Advances in Distributed Systems

An Introduction

Ashvin Goel

Distributed Systems, ECE 1746, Fall 2004

Topics

- Class format
- Characteristics of distributed systems
- Design issues in distributed systems
- Should distributed and centralized systems behave similarly?

Class Format

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Lots of advanced material
- No quizzes or final exams
- Short assignments
- Project, presentation

What is a Distributed System?

- A computing facility built with many computers
 - That operate concurrently
 - That are physically distributed
 - Have their own failure modes
 - That have independent clocks
 - That are linked by a network

Why do we have them?

- People are distributed but need to work together
- Hardware needs to be close to people
- Information is distributed, but needs to be shared
 - Issue of trust
- Hardware needs to be shared (resource sharing)

Examples

- Distributed file systems
- Database systems
- Distributed operating systems
- WWW
 - Net news (newsgroups)
 - E-commerce web sites
 - Search engines

Characteristics of Distributed Systems

Heterogeneity in Resources, Env

- Resource = hardware, networks
- Environment = OS, languages, implementation
- Data type representation, byte ordering, API, protocols
- Middleware layer that tries to hide these differences
 - Uniform computational model
- Virtual machines run code on any hardware
 - Provide uniform environment

Openness

- System can be extended and re-implemented
- Interfaces published
- Uniform mechanism to access resources
- Heterogeneous h/w and software
 - Provided that they conform to the specification

Concurrency

- Many users
 - Many concurrent pieces of work
- Servers need to be responsible for many clients
 - Concurrency needed
- Many computers
 - Many resources available for parallelism
- Concurrency allows parallelism

Scalability

- Resources
 - Adding physical resources
 - Adding software resources
- Users
 - Performance degradation
- Challenge between distributing versus centralization

Security

- Confidentiality: protection against disclosure to unauthorized individuals
 - Secrecy
 - Authentication
- Integrity: protection against alteration
- Availability: protection against interference with accessing resources
- Mobile code execution

Fault Tolerance and Availability

- Partial failures
 - Detect failure
 - Mask failure
 - Tolerate failure
 - Hardware redundancy
- Software recovery (rollback)

Design Issues in Distributed Systems

Naming

- We need names in order to use resources
- User-friendly names vs. internal (machine) names
- Issues in designing a namespace
 - Scale
 - Implementation of name lookup

Communication

- How does one computer "talk to" another?
- Latency vs. bandwidth
- Software Overhead
 - High-level programming model with low overhead!

Caching and Replication

- Alternative to remote access
- Distribution vs. centralization issue

Workload Allocation

- Load sharing
- Load balancing

Consistency Maintenance

- Updates
 - Immutable objects!
- Clocks
- Replicas

Exception and failure

- Exception: within specification of object
- ▶ Failure: outside specification of object

Transparency

Something hidden from the client

- Access Transparency
 - NFS vs ftp
- Location Transparency
 - Domain name vs IP address
- Concurrency Transparency
 - From whom is concurrency concealed? From the programmer? Or from the client?
- Replication Transparency

Transparency (2)

- Failure Transparency
 - Hide faults
- Migration or Mobility Transparency
 - Conceals movement of resources
- Performance Transparency
 - Allows system to be reconfigured to improve performance
- Scaling Transparency
 - Users

Quality of Service

- Performance
 - Throughput
 - Latency
 - Jitter
- Reliability
- Security

Should distributed systems behave like centralized systems?

Please Read

"A Note on Distributed Computing" Samuel C. Kendall, Jim Waldo, Ann Wollrath, Geoff Wyant

Differences

- Latency
 - 4-5 orders magnitude
 - Object migration?
- Memory access
 - Local vs. remote address space
 - DSM? References instead of pointers?
- Partial failure
 - Impossible to mask!
 - No global state
 - Independent failures possible
 - Interfaces should expose failure!

Class Format (For Late Comers)

- Class website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
- Sign up for class by joining the class mailing list
 - Instructions available from class website
- Seminar style course
 - Lots of advanced material
- No quizzes or final exams
- Short assignments
- Project, presentation

Choosing A Paper to Present

- First-come first-served
- Send email to mailing list