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Overview

• Shared memory versus message passing communication

• RPC

• RPC failures



Shared memory communication

• Threads within a process share memory

• We have seen that they communicate with each other by 
reading and writing to shared memory

• This is called shared memory communication
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T1() {
  v1 := 1
  shared = v1
}

T2() {
  v1 := shared
  v2 := 2
}

var shared int
main() {
  go T1()
  go T2()
  for {
  }
}



Inter-process communication

• Processes do not share memory

• How can processes communication with each other?

• Processes send and receive messages

• OS provides IPC interface: send(), recv()
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4



Client process

Socket-based communication

• Nodes do not share memory

• How can processes communicate across nodes?

• Processes send and receive messages across nodes

• OS provides socket interface: send(), recv()
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Similar to IPC
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Challenges with Socket API

• Programming interface is low level

• Sender: needs to convert data structures to bytes, 
package the bytes to packet headers and body, send packets

• Receiver: needs to wait to receive packets, 
parse packet headers, convert packet body into data structures

• What happens with multiple concurrent requests?

• How to match requests and responses?

• What happens on packet drops, node failures?

• Need higher-level API for communicating across nodes



RPC
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Why RPC?

• Programmers are used to procedure call interface

• A() calls B()

• B() does its job,
returns value to A()

• A() continues

• Same interface is used by apps to call kernel code

• A() is a user function, B() is a system call

• Remote procedure calls: use the procedure call interface 
for communicating across nodes

• A() runs on a node (e.g., client)

• B() runs on another node (e.g., server)

A() {
  val = B(args);
  …
}

B(params) {
  do_B;
  return val;
}
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Benefits of RPC

• Simplifies client-server communication 

• Hides details of network protocols

• Converts data structures (e.g., strings, arrays, maps, etc.) to/from 
packet format

• Provides portability / interoperability

• Sender and receiver side can 

• Have different endianness

• Use data types of different sizes, different alignment

• Use different languages

• Today, RPCs are used extensively in distributed systems

• Google gRPC, Facebook/Apache Thrift

• REST with JSON, Ajax in browsers, build on RPCs



RPC messages

10

A() {
  val = B(args);
  

  val = 
  …
}

Client

B(params) {
  do_B;
  return val;
}
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• Client side: client stub marshalls (converts) call and 
arguments into network format, sends packet

• Server side: receives packet, server stub unmarshalls 
packet, calls sum() handler function

Client stub + RPC lib

Client process
s = sum(1, 2)

proc:sum | int:1 | int:2

Server stub + RPC lib

Server process
s ← sum(1, 2)

RPC request processing

Client node

Client OS

Server node

Server OS

Physical memory Physical memory

proc:sum | int:1 | int:2
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RPC example

• Let’s look at an RPC example in Go

• Use a trivial key-value storage server that supports

• put(key, value)

• value = get(key)
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RPC details

• Server location: how does client know server’s location?

• Go's RPC requires server name/port as an argument to Dial

• Another option is to use a name service, e.g., DNS

• Marshalling: How to format complex data types?

• Go's RPC library

• Can pass strings, arrays, objects, maps

• Passes pointers by copying the pointed-to data

• Cannot pass channels or functions

• Only marshals exported fields

• Multi-threading

• Client can use multiple threads to send concurrent requests, RPC 
library matches requests with responses
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RPC Failures
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Failures

• Until now, RPC appears to provide the same semantics as 
local procedure calls

• If a client issues an RPC call, the server executes it once

• However, failures complicate RPC semantics

• Lots of failures possible in distributed systems

• Packets may be dropped, reordered, duplicated

• Network or server is slow

• Client or server crashes (and reboots)

• Consider an RPC client

• If a response doesn’t arrive, the client does not know 
whether the server executed the request or not!

How is this different from 
local procedure calls?
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Failures during RPC

A() {
  val = B(args);
  

  val = 
  …
}

Client

B(params) {
  do_B;
  return val;
}
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Network
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response
failure

server
failure
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Failures during RPC

• Request failure: server didn’t execute the request

• Response failure: server executed the request

• Server failure: server may or may not have executed the 
request (or partly executed the request )



Best-effort RPC

• Wait for a response to a request for some time

• If no response arrives, re-send the request

• Do this a few times

• Then give up and return an error
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Side effects with best-effort RPC

• Client sends a “debit $10 from bank account” RPC

• Re-send causes $20 debit!
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Inconsistency with best-effort RPC

• Consider our key-value server

• get(x) expects to read last value of put(x, value)
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Inconsistency with best-effort RPC

• get(x) expects to read last value of put(x, value)

• get(x) may read 10 due to delayed original request! 
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When will best-effort RPC work?

• For read-only operations, with no side effects

• If application handles duplicate, reordered requests
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Better RPC semantics

• Previous best-effort RPC is also called at-least-once RPC

• When client receives a response:

• Request has executed once or more times

• When client doesn’t receive a response:

• Request may not have executed, or executed once or more times

• A better option is at-most-once RPC

• When client receives a response:

• Request has executed exactly once

• When client doesn’t receive a response:

• Request may not have executed, or executed once

We have seen that 
executing a request 

multiple times 
caused problems
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At-most-once RPC

• Client is unchanged: re-sends request when no answer

• Server RPC code

• Detects (duplicate) requests that it has already executed

• Returns previous reply instead of re-running handler

• How to detect a duplicate request?

• Can a server look for the same function invocation, 
with same arguments?

• No! A program may legitimately submit the same function 
with same augments, twice in a row
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At-most-once RPC

• Solution: client includes unique ID (XID) with each request, 
uses same XID when resending request

• Server detects duplicate requests based on XID

Seems simple, but it raises several issues

// server code ensures that rpc_handler() executes once

if ret_value, ok := response[xid]; ok {
    // rpc_handler() already executed
} else {
    ret_value = rpc_handler()
    // save ret_value
    response[xid] = ret_value
}
// send ret_value to client

25



Generating unique IDs

• How to generate unique ids for at-most-once RPC?

• Use a large random number

• Only probabilistic guarantee

• Use a client ID (e.g., IP address) and a sequence number

• What happens if client crashes and restarts?
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Getting rid of server state

• response[xid] array grows on the server

• After client gets response for xid, 
it could inform server to delete xid entry in the array

• Better method

• Assume xid = (client, seq)

• Client waits to get response for all requests <= seq

• Client informs server to delete all entries for this client whose 
sequence number <= seq

• Similar to TCP sequence numbers, acks

• Server maintains state roughly proportional to # clients

• Server must still handle non-responsive clients, how?
27



Concurrent requests

• How to handle a duplicate request while the original is still 
executing?

• Server doesn’t know reply yet, so can’t send “previous” reply

• Solution 1:

• Queue the requests, execute them serially

• Solution 2:

• Add a pending flag per executing RPC

• Wait for RPC to be done, then respond to duplicate request
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Server crashes, then restarts

• Until now, we have assumed that the requests or 
responses may fail but the server doesn’t fail

• What happens if the server crashes and restarts?

• Suppose response[xid] array is kept in memory

• After server restarts, they are lost

• Now, server may run duplicate requests more than once

• Let’s look at two options for solving this problem

1. Keep array in memory, track number of server restarts

2. Keep array on disk
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1. Track number of server restarts

• Server uses an epoch number, stored on disk, 
incremented after each restart

• Server adds its epoch numbers to all responses

• Client sends epoch number with each request

• Allows server to distinguish requests that first arrived 
before crash or after restart

• Server serves requests with current epoch number, 
sends error otherwise

• Why send error?

• Why does this method ensure at-most-once RPC semantics?

• Any issues with this approach?



2. Keep response[] array on disk

• Server stores response[xid] on disk before returning reply 
to the client

• When is this data stored, before or after handler executes?

• What if there is a server crash in between?

• What if the handler executes partially, writes some data to disk, 
and then the server crashes?

• Need to ensure that all this data is written to disk correctly 
(atomically) and can be recovered on failure
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Exactly-once RPC

• Client side:

• When client doesn’t receive response, it keeps retrying forever

• Avoids the problem with at-most-once, where on a failed response, 
the request may or may not have executed

• Server side:

• Perform duplicate detection (same as at-most-once)

• Handle server crashes, or

• Use a fault-tolerant service (server appears to never fail)
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Exactly-once RPC

• Client side:

• When client doesn’t receive response, it keeps retrying forever

• Avoids the problem with at-most-once, where on a failed response, 
the request may or may not have executed

• Server side:

• Perform duplicate detection (same as at-most-once)

• Handle server crashes, or

• Use a fault-tolerant service (server appears to never fail)

• We will discuss these topics in detail later
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There are only
two hard problems 

in distributed systems



RPC semantics in Go

• Go RPC uses a simple form of at-most-once semantics

• Each request opens a TCP connection, writes a request

• Requests are never re-sent, so server doesn’t see duplicate 
requests

• Go RPC returns error when a response is not received

• Could happen due to TCP timeout, network or server failure

• In this case, a request may or may not have been processed
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RPC performance

• A local procedure call takes a few nanoseconds

• RPC to a machine in the same data center can take about 
100 microseconds (105x slower)

• RPC to a machine on other side of planet can take about 
100 milliseconds (107x slower)

• Solutions:

• Issue multiple requests in parallel

• Batch requests and send them together

• Cache results of requests



37

Conclusions

• Sockets are low level for programming distributed systems

• RPC provides a simple procedure call interface for a client 
to invoke server code

• RPC failures complicate RPC semantics

• Requests need to be retried on failure, 
but retries may cause duplicate requests, 
which need to be ignored (which is non-trivial)
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