
1

Transaction Processing:
Recovery

CPS 216
Advanced Database Systems

2

Review

• ACID

– Atomicity

– Consistency

– Isolation

– Durability

Concurrency control

Recovery

3

Execution model

• input(X): copy the disk block containing object X to
memory

• read(X, v): read the value of X into a local variable v
(execute input(X) first if necessary)

• write(X, v): write value v to X in memory (execute
input(X) first if necessary)

• output(X): write the memory block containing X to disk

CPU
Memory Disk

X
Y…

X
Y…

Issued by transactions

Issued by DBMS

4

Failures
• System crashes in the middle of a transaction T;

partial effects of T were written to disk
– How do we undo T (atomicity)?

• System crashes right after a transaction T
commits; not all effects of T were written to disk
– How do we complete T (durability)?

• Media fails; data on disk corrupted
– How do we reconstruct the database (durability)?

5

Logging
• Log

– Sequence of log records, recording all changes made
to the database

– Written to stable storage (e.g., disk) during normal
operation

– Used in recovery
• Hey, one change turns into two!

– Isn’t it bad for performance?
– But writes are sequential (append to the end of log)
– Can use dedicated disk(s) to improve performance

6

Undo logging

• Basic idea
– Every time you modify something on disk, record its

old value in the log

– If system crashes, undo the writes of partially
executed transactions by restoring the old values

2

7

Undo logging example

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);
output(A);
output(B);

A = 800
B = 400

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

700
500

<T1, start>
700 <T1, A, 800>

<T1, B, 400>
<T1, commit>

500

8

One technicality
Log is first written

to memory—
when is flushing

needed?

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);
output(A);
output(B);

A = 800
B = 400

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

700
500

<T1, start>
700 <T1, A, 800>

Disk

System crash

<T1, B, 400>

<T1, start>

Haven’t been
flushed yet

9

WAL
• Recap of the situation to be avoided

– T1 has not completed yet
– A is modified on disk already
– But there is no log record for A
– Cannot undo the modification of A!

• Solution: WAL (Write-Ahead Logging)
– Before any database object X is modified on disk, the

log record pertaining to X must be flushed

10

Another technicality
When is it

necessary to flush
data blocks?read(A, a); a = a – 100;

write(A, a);
read(B, b); b = b + 100;
write(B, b);
output(A);
output(B);

A = 800
B = 400

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk

700
500

700

Log

System crash

<T1, start>

<T1, commit>

<T1, A, 800>
<T1, B, 400>

B has not been flushed;
commit log record
has been flushed

11

Force
• Recap of the situation to be avoided

– T1 has committed (the log says so)
– Not all effects of T1 have been flushed disk
– Because there is no redo information in the log, we

cannot redo the rest of T1
• So perhaps we should try redo logging?

• Solution: force
– Before the commit record of a transaction is flushed

to log, all writes of this transaction must be reflected
on disk

12

Undo logging rules
• For every write, generate undo log record

containing the old value being overwritten
<Ti, X, old_value_of_X>
– Typically (assuming physical logging)

• Ti: transaction id
• X: physical address of X (block id, offset)
• old_value_of_X: bits

• WAL
• Force

3

13

Recovery with an undo log
• Identify U, the set of active transactions at time of

crash
– Log contains <T, start>, but neither <T, commit> nor

<T, abort>
• Process log backward

– For each <T, X, old_value> where T is in U, issue
write(X, old_value), output(X)

• For each T in U, append <T, abort> to the end of
the log

Why?

Why?

14

Additional issues with undo logging

• Failure during recovery?
– No problem, run recovery procedure again
– Undo is idempotent!

• Can you truncate log?
– Yes, after a successful recovery
– Or, truncate any prefix that contain no log records for

active transactions

15

Redo logging

• Basic idea
– Every time you modify something on disk, record its

new value (which you are writing)

– If system crashes, redo the writes of committed
transactions and ignore those that did not commit

16

Redo logging example

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);
output(A);
output(B);

A = 800
B = 400

700
500

<T1, start>
700 <T1, A, 700>

<T1, B, 500>
<T1, commit>

500

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

17

One technicality
When is it

possible to flush
data blocks?

A has been flushed;
commit log record

has not been written yet
System crash

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);
output(A);
output(B);

A = 800
B = 400

700
500

<T1, start>
700 <T1, A, 700>

<T1, B, 500>

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log

18

No steal
• Recap of the situation to be avoided

– T1 has not completed yet
– A is modified on disk already
– There is a log record for A (i.e., WAL is followed)
– Because there is no undo information in that log

record, we cannot undo the modification of A!
• Maybe undo/redo combined?

• Solution: no steal
– Writes can be flushed only at commit time
– Requires keeping all dirty blocks in memory—other

transactions cannot steal any memory blocks

4

19

Redo logging rules
• For every write, generate redo log record

containing the new value being written
<Ti, X, new_value_of_X>

• Do not modify any database objects on disk
before you have flushed all log records for this
transaction (including the commit record)
– That is, WAL and no steal

20

Recovery with a redo log
• Identify C, the set of all committed transactions

(those with commit log record)
• Process log forward

– For each <T, X, new_value> where T is in C, issue
write(X, new_value)

• For each incomplete transaction T (with neither
commit nor abort log record), append <T, abort>
to the end of the log

Why?

Why is output(X) unnecessary here?

21

Additional issues with redo logging

• Failure during recovery?
– No problem—redo is idempotent!

• Extremely slow recovery process!
– I transferred the balance last year…

• Can you truncate log?
– No, unless…

22

Checkpointing
• Naïve approach:

– Stop accepting new transactions (lame!)
– Finish all active transactions
– Take a database dump
– Now safe to truncate the redo log

�Fuzzy checkpointing
– Example later

23

Summary of redo and undo logging
• Undo logging—immediate write

– Force
• Excessive disk I/Os
• Imagine many small transactions updating the same block!

• Redo logging—deferred write
– No steal

• High memory requirement
• Imagine a big transaction updating many blocks

24

Logging taxonomy

no steal steal
force no logging! undo logging

no force redo logging undo/redo logging

Assuming each transaction modifies just one block
and locking is at the block level

Next!

5

25

Undo/redo logging
• Log both old and new values

<Ti, X, old_value_of_X, new_value_of_X>
• WAL
• Steal: If chosen for replacement, modified

memory blocks can be flushed to disk anytime
• No-force: When a transaction commits, modified

memory blocks are not forced to disk
�Buffer manager has complete freedom!

26

Undo/redo logging example

• So when is T1 really committed?
– When its commit log record is flushed to disk

read(A, a); a = a – 100;
write(A, a);
read(B, b); b = b + 100;
write(B, b);

A = 800
B = 400

700
500

<T1, start>
<T1, A, 800, 700>
<T1, B, 400, 500>
<T1, commit>

T1 (balance transfer of $100 from A to B)

Memory

A = 800
B = 400

Disk Log
No output operations
here—they are up to
the buffer manager! 700

500Anytime after corresponding
log records are flushed

27

Fuzzy checkpointing
• Determine S, the set of currently active

transactions, and log <begin-checkpoint S>
• Flush all modified memory blocks at your leisure

– Regardless whether they are written by committed or
uncommitted transactions (but do follow WAL)

• Log <end-checkpoint begin-checkpoint_location>
• Between begin and end, continue processing old

and new transactions

28

Recovery: analysis and redo phase
• Need to determine U, the set of active transactions at

time of crash
• Scan log backward to find the last end-checkpoint record

and follow the pointer to find the corresponding
<start-checkpoint S>

• Initially, let U be S
• Scan forward from that start-checkpoint to end of the log

– For a log record <T, start>, add T to U
– For a log record <T, commit | abort>, remove T from U
– For a log record <T, X, old, new>, issue write(X, new)
– Repeats history!

29

Recovery: undo phase
• Scan log backward

– Undo the effects of transactions in U
– That is, for each log record <T, X, old, new> where T is in U,

issue write(X, old), and log this operation too (part of the
repeating-history paradigm)

– Log <T, abort> when all effects of T have been undone
• An optimization

– Each log record stores a pointer to the previous log record for
the same transaction; follow the pointer chain during undo

• Is it possible that undo overwrites the effect of a
committed transaction?
– Not if strict 2PL!

30

Physical versus logical logging
• Physical logging (what we have assumed so far)

– Log before and after images of data
• Logical logging

– Log operations (e.g., insert a row into a table)
– Smaller log records

• An insertion could cause rearrangement of things on disk
• Or trigger hundreds of other events

– Sometimes necessary
• Assume row-level rather than page(block)-level locking
• Data might have moved to another block at time of undo!

– Much harder to make redo/undo idempotent

6

31

Selective redo?
• Possible optimization for our recovery procedure:

– Selectively redo only committed transactions
– Lots of algorithms do it (some even undo before redo)

• What is the catch?
– T1.op1, T2.op1, T1.op2 (T1.commit)
– Repeating history: T1.op1, T2.op1, T1.op2 , undo(T2.op1)

• Exactly the same as normal transaction abort

– Selective redo: T1.op1, T1.op2, undo(T2.op1)
• What if T2.op1 produced some side effects that T1.op2 relies on?
• Not possible with page-level locking and physical logging
• In general hard to guarantee

32

ARIES
• Same basic ideas: steal, no force, WAL
• Three phases: analysis, redo, undo

– Repeats history
• CLR (Compensation Log Record) for transaction aborts
• More efficient than our simple algorithm

– Redo/undo on an object is only performed when necessary
• Each disk block records the last writer

– Can take advantage of a partial checkpoint
• Recovery can start from any start-checkpoint, not necessarily one that

corresponds to an end-checkpoint

