
Distributed Query Processing and Catalogs
for Peer-to-Peer Systems

Vassilis Papadimos David Maier Kristin Tufte

OGI School of Science & Engineering
Oregon Health & Science University
{vpapad,maier,tufte}@cse.ogi.edu

Abstract
Peer-to-peer (P2P) architectures are commonly
used for file-sharing applications. The reasons
for P2P’s popularity in file sharing – fault
tolerance, scalability, and ease of deployment –
also make it a good model for distributed data
management. In this paper, we introduce a
scalable P2P framework for distributed data
management applications using mutant query
plans: XML serializations of algebraic query
plan graphs that can include verbatim XML data,
references to resource locations (URLs), and
abstract resource names (URNs). We show how
we can build distributed catalogs based on multi-
hierarchic namespaces that can efficiently handle
content indexing and query routing. We also
discuss how peers can convey the currency and
coverage of their data, and how queries can use
this information to manage the inherent tradeoffs
between answer completeness, timeliness, and
latency.

1. Introduction
Many file-sharing systems today use peer-to-peer (P2P)
architectures, where participants simultaneously serve and
receive files. Most P2P systems handle file sharing in a
decentralized P2P fashion. Some systems however fall
back to a client-server architecture for indexing and
searching. There are thus two main approaches, which we
will name after the first popular systems that implemented
them:
• The “Napster” (also called hybrid in [YG01])

approach: A centralized group of servers indexes

filenames, and all queries must go through them.
• The “Gnutella” (or pure) approach: No central

indices are maintained; queries are broadcast to a
node’s “neighbors” (which then broadcast them to all
of their neighbors, and so on, up to a fixed number of
steps, called the horizon).

P2P systems are successful for several reasons, including:
• Ease of deployment: Each user installs a single

package that encompasses both client and server
code; its initial configuration depends only on
knowing a fixed index server or a single other
installation; servers need not be continuously active.

• Ease of use: The server code is bundled with a user
interface application to publish, search and retrieve
content.

• Fault tolerance: Failure or unavailability of a single
server (other than a central index) does not disable
the system. It might render some content unavailable,
but much of the content ends up being heavily
replicated.

• Scalability: As the number of users and amount of
content increase, so does the number of servers;
protocols do not require “all-to-all” communication
or coordination.

However, there are limitations that come with these
advantages. The schema and queries for searching for
content are typically hardwired into the application; there
can be bottlenecks at the centralized index; there are no
mechanisms for combining or otherwise manipulating the
content itself. Recently there is interest in adapting the
P2P model to distributed data management scenarios. We
see two major issues for current P2P approaches here:
weak query capabilities, and limitations in index
scalability and result quality.

Current P2P systems offer very limited querying
functionality: simple selection on a predefined set of
index attributes, IR-style string matching or containment,
no manipulation of content. These limitations are
acceptable for file-sharing applications, since people find
ways to encode metadata about a file in the filename, but
more general P2P applications will require a richer query
model. We want to enable content publishers to export

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

structured or semi-structured views of their data (for
example using XML), and allow users to query them
using a full-featured query language.

In terms of index scalability and result quality both the
Napster and Gnutella approaches have serious limitations.
Centralized index servers don’t scale with the number of
clients. Query broadcasting wastes network bandwidth
and hurts result quality by limiting the availability of rare
content. Again, file-sharing networks thrive despite these
limitations: Finding 10 out of the 100 available copies of
the same file is usually good enough, but for general-
purpose P2P query systems, we will have to do better.

The assumption usually made by file-sharing
implementations is that any file can potentially be
replicated at any node in the system. This is a reasonable
assumption for file-sharing systems, but not necessarily
true for P2P applications in general, and database-style
applications in particular. A content provider might not
want its content replicated in bulk; the natural unit of
retrieval (e.g. a record) might be at too small a level of
granularity for a file-based approach; effective evaluation
of query conditions may require having certain content
aggregated (lowest price, closest location).

In this paper, we describe a peer-to-peer architecture
for distributed querying that works well for application
domains where content providers have specific affinities
for storing, replicating, or indexing different subsets of a
global data namespace. Peers express their preferences for
the data they are serving or looking for using a name
space of multiple hierarchical categories. Queries are

routed efficiently, without depending on centralized index
servers or query broadcasting, and peers can make
intelligent choices about query latency, data completeness
and currency tradeoffs.

For example, consider different biomedical research
groups hosting on-line repositories of gene-expression
data (such as those obtained from microarray
experiments). Emerging data interchange standards such
as MIAME [BHQ+01] allow groups to exchange and
replicate expression data. Groups choose what data to
host, generally based on their own research interests. In
our approach, groups can indicate their interest areas
relative to organism and cell-type hierarchies. In Figure 1
we see interest areas of three groups: one for neural cells
in fruit flies, a second for connective and muscle cell in
rodents, and a third with all cell types for humans. Given
this coverage information, a site processing a query
related to cardiac muscle cells in mammals can route the
query to the second or third site (where it might find
relevant data), but can ignore the first site (where it surely
will not). More generally, interest areas can describe
indexing coverage of other groups' data, or even "meta-
coverage" of other groups data and index interest areas.
(Note that MIAME defines many more metadata
attributes for expression data, such as anatomical location
and developmental stage. We used just two categories
here because it is easy to depict graphically.)

We will often use the terms client and server for
participants in our system. There are some activities
where participants act as peers, and others, most notably
query submission and processing where there is clearly a
client and a server. The important distinction between the
P2P model and the client-server model is not that such
roles do not exist, but that they are not fixed or pre-
assigned; this query’s client may well become the next
query’s server.

Here is an overview of the rest of this paper. In
Section 2 we introduce our running example, a P2P
“garage-sale” application, and present mutant query
plans, our coordinator-less distributed query execution
framework. In Section 3 we present multi-hierarchic
namespaces and explain their use in P2P indexing and
querying. Section 4 discusses how peers can reason about
answer completeness, redundancy, and currency of
answers, and tradeoffs versus query latency. Section 5
covers issues and extensions to our framework. Section 6
presents related work, and Section 7 concludes.

2. Mutant queries and the P2P garage sale
We will use a distributed garage sale as our running
example. A garage sale is the real world situation that
most closely resembles a P2P network. People sell and
buy things without middlemen, or predetermined
seller/buyer (server/client) roles.

Glial
Association

Sensory
Motor

Osteoblasts
Osteoclasts

Cardiac
Autorhythmic

Contractile

Homo
Sapiens

Rattus
Norvegicus

Organism

MusDrosophila
Melanogaster

Protostomia

Coelomata

Deuterostomia

Mammalia

Eutheria

Cell Type

Bone

Smooth

Skeletal
Muscle

Neurons

Connective

Epithelial Cilliated
Secretory

Adipose

PrimatesRodentia

Murinae

Musculus

Neural

Figure 1: Of Mice and Men. Using hierarchies to
describe and query repositories of gene expression data.
A query about mammalian heart cells partially covers a
database on connective and muscle rodent cells, and a
database on human cells.

In the P2P garage sale, data about items in garage
sales, second hand stores, and auctions come online. The
system simply brings together people who want to sell or
buy used items; the actual transactions happen outside the
system. We posit a collection of local consignment shops
that handle the actual storage, sales and delivery of goods
for a commission, and which can co-operate with each
other to transfer items closer to a potential buyer for
inspection and purchase. Most participants who post
information to our system will have registered to sell
through a particular shop, but nothing prevents someone
from selling directly, say, out of his or her garage.

Each for-sale item has an associated data bundle with
various information in it: item name, seller location,
description, condition, images, quantity, price, etc. We
will assume that sellers export these data bundles in
XML. Notice that our data are more structured and varied
than the typical file description, and support much more
meaningful queries; our query language therefore should
be more powerful than the typical IR-based string
matching interfaces found in most P2P systems. A seller
can run his or her own server to publish items for sale, or
can post them to a server run by a consignment shop.

Many queries will combine data residing in multiple
peers. Transferring all relevant data to a central location
wastes time and bandwidth. For-sale data is likely to have
locality in terms of geographic location or category of
merchandise (e.g., a consignment shop/server that
specializes in used clothing). We need a distributed query
execution mechanism, so that we can run our queries
“closer” to the relevant data.

In the remainder of this section we will briefly
describe Mutant Query Plans (MQPs), a framework for
coordination-free distributed query execution. (You can
find additional information about MQPs in [PM02a,
PM02b]). We have implemented an MQP prototype with
the basic features described in this section using the
NIAGARA system [NDM+01] as our XML query engine.

A mutant query plan is an algebraic query plan graph,
encoded in XML, that may also include verbatim XML-
encoded data, references to resource locations (URLs),

and references to abstract resource names (URNs). Each
MQP is tagged with a target: a network address to send
the result to, once the MQP is fully evaluated.

The ability of mutant query plans to package together
query operators and data means that we can use them to
represent all the stages in the evaluation of a distributed
query. An MQP starts out as a regular query operator tree
at the client, and is then passed around from server to
server, accumulating partial results, until it is fully
evaluated into a constant piece of XML data and returned
to the client.

A server can choose to mutate an incoming MQP in
two ways. It can resolve a URN to one or more URLs, or
a URL to its corresponding data. The server can also
reduce the MQP by evaluating a sub-graph of the plan
that contains only data at the leaves, and substituting the
results in place of the sub-plan. If the plan is now
completely evaluated (i.e., it has been reduced to a
constant piece of XML-encoded data), the server sends it
to the target, otherwise it routes the plan to another server
that can continue processing.

Figure 2 shows this process in more detail. An MQP
arrives at a server encoded in XML. The server parses the
plan into an in-memory graph, and determines the URNs
that it can resolve. The optimizer finds the locally
evaluable sub-plans (a sub-plan is locally evaluable if all
its leaves are verbatim XML data, URLs, or resolvable
URNs), optimizes them and estimates their costs. A
policy manager component decides which of those sub-
plans to evaluate, and forwards them for execution to the
query engine. The server then substitutes the resulting
XML fragments as verbatim XML data in the place of the
evaluated sub-plans, serializes the mutated plan in XML
and sends it to some other server that can continue the
plan’s evaluation.

As an example, suppose we are looking for CDs for
$10 or less in the Portland area. Sellers publish lists that
include CD titles. Our P2P client has a list of our favorite
songs, and we can use an online track-listing service, such
as CDDB [CDB] or FreeDB [FDB], to connect these two
resources.

Parser Catalog Optimizer

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

XML

URL

Policy ManagerQuery Engine

Subplans to evaluate

MQP

To next server

URN

URN URN

Cost estimatesMutated QP

XML fragments

Sub−plans

Figure 2: Mutant Query Processing.

Figure 3 shows a mutant query plan for this request.
The plan includes regular query operators such as select
and join, a display pseudo-operator that specifies the
query plan’s target, a constant piece of XML with the
songs we are looking for, and two URNs:
urn:ForSale:Portland-CDs,
and urn:CD:TrackListings.

There are no reduction steps we can perform on the
MQP of Figure 3, unless we resolve one of the two
abstract resources (URNs) to specific URLs or to raw
data. Figure 4 shows two steps in this process. In Figure
4(a), a server resolves the ForSale URN to a union of
two seller URLs, pushes the select operator through the
union, and forwards the plan to one of the seller servers.
In Figure 4(b) the server substitutes its CD data for its
URL, evaluates the select and reduces its part of the plan
to a constant piece of XML data. This series of URN-to-
URL-to-data resolutions and sub-plan reductions will
continue until the whole plan is evaluated, and forwarded
to its target.

Resolution drives the query evaluation process of
MQPs. Resolving URLs is straightforward: we can either
connect to the specified server to fetch the data, or
forward the whole MQP to it. In our current
implementation, we resolve URNs by consulting a
catalog, which we maintain locally at each peer. A
catalog contains mappings from URNs to (sets of) URLs,
or from URNs to servers that know how to resolve them.

Traditional distributed query processing depends on
coordinators, servers that must know all about data
replication and statistics, to optimize a query. Mutant
query plans have no need for such omniscient
coordinators as they allow query optimization and source
discovery to work with whatever information is available
locally, and to proceed in parallel with query execution.

Compared to traditional, distributed query processing,
mutant query plans trade away pipelining and parallelism
for robustness, autonomous optimization at each peer and
reduced deployment costs. A preliminary performance
comparison, and ideas on how to hedge this bet and get
some parallelism back are described elsewhere [PM02a].

MQPs present interesting new optimization issues
(more elsewhere [PM02b]). Here is an example. Each
server must materialize its partial results to ship the
mutated query plan to the next server. We have to transfer
these partial results over the network; their size matters.
We can come up with query rewritings which would help
MQP optimization that regular query optimizers would
not normally consider. Suppose resources A and B are

available locally, while X is not. If we know that |A � B|

� |A| we can reduce network traffic by rewriting (A � X)

� B into (A � B) � (X � B), and evaluating the left
branch. Depending on the number of B tuples that join
with A, we may also opt to evaluate only the right outer
join of A and B locally, by rewriting the plan to:

�����	
�������	
���
 where 	�������

Mutant query execution, where each server in turn

optimizes the plan, executes it and materializes the
temporary results is reminiscent of INGRES-style query
evaluation [SWK+76,WY76], where query decomposition
interleaves sub-query execution and optimization.

join

join

urn:CD:TrackListings

target=129.95.50.105:9020display

song

CD title

urn:ForSale:Portland−CDs

select price < $10

favorite songs

Figure 3: A mutant query plan.

select price < $10

http://10.1.2.3:9020/ http://10.2.3.4:9020/

select price < $10

http://10.2.3.4:9020/

select price < $10

join

join

urn:CD:TrackListings

target=129.95.50.105:9020display

song

CD title
favorite songs

union

join

join

urn:CD:TrackListings

target=129.95.50.105:9020display

song

CD title
favorite songs

union

Seller 1 CD titles

(a) (b)

Figure 4: Two steps in the evaluation of a mutant query: (a) resolution and rewriting, (b) reduction.

3. Distributed Catalogs
In the previous section we glossed over an important issue
with mutant query plans (and P2P systems in general):
How do peers find out about resources available in other
peers? In our example, how did we know that we could
resolve the ForSale URN of Figure 3 into the union of
two URLs in Figure 4(a)? For that matter, how did the
user formulating the query know there was a
Portland-CD resource to query over?

We want the P2P network to maintain distributed
catalogs that can efficiently route queries to peers with
relevant data. This index structure cannot scale unless it is
itself distributed or partitioned among peers.

We believe that the main obstacle for building such
distributed catalogs for file-sharing systems is the flat
“filename” namespace, where any peer can potentially
serve any file. In many applications, such as the P2P
garage sale, we have much richer, structured metadata
about our content.

In this section we describe how peers can use multi-
hierarchic namespaces to categorize data; data providers
use multi-hierarchic namespaces to describe the kind of
data they serve and data consumers use them to formulate
queries. We then detail the different roles that peers can
play in the system, and the resource resolution process.

3.1. Multi-hierarchic namespaces

There are many ways we can use data attributes to
organize data. For example we could use location to place
items in the P2P garage sale into categories based on the
seller’s country, state, or city. This categorization is by no
means the only one possible: we could also choose one of
the various categorization schemes you find at online
auction sites, or define categories based on price, weight,
color, etc.

These categorization schemes can be flat (e.g.
categorizing by price into items costing more than $100
vs. items costing less than $100), or hierarchical, with
categories specified at different granularities or levels.
USA/OR/Portland (all items located in Portland) is a
city-level category, while France is a country-level
category. We will call such multi-level categorizations
categorization hierarchies. Within a categorization
hierarchy, each item belongs to one (and only one)
category called its most-specific category, and to all of its
parents. For example every item in the
USA/OR/Portland category also belongs in the
USA/OR and USA categories.

The main idea behind our distributed catalogs is that
for many P2P applications, the distribution of the
underlying data among servers is not random. It is often
the case that data are stored, grouped, replicated and
queried according to one or more categorization
hierarchies that are natural for the application. All the
items sold by the same seller in the P2P garage sale will

usually have the same address. If this address is in
USA/OR/Portland, most prospective buyers will
come from Portland, or locations close to Portland in the
location hierarchy. People collect things: baseball cards,
CDs, books, … If I am trading baseball cards, chances are
that I have more than one.

Whenever this assumption holds, we can use these
“natural” categorization hierarchies to build distributed
indices for query routing. We call the set of categorization
hierarchies relevant to an application domain a multi-
hierarchic namespace. We will also borrow some OLAP
terminology and call each hierarchy in a multi-hierarchic
namespace a dimension. We assume that each dimension
has an all-inclusive “top” category, called “*”.

For simplicity in our example we will focus on just
two dimensions: merchandise and location. Merchandise
is the typical categorization scheme you can see in online
auction sites such as eBay. An armchair, for example,
might be classified under “Furniture/Chairs”.
Location is a three level country-state-city hierarchy. We
can visualize dimensions as axes in a coordinate system.
You can see parts of this multi-hierarchic namespace in
Figure 5. The “coordinates” of an item in this system are
expressed as n-tuples, e.g., [USA/OR/Portland,
Furniture/Tables].

In Figure 5 you can see two interest areas, subsets of
the cross product of the two dimensions. An interest area
is made up of interest cells. An interest cell is the cross
product of a category in the location dimension with a
category in the merchandise dimension. Interest cells are
also expressed as n-tuples. For example [USA,
Furniture] is a cell that includes all pieces of furniture
in the United States. Interest area (a) covers furniture in
Vancouver ([USA/WA/Vancouver, Furniture])
and Portland ([USA/OR/Portland, Furniture]),
while area (b) covers every item for sale in Portland
([USA/OR/Portland, *]).

We say that an interest cell x covers an interest cell y
if, for every dimension in our namespace, the category of
x for that dimension is a parent of, or the same as, the
corresponding category of y. An interest area a covers an
interest area b if every interest cell in b is covered by an
interest cell in a. Two interest areas overlap if there exists
a cell that they both cover.

Data providers use interest areas to describe the kind
of data they serve. Data consumers also use interest areas
to form queries. Suppose we are looking for second-hand
armchairs in the Portland area. Our interest area is then
[USA/OR/Portland, Furniture/Chairs] and
we only have to contact servers whose interest areas
overlap with ours to find out about all pertinent items.

3.2. Peer roles

At this point, we have defined enough terminology to
describe the various roles that peers can perform in our

system. Peers can choose to perform one or more of the
following roles:
• A base server maintains or replicates named collections
of data within an interest area. A seller in our P2P garage-
sale example might have an interest area of
[USA/OR/Portland, Music/CDs].
• An index server keeps track of base servers, and other
index servers with interest areas overlapping its own. An
index server for the P2P garage sale could index, for
example, servers overlapping [USA/OR, *]. Index
servers can also maintain indices on data attributes not
used for categorization, e.g., price.
• A meta-index server is an index server that maintains
only multi-hierarchic namespace indices, keeping track of
base, index and meta-index servers with interest areas
overlapping its own.
• A category server can answer queries about the
dimensions themselves (e.g., “What are the immediate
subcategories of Furniture? ”).

An index server’s entry for a base data item includes a
URL (containing host name and port number of the base
server) and an XPath [CD99] expression (the base
server’s identifier for the collection). For example, an
index server for [USA/OR, SportingGoods] might
include a reference to golf clubs available at a seller’s site
as (http://10.3.4.5, /data[id=245]).

Note that a server’s interest area completely describes
its data, but this does not guarantee that the server stores
or indexes all the data in that interest area; there is no way
to make such a statement in our system (although we do
allow relative statements such as “Server A contains all of
Server B’s data, for this interest area” – see Section 4).

There is a tradeoff between a server’s index area, and
the detail of the indices it maintains, which is the reason
for having both an index server, and a meta-index server
role. The richer these extra indices are, the better we can
route a query. On the other hand, extra indices use up
resources, and have to be updated when their base data
change, thus limiting their scalability. Meta-index servers
can afford to cover much larger interest areas than index
servers, because they only maintain multi-hierarchic
namespace indices.

Peers can maintain caches with index and meta-index
servers they used in the past. A peer that joins the P2P
network for the first time will have to discover category
servers, and also meta-index servers that serve top-level
categories, for example a meta-index server that covers
[France, *], and it obviously cannot use the P2P
network for that. Peer software can either include
hardwired locations of such servers, or preferably
discover them out-of-band, for example by doing a search
on a web search engine.

3.3. Authoritative servers

An authoritative server strives to know about all base
servers within its area of interest. Routing a plan through

an authoritative index or meta-index server will allow it to
find out the known base servers in a particular interest
area. A more realistic scenario is that a group of servers
chooses to stay authoritative for an area, guaranteeing that
the union of their answers includes paths to the relevant
base servers.

A base server joining the P2P network needs to
register with index or meta-index servers that intersect
with its interest area, to make their data available to other
peers. Ideally, the servers it registers with should include
authoritative servers whose union covers its interest area.
Thus servers with more specific interest areas push the
data about their existence to an authoritative server that
covers them. We can also have a complementary pull
process, where index servers query their base servers for
their data, to build more detailed indices.

An index or meta-index server that wishes to become
authoritative for an interest area must first find the most
detailed authoritative server group that covers it. At that
point, the server must register with the other servers in
that group so that it can start receiving registrations and
updates from servers within its interest area, and also start
receiving queries. Again, update propagation can be a
pull, or a pull process.

3.4. Resource resolution

To form queries, we can encode interest areas into the
“namespace-specific string” part of URNs, which we will
from now on treat as structured entities instead of opaque
strings. For example we can encode interest area (a) in
Figure 5 as:
“urn:InterestArea:(USA.OR.Portland,Furn
iture)+(USA.WA.Vancouver,Furniture)”

WA CA

Seattle Vancouver EugenePortland

OR

U.S.A.France

E
le

ct
ro

ni
cs

T
V

V
C

R

Fu
rn

itu
re

T
ab

le
s

C
ha

ir
s a

b

Figure 5: A multi-hierarchic namespace with two
categorization dimensions and two highlighted interest
areas: (a) Vancouver-Portland furniture, (b) items in
Portland.

Encoding is a purely lexical process of transliterating our
interest area notation to URN syntax.

A server trying to resolve such a URN should first
seek an authoritative index or meta-index server that
covers it, and recursively follow the index references until
it finds all the relevant base servers and data items (or
until it finds enough data items, in case the user asked a
top-n type of query).

In our example query of Figure 3, the URN we are
trying to resolve has an interest area of
[USA/OR/Portland, Music/CDs]. Our client may
already know an authoritative meta-index server for
[USA, *], so it sends the query plan there. This server
may forward the query plan to a server for [USA,
Music], which may then forward it to a server that
knows about [USA/OR, Music] and so on, until we
reach an index server that will replace the URN with a
combination of URLs, such as the one in Figure 4(a). To
avoid flooding high-level servers with plans, peers
maintain caches of index and meta-index servers for
interest areas, so that they can route plans more efficiently
in the future.

There is no guarantee that we can find an authoritative
server for every query. It may very well be that we cannot
find any servers for some part of a query’s interest area,
or that, to get a complete answer, we may have to contact
multiple servers that collectively cover an interest area. It
is usually in a data provider’s best interest to register its
data with one or more authoritative servers (sellers in our
garage-sale example would do that to reach the widest
possible audience). However, unless we are in a restricted
context (e.g. a corporate intranet) where data providers
can be compelled to do so, we cannot provide any
absolute service guarantees. Fortunately, as with most
internet services, users have learned not to expect them.

3.5. Category servers

Category servers maintain data about the categorization
hierarchies themselves. Categorization hierarchies can be
administered independently of each other (you can
imagine a location hierarchy managed by the Post Office).

Since our system uses categories for both index
construction and query formulation, it is important that
they are relatively stable and consistent. Fortunately, we
can expect hierarchy nodes at higher levels to be more
stable (countries and state names will change less
frequently than zip codes or road names). Also, since
nodes in a hierarchy properly contain their descendents,
we can approximate a reference to a hierarchy node we
don’t know about with a reference to one of its ancestors.
For example, we could rewrite a reference to
USA/OR/Portland into USA/OR, with a possible loss
of precision, but no loss of recall.

As with index and meta-index servers, category
servers can cooperate with each other to manage their
namespaces. Category servers can delegate portions of the

namespace they manage to other category servers, much
like the way DNS servers can delegate sub-domains to
other servers.

4. Completeness, Redundancy, Currency and
Latency
In this section we discuss how index and meta-index
servers can convey the relationships between the data they
cover, and how mutant queries can use this information to
make intelligent choices about completeness, currency
and latency tradeoffs.
To simplify the formulas, from now on we will specify
coordinates using only their most detailed levels, for
example we will write Portland instead of
USA/OR/Portland wherever the meaning is clear
from context. We will also use res(E)to denote the
result of evaluating the query expression E.

4.1 Completeness and Redundancy

In the distributed catalog architecture we described in the
previous section, meta-index servers map interest areas to
collections of URLs at index or base servers (or possibly
other meta-index servers). The implicit semantics is that
the interest area is covered by the union of those URLs.
This simple interpretation is problematic for two reasons.
One is that some of the servers may be wholly or partially
redundant with others. For example, an index server on
[Portland, Sporting Goods] and a server on
[Oregon, Golf Clubs] could be redundant on a
query involving [Portland, Golf Clubs]. The
second problem is that one can’t know for sure when one
has consulted enough meta-index servers. Will the next
one reveal previously unknown index or base servers for
an interest area, or just previously discovered ones? Our
catalog scheme can thus benefit if servers can also
announce their policies to replicate or index information
at other servers. The simplest such “intensional
statement” for a server is for it to say that it will exactly
duplicate the contents of another server (meta-index,
index or base). More useful is an intension to replicate on
an area of interest. For example, server R might replicate
everything from server S for the Portland category of
the Location hierarchy. We can express this intensional
statement as

base[Portland, *]@R =
base[Portland, *]@S.

(Such a statement is a an instance of a coordination
formula, as defined by Bernstein et al. [BGK+02], with a
simplified syntax.)

A more complicated relationship between R and S
might be

base[Oregon, Sporting Goods]@R =

base[Portland, Golf Clubs]@S ∪
 base[Eugene, Golf Clubs]@S.

Here we see that the only Oregon sporting goods
information that R holds is for Portland and Eugene golf
clubs at S. Note that this intensional statement is not
equivalent to the pair

base[Portland, Golf Clubs]@R =
base[Portland, Golf Clubs]@S
 base[Eugene, Golf Clubs]@R =
base[Eugene, Golf Clubs]@S.

With those statements, R might also contain data items for
[Oregon, Sporting Goods] that are not from
Portland or Eugene, or that are not golf clubs.

The replication can occur at the meta-index or index
levels as well, for example

index[Portland, *]@R =
index[Portland, *]@S.

We can also capture connections across different
levels at different servers. For example, to indicate that
R’s index on Oregon golf clubs covers exactly the base
records at S, we write

index[Oregon, Golf Clubs]@R =
base[Oregon, Golf Clubs]@S.

More likely, R will index several base servers. If for
example, it covers base data at servers S, T and U, the
intensional statement is

index[Oregon, Golf Clubs]@R =

base[Oregon, Golf Clubs]@S ∪

base[Oregon, Golf Clubs]@T ∪
base[Oregon, Golf Clubs]@U.

In general, exact replication will be too strict. It may
be that R wants to replicate everything for Portland at S,
but also possibly keep additional data about Portland. In
that case, the intensional statement is

base[Portland, *]@R ≥
base[Portland, *]@S.

That is, R knows everything that S does about Portland,
and possibly more.

4.2 Utilizing Intensional Statements

How are such intensional statements used in the
processing of MQPs? First of all, whenever a server
registers an interest area with a meta-index server, it can
also provide intensional statements that the meta-index
server can retain. Servers can then use such information in
binding and routing MQPs. To incorporate information
from intensional statements into an MQP, we allow a new
operator, “or”, in plans. An “or”, written as ‘|’, can be
viewed as a “conjoint union”, saying that either
expression it connects holds the necessary data (or index
information). The essential semantics of “or” are captured
by the pair of rewrite rules

A | B → A

 A | B → B.
Example 1: Assume meta-index server M knows about
servers R and S, with interest areas [Portland,
Recreation] and [Oregon, Sporting Goods],

respectively. Suppose M receives an MQP that contains
the resource name [Portland, Golf Clubs]. With
the basic catalog structure, as described in Section 3, that
name could be bound to

base[Portland, Golf Clubs]@R ∪
base[Portland, Golf Clubs]@S.

If in addition M knows the intensional statement
base[Portland, Sporting Goods]@R =
base[Portland, Sporting Goods]@S,

it could bind to
base[Portland, Golf Clubs]@R |
base[Portland, Golf Clubs]@S.

Then the MQP could be routed to either R or S, but it
need not go to both.

Example 2: Consider this intensional statement about
index coverage:

index[Oregon, Golf Clubs]@R =

base[Oregon, Golf Clubs]@S ∪

base[Oregon, Golf Clubs]@T ∪
base[Oregon, Golf Clubs]@U.

In an MQP, the resource name [Portland,
Putters] can be bound to

index[Oregon, Golf Clubs]@R |

base[Oregon, Golf Clubs]@S ∪

base[Oregon, Golf Clubs]@T ∪
base[Oregon, Golf Clubs]@U.

The MQP can then be routed to R (and to S, T and U as
needed) or directly to all of S, T and U, in some order.

Example 3: Let us consider containment statements.
Assume a meta-index server M knows about servers R
and S, and the intensional statement

base[Portland, *]@R ≥
base[Portland, *]@S.

Suppose M receives an MQP with resource name
[Portland, CDs]. One possible binding for this
name is

base[Portland, CDs]@R.
However,

base[Portland, CDs]@R |

base[Portland, CDs]@R ∪
base[Portland, CDs]@S

is also correct. This second binding might not seem
particularly useful at first glance. However, there are
conditions where it makes sense. One is if the MQP
passes through server S for other reasons, and evaluation
at S can reduce intermediate result size. Consider if the
MQP contains the (partially evaluated) sub-expression
res(E) - πC(base[Portland, CDs]@R ∪

base[Portland, CDs]@S).
That expression can be transformed to
(res(E) - πC(base[Portland, CDs]@S)) -

πC(base[Portland, CDs]@R,

in which the first difference can be evaluated, and may be
much smaller than res(E) itself. Other reasons to prefer
the second binding is that R may be unavailable at some
point, and we can use S for a partial answer to the query,
or that R replicates S with a delay (see the next section)
and we want a more current answer.

4.3. Currency and Latency

In a loosely coupled Internet setting, it is impossible to
guarantee that queries run instantly against the complete,
latest information. There will be compromises on latency,
completeness and currency. However, we would like a
query issuer to have some control over the tradeoffs
made. For example, a user may be willing to sacrifice
completeness for a fast answer, or prefer completeness to
currency in a query with a fixed time budget.

We also recognize that replication between servers
cannot be both scalable and instantaneous. More likely,
servers will periodically contact other servers to update
content. We therefore extend intensional statements to
include a possible delay factor. For example, suppose
server R polls every 30 minutes to update the data it
replicates from S. We can express that intension as:

base[Portland, *]@R ≥
base[Portland, *]@S{30},

saying that R replicates everything at S for Portland, but
can be up to 30 minutes out of date. Referring back to
Example 3, a binding for resource [Portland,
CDs]might then be

base[Portland, CDs]@R{30} |

(base[Portland, CDs]@R ∪
base[Portland, CDs]@S){0}.

This binding indicates that one can get an answer (more)
quickly by just routing the MQP to R, but that answer
could be up to 30 minutes out of date. Alternatively, by
routing the MQP to both R and S, one can have a
complete and current answer (modulo the delay to finish
evaluating the MQP and routing it back to the client). The
latency for query evaluation will likely be longer in the
second case, because of the need to visit two sites rather
than one.

One can imagine quite rich schemes for expressing
user preferences among latency, completeness and
currency, and query processing strategies to meet those
preferences. Our initial inclination is to start with
something simple: a query carries a target evaluation time
(e.g., 30 seconds) plus a binary preference for complete
versus current answers. Even with such a simple
expression of tradeoffs, we expect to develop non-trivial
methods for binding, evaluation and routing.

5. Issues and Extensions
In this section we discuss several possible extensions to
our framework, as well as issues of security and privacy.

5.1. Carrying Additional Information in MQPs

We have described the process of MQP evaluation in
terms of binding URNs to URLs of indexes and data,
thence to the data itself, and replacing evaluable sub-
expressions with their results. Our initial implementation
works in this manner. However, we see reasons to support
annotation of URNs and URLs, and also to retain a copy
of the original query plan in the MQP as it gets evaluated.
We describe two uses of such information.

Accumulating catalog and statistics information. As
an MQP passes through a server, that server may have
information about portions of a query it chooses not to
evaluate, but that may be useful at later processing steps.
For example, consider a server S that gets an MQP P =

πC(σD(A) � B) to evaluate, and has B but not A. Suppose
B has a million elements in it. S may decline to evaluate B
at this point, because of the size of res(B). Rather than
forwarding P intact to another server, S could annotate B
with its cardinality, the unique cardinality of the join
column, or even a histogram. Other servers could then
avoid sending P back to S (or another server for B) until
there was enough additional data in P to give a smaller
result at S. Maintaining the original query along with the
partially evaluated query also allows a server to improve
or enhance bindings (or even undo them). For example, a
server could add other possible URLs for a URN that it
knows. A server can also improve its catalog information
by examining a URN in the original query and its set of
URLs in the partially evaluated query.

Maintaining provenance. An MQP can also carry
along a history of all the servers it has visited, as well as
what each one did (provided bindings, provided data, re-
optimized the MQP, evaluated a sub-expression, or
merely forwarded the MQP), when it did it, and how
current the information was. That provenance can then be
used at the final destination or at intermediate servers for
a variety of purposes:

Judging the quality of an answer: Knowing the
processing history of a query can allow judgment about
the currency or completeness of the result.
• Rewards system: If server S observes that many of
the queries it is getting for its data are because of indexes
maintained at server T, S might reward T in some way.
For example, S might devote a larger percentage of its
index space to T’s data in return.
• Meta-index updating: If server S is getting a lot
of MQPs forwarded from server T that it just ends up
forwarding to server R, S might be able to send T a meta-
index entry to allow it to route some of those queries
directly to R. Or S might observe that T declines to bind
source B even though T holds a copy of B. S might then
decide to route MQPs needing B elsewhere in the future.
• Detection of spoofing: To this point, we have
been assuming that MQP servers behave correctly, and
certainly not maliciously. But what if server S tried to
tinker with queries to the detriment of a competitor’s

server T? For example, server S may get an MQP P with
an expression σD(A) ∪ σD(B), where A has data records
at S and B has records at T. S could bind A to its actual
value, but bind B to the empty set, making it appear that T
has no qualifying items. If provenance is recorded, the
resulting MQP would show that P never visited T (or any
other site for B). If A also spoofs the provenance, to make
it appear T participated, then it possible to construct a
verification query (e.g., count(σD(B))) to send to T to
check the result in P. To make the provenance more
trustworthy, each addition to it could be digitally signed
by the server that adds it and encrypted with the public
key for the destination site. However, provenance is not a
complete solution to a misbehaving server. In the example
above, it is hard to detect if S is lying about A’s contents.

5.2. Security and Privacy

As with any distributed application, issues of security and
privacy arise as soon as data is sent from one site to
another. In-transit security for MQPs is neither more
difficult nor less difficult than for other distributed query
approaches. Security and privacy at MQP servers does
raise some new issues, however. In a coordinator/
subordinate model of distributed query processing, only
queries, and not data, are sent to the subordinate servers.
(This assumption does not hold if semi-joins [BC81] are
being used for distributed processing.) With MQPs, data,
in the form of partial results, is divulged to other, possibly
unknown, servers, which may be undesirable. For
example, a query submitter might not want his or her
music preferences known to a track-list server. Or an
intermediate server might not want its data exposed to a
competitor’s server down the line. Thus, MQPs will need
to incorporate ordering and transfer policies, such as “do
not bind preferences until playlist is bound” or
“only let this MQP pass through servers on this list.”
Obviously, such restrictions will be challenging to support
in general in a loosely coupled environment. An
alternative in some cases will be to encrypt data or data
elements with the public key of the result recipient,
although encrypted data can limit evaluation options en
route.

However, we point out that MQPs can allow a query
submitter to obtain answers that might not be obtainable
under given server security policies with conventional
distributed query processing. It may be that two servers
will allow data to pass between themselves that they will
not directly divulge to a third party. For example, suppose
a law enforcement agency wants to know which
employees of a given company have made charitable
contributions over $5000 to organizations that are
believed to be fronts for illegal activities. The IRS has tax
returns showing itemized deductions for contributions,
and the State Department has a list of front organizations.
But the IRS may balk at disclosing all contributions for all
employees at a company, and the State Department may

not want to reveal its list of suspect organizations. If,
however, the IRS is willing to pass data to the State
Department (knowing how it will be used from the
query), then an MQP for this query can be executed in the
following manner. The MQP first goes to the IRS, where
names of people are found who work for the company
(from W-2 forms) together with charity names for
charitable deductions over $5000 (from Schedule A). That
information is then bound into the MQP, which travels to
the State Department. There, the results from the IRS are
joined with the front-organization list, and then projected
onto person name. The fully evaluated MQP now is
routed back to the law enforcement agency. Neither the
IRS nor the State Department had to disclose excessive
sensitive information to the agency.

6. Related work
You can find a general introduction to mutant query
plans, our prototype implementation, and a preliminary
performance comparison with traditional pipelined
distributed query execution in previous work [PM02a,
PM02b]. Query optimization issues for mutant query
plans include: consolidation (rewriting a plan so that
locally evaluable sub-plans come together), absorption
(plan rewritings that might not make sense in pipelined
query execution but reduce the size of the partial result),
and deferment (avoiding local execution of operators that
increase the partial result size unjustifiably).
Categorizing things in hierarchies is of course not a new
idea — humans have been doing it for millennia! DNS
[AL01] and LDAP [HS97] are examples of widely
deployed systems based on hierarchical namespaces. DNS
in particular has managed to scale admirably with an
exponential growth in the amount of data it indexes and
serves (mappings from human-readable machine names to
IP addresses). Each DNS server covers a well-defined
address space, and new “branches” (domains) can be
added to accommodate growth. Most DNS queries (host-
name resolutions) can be served out of caches, and clients
of the system only have to contact a few servers at most to
resolve any host name. The contribution of our system is
the combined categorization of data into multiple
hierarchies, to accommodate different types of users with
different viewpoints and ways to group data together.
Gribble et al. [GHI+01] present the benefits of
transplanting established data management techniques,
stronger semantics, and theoretical underpinnings of
databases to P2P networks. Bernstein et al. [BGK+02]
introduce the Local Relational Model (LRM), a data
model for P2P database applications. In the LRM, peers
use declarative coordination formulas to describe the
relationships and constraints between their schemas.
Intensional statements, as we used them to describe
relationships between index and meta-index servers, can
be expressed using coordination formulas.

Distributed hash table (DHT) algorithms are a very
active research area. Systems such as CAN [RFH+01],
Chord [SMK+01], Pastry [RD01], and Tapestry [ZKJ01]
offer a scalable hashtable interface with extremely fast
lookups (usually logarithmic in the number of hosts). Fast
key lookups by themselves, however, cannot provide the
data manipulation capabilities we regularly expect from a
database – what about range queries, or joins? Harren et
al. [HHH+02] analyze these issues, and describe the
missing pieces (including a hierarchical namespace) we
need in order to build a query processor on top of DHTs.

An assumption that is frequently made for DHTs is
that the system decides which nodes route, index (and
sometimes store or cache) which data, for the benefit of
the whole. We assume a much more loosely federated
system, where these decisions are left to the peers, and
depend on the application. In our gene expression data
scenario, we expect that many laboratories would serve as
the “authoritative” sources for their own data, and
volunteer to index or cache data in related areas.
Government agencies, such as the NIH, would provide
meta-index services, and fund the development of
controlled vocabularies and ontologies. An interesting
alternative would be Mariposa’s microeconomic paradigm
[SAL+96], where peers buy or sell data objects, and place
bids to execute subqueries.

Describing server holdings with interest areas is an
instance of summarization, an idea widely used in the
OLAP community. Walker [W80] analyzed the conditions
under which a query over a summarized database gives
correct answers, and proposed a succinctness ordering for
comparing the quality of inexact answers. Lakshmanan et
al. [LNW+02] present a generalization of the minimum
description-length principle for summarization, which can
lead to fewer summary regions, by allowing regions to
contain “don’t care” cells.

Our ideas on intelligent routing of query plans based
on intensional statements about server coverage,
completeness and redundancy are a form of semantic
query optimization (SQO). Chakravarthy et al. [CGM90]
used first-order logic to formalize an SQO framework for
deductive and relational databases. Levy and Sagiv
[LS95] studied the effects of allowing recursive rules,
order constraints and negated subgoals in the rules and
integrity constraints of a deductive database. Grant et al.
[GGM+97] applied SQO techniques to object databases.
Hsu and Knoblock [HK00] used SQO to optimize
distributed queries, both at a local level (e.g., by
eliminating redundant joins) and at a global level (e.g., by
minimizing data transmission).
Yang and Garcia-Molina [YG01] compared the
performance of several hybrid P2P architectures for file-
sharing networks, using both analytical models and
experimental data. In hybrid P2P architectures peers
transfer data autonomously, but depend on one or more
central servers for indexing and querying. They have also

compared the performance of various search strategies for
pure P2P architectures [YG02], using data from the
Gnutella network. Crespo and Garcia-Molina [CG02]
proposed using Routing Indices (RI) to direct queries in
pure P2P networks. RIs are distributed indices,
maintained at each node, that guide each query to the
most promising neighbors of the node (in terms of number
of relevant documents and their network distance). Since
RIs record promising directions, and not addresses, they
have reasonable storage requirements.
Galanis et al. [GWJ+02] presents a system for running IR-
style containment queries over the documents in a P2P
network. Their system maintains Peer Inverted Indices
(PIs) at each node. PIs map keywords (whose number is
usually much smaller than the number of documents) to
peers with documents that contain them. Bayardo et al.
[BAG+02] implemented a system called YouServ for
hosting web content, where peers collaborate to host
replicas of each other’s web sites. YouServ uses dynamic
DNS to map URLs to the replicas currently serving them.

The major difference between our proposal and most
of the work on file-sharing systems is granularity: In a file
sharing system, peers can only store, replicate, index, and
query data in whole-file chunks; we, on the other hand,
allow peers to deal with semi-structured data at any level.

7. Conclusions
We presented our framework for distributed data
management based on mutant query plans and multi-
hierarchic namespaces. Mutant query plans enable peers
to independently optimize and partially evaluate queries
without global knowledge, and with a minimum of
coordination overhead. Our main assumption is that data
and query result distributions can be mapped naturally to
multi-hierarchic namespaces, allowing us to build
decentralized indices for efficient query routing. We
believe that this assumption is reasonable, not just for our
P2P garage sale example, but for a wide range of P2P data
management applications.

Acknowledgements
We would like to thank Juliana Freire, Lois Delcambre
and Pete Tucker for their suggestions and ideas. Funding
for this work was provided by DARPA through
NAVY/SPAWAR contract N66001-99-1-8908 and by
NSF ITR award IIS0086002.

References
[AL01] P. Albitz and C. Liu. DNS and BIND. (4th

Ed.) O’Reilly and Associates, 2001.
[BAG+02] R. J. Bayardo Jr., R. Agrawal., D. Gruhl and

A. Somani. YouServ: A Web Hosting and
Content Sharing Tool for the Masses. In
Proc. of WWW 2002.

[BC81] P. A. Bernstein, D.-M. W. Chiu. Using
Semi-Joins to Solve Relational Queries.
JACM 28(1): 25-40, 1981.

[BHQ+01] A. Brazma et al. Minimum Information
About a Microarray Experiment (MIAME) -
Toward Standards for Microarray Data.
Nature Genetics 29(4):365-371, Dec. 2001.

[BGK+02] P. A. Bernstein, F. Giunchiglia, A.
Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data Management for
Peer-to-Peer Computing: A Vision. In Proc.
of WebDB 2002, pages 89-94.

[CD99] J. Clark and S. DeRose (editors). XML Path
Language (XPath) Version 1.0, November
1999. Available at:
http://www.w3.org/TR/1999/REC-xpath-
19991116

[CDB] Gracenote’s CDDB: http://cddb.com/music
[CG02] A. Crespo and H. Garcia-Molina. Routing

Indices for Peer-to-Peer Systems. In Proc. of
the Int. Conf. on Distributed Computing
Systems. July 2002.

[CGM90] U. S. Chakravarthy, J. Grant, and J. Minker.
Logic-Based Approach to Semantic Query
Optimization. ACM TODS 15(2):162-207,
June 1990.

[FDB] FreeDB: http://freedb.org/
[GHI+01] S. Gribble, A. Halevy, Z. Ives, M. Rodrig,

and D. Suciu. What can Databases do for
Peer-to-Peer? In Proc. of WebDB 2001.

[GGM+97] J. Grant, J. Gryz, J. Minker, and L. Raschid.
Semantic Query Optimization for Object
Databases. In Proc. of ICDE 1997, pages
444-453.

[GWJ+02] L. Galanis, Y. Wang, S. R. Jeffery, D. J.
DeWitt. Processing XML Containment
Queries in a Large Peer-to-Peer System.
Available from:
http://cs.wisc.edu/niagara/papers/603i.pdf

[HHH+02] M. Harren, J. M. Hellerstein, R. Huebsch, B.
Thau Loo, S. Shenker, I. Stoica. Complex
Queries in DHT-based Peer-to-Peer
Networks. In IPTPS 2002, pages 242-259.

[HK00] C.-N. Hsu and C. A. Knoblock. Semantic
Query Optimization for Query Plans of
Heterogeneous Multidatabase Systems.
IEEE Transactions on Knowledge and Data
Engineering, 12(6), pp. 959-978, 2000.

[HS97] T. A. Howes, and M. C. Smith. LDAP:
Programming Directory-Enabled
Applications with Lightweight Directory
Access Protocol. Macmillan, 1997.

[LNW+02] L. V. S. Lakshmanan, R. T. Ng, C. Xing
Wang, X. Zhou, and T. J. Johnson. The
Generalized MDL Approach for
Summarization. In Proc of VLDB 2002.

[LS95] A. Y. Levy, and Y. Sagiv. Semantic Query
Optimization in Datalog Programs. In Proc.
Of PODS 1995, pages 163-173.

[NDM+01] J. F. Naughton, D. J. DeWitt, D. Maier, A.
Aboulnaga, J. Chen, L. Galanis, J. Kang, R.
Krishnamurthy, Q. Luo, N. Prakash, R.
Ramamurthy, J. Shanmugasundaram, F.
Tian, K. Tufte, S. Viglas, Y. Wang, C.
Zhang, B. Jackson, A. Gupta, and R. Chen.
The Niagara Internet Query System. IEEE
Data Eng. Bulletin 24(2):27-33, 2001.

[PM02a] V. Papadimos and D. Maier. Mutant Query
Plans. Information and Software
Technology, 44(4):197-206, April 2002.

[PM02b] V. Papadimos and D. Maier. Distributed
Queries without Distributed State. In Proc.
of WebDB 2002, pages 95-100.

[RD01] A. Rowstron and P. Druschel. Pastry:
Scalable, distributed object location and
routing for large-scale peer-to-peer systems.
In Proc. IFIP/ACM Middleware 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R.
Karp, and S. Shenker. A Scalable Content-
Addressable Network. In Proc. ACM
SIGCOMM 2001, pages 161-172.

[SAL+96] M. Stonebraker, P. M. Aoki, W. Litwin, A.
Pfeffer, A. Sah, J. Sidell, C. Staelin, A. Yu.
Mariposa: A Wide-Area Distributed
Database System. VLDB Journal 5(1):48-63,
1996.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for
internet applications. In Proc. ACM
SIGCOMM 2001, pages 149-160.

[SWK+76] M. Stonebraker, E. Wong, P. Kreps, G.
Held. The Design and Implementation of
INGRES. ACM TODS 1(3): 189-222, 1976.

[W80] A. Walker. On Retrieval from a Small
Version of a Large Data Base. In Proc. of
VLDB 1980.

[WY76] E. Wong, K. Youssefi. Decomposition - A
Strategy for Query Processing. ACM TODS
1(3):223-241, 1976.

[YG01] B. Yang and H. Garcia-Molina. Comparing
Hybrid Peer-to-Peer Systems. In Proc. of
VLDB 2001.

[YG02] B. Yang and H. Garcia-Molina. Improving
Search in Peer-to-Peer Networks. In Proc. of
the International Conference on Distributed
Computing Systems 2002, pages 5-14.

[ZKJ01] B. Zhao, J. Kubiatowicz, and A. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Tech. Report
UCB/CSD-01-1141, U. C. Berkeley, 2001.

