the public 
key for the destination site. However, provenance is not a 
complete solution to a misbehaving server. In the example 
above, it is hard to detect if S is lying about A’s contents. 

5.2. Security and Privacy 

As with any distributed application, issues of security and 
privacy arise as soon as data is sent from one site to 
another. In-transit security for MQPs is neither more 
difficult nor less difficult than for other distributed query 
approaches. Security and privacy at MQP servers does 
raise some new issues, however. In a coordinator/ 
subordinate model of distributed query processing, only 
queries, and not data, are sent to the subordinate servers. 
(This assumption does not hold if semi-joins [BC81] are 
being used for distributed processing.) With MQPs, data, 
in the form of partial results, is divulged to other, possibly 
unknown, servers, which may be undesirable. For 
example, a query submitter might not want his or her 
music preferences known to a track-list server. Or an 
intermediate server might not want its data exposed to a 
competitor’s server down the line. Thus, MQPs will need 
to incorporate ordering and transfer policies, such as “do 
not bind preferences until playlist is bound” or 
“only let this MQP pass through servers on this list.” 
Obviously, such restrictions will be challenging to support 
in general in a loosely coupled environment. An 
alternative in some cases will be to encrypt data or data 
elements with the public key of the result recipient, 
although encrypted data can limit evaluation options en 
route. 

However, we point out that MQPs can allow a query 
submitter to obtain answers that might not be obtainable 
under given server security policies with conventional 
distributed query processing. It may be that two servers 
will allow data to pass between themselves that they will 
not directly divulge to a third party. For example, suppose 
a law enforcement agency wants to know which 
employees of a given company have made charitable 
contributions over $5000 to organizations that are 
believed to be fronts for illegal activities. The IRS has tax 
returns showing itemized deductions for contributions, 
and the State Department has a list of front organizations. 
But the IRS may balk at disclosing all contributions for all 
employees at a company, and the State Department may 

not want to reveal its list of suspect organizations. If, 
however, the IRS is willing to pass data to the State 
Department (knowing how it will be used from the 
query), then an MQP for this query can be executed in the 
following manner. The MQP first goes to the IRS, where 
names of people are found who work for the company 
(from W-2 forms) together with charity names for 
charitable deductions over $5000 (from Schedule A). That 
information is then bound into the MQP, which travels to 
the State Department. There, the results from the IRS are 
joined with the front-organization list, and then projected 
onto person name. The fully evaluated MQP now is 
routed back to the law enforcement agency. Neither the 
IRS nor the State Department had to disclose excessive 
sensitive information to the agency. 

6. Related work 
You can find a general introduction to mutant query 
plans, our prototype implementation, and a preliminary 
performance comparison with traditional pipelined 
distributed query execution in previous work [PM02a, 
PM02b]. Query optimization issues for mutant query 
plans include: consolidation (rewriting a plan so that 
locally evaluable sub-plans come together), absorption 
(plan rewritings that might not make sense in pipelined 
query execution but reduce the size of the partial result), 
and deferment (avoiding local execution of operators that 
increase the partial result size unjustifiably).  
Categorizing things in hierarchies is of course not a new 
idea — humans have been doing it for millennia! DNS 
[AL01] and LDAP [HS97] are examples of widely 
deployed systems based on hierarchical namespaces. DNS 
in particular has managed to scale admirably with an 
exponential growth in the amount of data it indexes and 
serves (mappings from human-readable machine names to 
IP addresses). Each DNS server covers a well-defined 
address space, and new “branches” (domains) can be 
added to accommodate growth. Most DNS queries (host-
name resolutions) can be served out of caches, and clients 
of the system only have to contact a few servers at most to 
resolve any host name. The contribution of our system is 
the combined categorization of data into multiple 
hierarchies, to accommodate different types of users with 
different viewpoints and ways to group data together. 
Gribble et al. [GHI+01] present the benefits of 
transplanting established data management techniques, 
stronger semantics, and theoretical underpinnings of 
databases to P2P networks. Bernstein et al. [BGK+02] 
introduce the Local Relational Model (LRM), a data 
model for P2P database applications. In the LRM, peers 
use declarative coordination formulas to describe the 
relationships and constraints between their schemas. 
Intensional statements, as we used them to describe 
relationships between index and meta-index servers, can 
be expressed using coordination formulas.  



Distributed hash table (DHT) algorithms are a very 
active research area. Systems such as CAN [RFH+01], 
Chord [SMK+01], Pastry [RD01], and Tapestry [ZKJ01] 
offer a scalable hashtable interface with extremely fast 
lookups (usually logarithmic in the number of hosts). Fast 
key lookups by themselves, however, cannot provide the 
data manipulation capabilities we regularly expect from a 
database – what about range queries, or joins? Harren et 
al. [HHH+02] analyze these issues, and describe the 
missing pieces (including a hierarchical namespace) we 
need in order to build a query processor on top of DHTs. 

An assumption that is frequently made for DHTs is 
that the system decides which nodes route, index (and 
sometimes store or cache) which data, for the benefit of 
the whole. We assume a much more loosely federated 
system, where these decisions are left to the peers, and 
depend on the application. In our gene expression data 
scenario, we expect that many laboratories would serve as 
the “authoritative” sources for their own data, and 
volunteer to index or cache data in related areas. 
Government agencies, such as the NIH, would provide 
meta-index services, and fund the development of 
controlled vocabularies and ontologies. An interesting 
alternative would be Mariposa’s microeconomic paradigm 
[SAL+96], where peers buy or sell data objects, and place 
bids to execute subqueries. 

Describing server holdings with interest areas is an 
instance of summarization, an idea widely used in the 
OLAP community. Walker [W80] analyzed the conditions 
under which a query over a summarized database gives 
correct answers, and proposed a succinctness ordering for 
comparing the quality of inexact answers. Lakshmanan et 
al. [LNW+02] present a generalization of the minimum 
description-length principle for summarization, which can 
lead to fewer summary regions, by allowing regions to 
contain “don’t care” cells.  

Our ideas on intelligent routing of query plans based 
on intensional statements about server coverage, 
completeness and redundancy are a form of semantic 
query optimization (SQO). Chakravarthy et al. [CGM90] 
used first-order logic to formalize an SQO framework for 
deductive and relational databases. Levy and Sagiv 
[LS95] studied the effects of allowing recursive rules, 
order constraints and negated subgoals in the rules and 
integrity constraints of a deductive database. Grant et al. 
[GGM+97] applied SQO techniques to object databases. 
Hsu and Knoblock [HK00] used SQO to optimize 
distributed queries, both at a local level (e.g., by 
eliminating redundant joins) and at a global level (e.g., by 
minimizing data transmission). 
Yang and Garcia-Molina [YG01] compared the 
performance of several hybrid P2P architectures for file-
sharing networks, using both analytical models and 
experimental data. In hybrid P2P architectures peers 
transfer data autonomously, but depend on one or more 
central servers for indexing and querying. They have also 

compared the performance of various search strategies for 
pure P2P architectures [YG02], using data from the 
Gnutella network. Crespo and Garcia-Molina [CG02] 
proposed using Routing Indices (RI) to direct queries in 
pure P2P networks. RIs are distributed indices, 
maintained at each node, that guide each query to the 
most promising neighbors of the node (in terms of number 
of relevant documents and their network distance). Since 
RIs record promising directions, and not addresses, they 
have reasonable storage requirements. 
Galanis et al. [GWJ+02] presents a system for running IR-
style containment queries over the documents in a P2P 
network. Their system maintains Peer Inverted Indices 
(PIs) at each node. PIs map keywords (whose number is 
usually much smaller than the number of documents) to 
peers with documents that contain them. Bayardo et al. 
[BAG+02] implemented a system called YouServ for 
hosting web content, where peers collaborate to host 
replicas of each other’s web sites. YouServ uses dynamic 
DNS to map URLs to the replicas currently serving them. 

The major difference between our proposal and most 
of the work on file-sharing systems is granularity: In a file 
sharing system, peers can only store, replicate, index, and 
query data in whole-file chunks; we, on the other hand, 
allow peers to deal with semi-structured data at any level.  

7. Conclusions 
We presented our framework for distributed data 
management based on mutant query plans and multi-
hierarchic namespaces. Mutant query plans enable peers 
to independently optimize and partially evaluate queries 
without global knowledge, and with a minimum of 
coordination overhead. Our main assumption is that data 
and query result distributions can be mapped naturally to 
multi-hierarchic namespaces, allowing us to build 
decentralized indices for efficient query routing. We 
believe that this assumption is reasonable, not just for our 
P2P garage sale example, but for a wide range of P2P data 
management applications. 
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