
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Remote Procedure Calls (RPC)

2

Overview

• Shared memory versus message passing communication

• RPC

• RPC failures

Shared memory communication

• Threads within a process share memory

• We have seen that they communicate with each other by
reading and writing to shared memory

• This is called shared memory communication

Process A

Node

OS

Process B

Physical memory Process A memory Process B memory
3

T1() {
 v1 := 1
 shared = v1
}

T2() {
 v1 := shared
 v2 := 2
}

var shared int
main() {
 go T1()
 go T2()
 for {
 }
}

Inter-process communication

• Processes do not share memory

• How can processes communication with each other?

• Processes send and receive messages

• OS provides IPC interface: send(), recv()

Process A

Node

OS

Send

Process B

Recv

Physical memory Process A memory Process B memory
4

Client process

Socket-based communication

• Nodes do not share memory

• How can processes communicate across nodes?

• Processes send and receive messages across nodes

• OS provides socket interface: send(), recv()

Client node

Client OS

Send

Server node

Server OS

Server process

Recv

Physical memory Physical memory

Similar to IPC

5

6

Challenges with Socket API

• Programming interface is low level

• Sender: needs to convert data structures to bytes,
package the bytes to packet headers and body, send packets

• Receiver: needs to wait to receive packets,
parse packet headers, convert packet body into data structures

• What happens with multiple concurrent requests?

• How to match requests and responses?

• What happens on packet drops, node failures?

• Need higher-level API for communicating across nodes

RPC

7

8

Why RPC?

• Programmers are used to procedure call interface

• A() calls B()

• B() does its job,
returns value to A()

• A() continues

• Same interface is used by apps to call kernel code

• A() is a user function, B() is a system call

• Remote procedure calls: use the procedure call interface
for communicating across nodes

• A() runs on a node (e.g., client)

• B() runs on another node (e.g., server)

A() {
 val = B(args);
 …
}

B(params) {
 do_B;
 return val;
}

9

Benefits of RPC

• Simplifies client-server communication

• Hides details of network protocols

• Converts data structures (e.g., strings, arrays, maps, etc.) to/from
packet format

• Provides portability / interoperability

• Sender and receiver side can

• Have different endianness

• Use data types of different sizes, different alignment

• Use different languages

• Today, RPCs are used extensively in distributed systems

• Google gRPC, Facebook/Apache Thrift

• REST with JSON, Ajax in browsers, build on RPCs

RPC messages

10

A() {
 val = B(args);

 val =
 …
}

Client

B(params) {
 do_B;
 return val;
}

Network

client
waits for
response

server
waits for
request

server
waits for
request

Server

• Client side: client stub marshalls (converts) call and
arguments into network format, sends packet

• Server side: receives packet, server stub unmarshalls
packet, calls sum() handler function

Client stub + RPC lib

Client process
s = sum(1, 2)

proc:sum | int:1 | int:2

Server stub + RPC lib

Server process
s ← sum(1, 2)

RPC request processing

Client node

Client OS

Server node

Server OS

Physical memory Physical memory

proc:sum | int:1 | int:2

11

RPC example

• Let’s look at an RPC example in Go

• Use a trivial key-value storage server that supports

• put(key, value)

• value = get(key)

12

RPC details

• Server location: how does client know server’s location?

• Go's RPC requires server name/port as an argument to Dial

• Another option is to use a name service, e.g., DNS

• Marshalling: How to format complex data types?

• Go's RPC library

• Can pass strings, arrays, objects, maps

• Passes pointers by copying the pointed-to data

• Cannot pass channels or functions

• Only marshals exported fields

• Multi-threading

• Client can use multiple threads to send concurrent requests, RPC
library matches requests with responses

13

RPC Failures

14

Failures

• Until now, RPC appears to provide the same semantics as
local procedure calls

• If a client issues an RPC call, the server executes it once

• However, failures complicate RPC semantics

• Lots of failures possible in distributed systems

• Packets may be dropped, reordered, duplicated

• Network or server is slow

• Client or server crashes (and reboots)

• Consider an RPC client

• If a response doesn’t arrive, the client does not know
whether the server executed the request or not!

How is this different from
local procedure calls?

15

Failures during RPC

A() {
 val = B(args);

 val =
 …
}

Client

B(params) {
 do_B;
 return val;
}

Server

Network

request
failure

response
failure

server
failure

16

17

Failures during RPC

• Request failure: server didn’t execute the request

• Response failure: server executed the request

• Server failure: server may or may not have executed the
request (or partly executed the request )

Best-effort RPC

• Wait for a response to a request for some time

• If no response arrives, re-send the request

• Do this a few times

• Then give up and return an error

18

Side effects with best-effort RPC

• Client sends a “debit $10 from bank account” RPC

• Re-send causes $20 debit!

19

Client Server

Timeout

Time Time

Debit acct, $10

Debit acct, $10

Inconsistency with best-effort RPC

• Consider our key-value server

• get(x) expects to read last value of put(x, value)

20

Client Server

Timeout

Time Time

x ←10

x ← 20

get(x) expects to read 20

Inconsistency with best-effort RPC

• get(x) expects to read last value of put(x, value)

• get(x) may read 10 due to delayed original request!

21

Client Server

Timeout

Time Time

x ←10

x ← 20

get(x) may read 10

x ← 10

When will best-effort RPC work?

• For read-only operations, with no side effects

• If application handles duplicate, reordered requests

22

Better RPC semantics

• Previous best-effort RPC is also called at-least-once RPC

• When client receives a response:

• Request has executed once or more times

• When client doesn’t receive a response:

• Request may not have executed, or executed once or more times

• A better option is at-most-once RPC

• When client receives a response:

• Request has executed exactly once

• When client doesn’t receive a response:

• Request may not have executed, or executed once

We have seen that
executing a request

multiple times
caused problems

23

At-most-once RPC

• Client is unchanged: re-sends request when no answer

• Server RPC code

• Detects (duplicate) requests that it has already executed

• Returns previous reply instead of re-running handler

• How to detect a duplicate request?

• Can a server look for the same function invocation,
with same arguments?

• No! A program may legitimately submit the same function
with same augments, twice in a row

24

At-most-once RPC

• Solution: client includes unique ID (XID) with each request,
uses same XID when resending request

• Server detects duplicate requests based on XID

Seems simple, but it raises several issues

// server code ensures that rpc_handler() executes once

if ret_value, ok := response[xid]; ok {
 // rpc_handler() already executed
} else {
 ret_value = rpc_handler()
 // save ret_value
 response[xid] = ret_value
}
// send ret_value to client

25

Generating unique IDs

• How to generate unique ids for at-most-once RPC?

• Use a large random number

• Only probabilistic guarantee

• Use a client ID (e.g., IP address) and a sequence number

• What happens if client crashes and restarts?

26

Getting rid of server state

• response[xid] array grows on the server

• After client gets response for xid,
it could inform server to delete xid entry in the array

• Better method

• Assume xid = (client, seq)

• Client waits to get response for all requests <= seq

• Client informs server to delete all entries for this client whose
sequence number <= seq

• Similar to TCP sequence numbers, acks

• Server maintains state roughly proportional to # clients

• Server must still handle non-responsive clients, how?
27

Concurrent requests

• How to handle a duplicate request while the original is still
executing?

• Server doesn’t know reply yet, so can’t send “previous” reply

• Solution 1:

• Queue the requests, execute them serially

• Solution 2:

• Add a pending flag per executing RPC

• Wait for RPC to be done, then respond to duplicate request

28

Server crashes, then restarts

• Until now, we have assumed that the requests or
responses may fail but the server doesn’t fail

• What happens if the server crashes and restarts?

• Suppose response[xid] array is kept in memory

• After server restarts, they are lost

• Now, server may run duplicate requests more than once

• Let’s look at two options for solving this problem

1. Keep array in memory, track number of server restarts

2. Keep array on disk

29

30

1. Track number of server restarts

• Server uses an epoch number, stored on disk,
incremented after each restart

• Server adds its epoch numbers to all responses

• Client sends epoch number with each request

• Allows server to distinguish requests that first arrived
before crash or after restart

• Server serves requests with current epoch number,
sends error otherwise

• Why send error?

• Why does this method ensure at-most-once RPC semantics?

• Any issues with this approach?

2. Keep response[] array on disk

• Server stores response[xid] on disk before returning reply
to the client

• When is this data stored, before or after handler executes?

• What if there is a server crash in between?

• What if the handler executes partially, writes some data to disk,
and then the server crashes?

• Need to ensure that all this data is written to disk correctly
(atomically) and can be recovered on failure

31

Exactly-once RPC

• Client side:

• When client doesn’t receive response, it keeps retrying forever

• Avoids the problem with at-most-once, where on a failed response,
the request may or may not have executed

• Server side:

• Perform duplicate detection (same as at-most-once)

• Handle server crashes, or

• Use a fault-tolerant service (server appears to never fail)

32

Exactly-once RPC

• Client side:

• When client doesn’t receive response, it keeps retrying forever

• Avoids the problem with at-most-once, where on a failed response,
the request may or may not have executed

• Server side:

• Perform duplicate detection (same as at-most-once)

• Handle server crashes, or

• Use a fault-tolerant service (server appears to never fail)

• We will discuss these topics in detail later

33

34

There are only
two hard problems

in distributed systems

RPC semantics in Go

• Go RPC uses a simple form of at-most-once semantics

• Each request opens a TCP connection, writes a request

• Requests are never re-sent, so server doesn’t see duplicate
requests

• Go RPC returns error when a response is not received

• Could happen due to TCP timeout, network or server failure

• In this case, a request may or may not have been processed

35

36

RPC performance

• A local procedure call takes a few nanoseconds

• RPC to a machine in the same data center can take about
100 microseconds (105x slower)

• RPC to a machine on other side of planet can take about
100 milliseconds (107x slower)

• Solutions:

• Issue multiple requests in parallel

• Batch requests and send them together

• Cache results of requests

37

Conclusions

• Sockets are low level for programming distributed systems

• RPC provides a simple procedure call interface for a client
to invoke server code

• RPC failures complicate RPC semantics

• Requests need to be retried on failure,
but retries may cause duplicate requests,
which need to be ignored (which is non-trivial)

	Slide 1: Remote Procedure Calls (RPC)
	Slide 2: Overview
	Slide 3: Shared memory communication
	Slide 4: Inter-process communication
	Slide 5: Socket-based communication
	Slide 6: Challenges with Socket API
	Slide 7: RPC
	Slide 8: Why RPC?
	Slide 9: Benefits of RPC
	Slide 10: RPC messages
	Slide 11: RPC request processing
	Slide 12: RPC example
	Slide 13: RPC details
	Slide 14: RPC Failures
	Slide 15: Failures
	Slide 16: Failures during RPC
	Slide 17: Failures during RPC
	Slide 18: Best-effort RPC
	Slide 19: Side effects with best-effort RPC
	Slide 20: Inconsistency with best-effort RPC
	Slide 21: Inconsistency with best-effort RPC
	Slide 22: When will best-effort RPC work?
	Slide 23: Better RPC semantics
	Slide 24: At-most-once RPC
	Slide 25: At-most-once RPC
	Slide 26: Generating unique IDs
	Slide 27: Getting rid of server state
	Slide 28: Concurrent requests
	Slide 29: Server crashes, then restarts
	Slide 30: 1. Track number of server restarts
	Slide 31: 2. Keep response[] array on disk
	Slide 32: Exactly-once RPC
	Slide 33: Exactly-once RPC
	Slide 34
	Slide 35: RPC semantics in Go
	Slide 36: RPC performance
	Slide 37: Conclusions

