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Amazon’s eCommerce Platform

* Loosely coupled,
service-oriented architecture
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How does Amazon use Dynamo?

* Shopping cart

e Session information

 E.g., recently visited products

e Product list

* Mostly read-only, replicated for high read throughput



Motivation

* Need a highly available, scalable storage system

 Key-value storage is prevalent, powerful pattern

* Data is mostly accessed by primary key

« Data served is often self-describing blobs (not structured)

e RDMS is not a good fit

* Most features are unused, e.g., query optimizer,
stored procedures, triggers, etc.

e Scales up, but scale out is not so easy

e Strongly consistent, limits availability



Key requirements

* High “always writable” availability is critical

* Accept writes during failure scenarios
* Total ordering not possible
* Allow writes without prior context, e.g., after failure

* Ordering a client’s writes may not be possible

* User-perceived consistency is also very important

 Anomalies due to weak consistency should be rare

 Guaranteed latency, measured in 99.9 percentile
* Incremental scalability, reduces TCO

* Tunable latency, consistency, availability, durability



Designh overview

« Dynamo is a decentralized (peer-to-peer) replicated,
distributed hash table

 Key design questions
* How is data placed and replicated on nodes?

 How to provide availability and consistency under failures?

« How to route requests to nodes storing the data?

 Techniques

Consistent hashing for partitioning the key space

Sloppy quorum for high availability and consistency

Optimistic replication for eventual consistency

Gossip-based protocols for membership and mapping




Consistent Hashing



Dynamo API

 The get(k) and put(k, v) APl includes a context that
contains version information (discussed later)

// get returns one or more object versions, and a context.

//
object[], context = get(key)

// put supplies context returned by previous get.

//
put(key, object, context)



Why consistent hashing?

* Enables partitioning (sharding) the key space across nodes

 Handles adding and deleting nodes
* |f you use standard hashing, why would this be a problem?

 Enables incremental scalability

 Handles data replication



Hash ID

 Hash the key to a 128 bit ID

* |D = h(key), where h is MD5

 |D liesin a circular key space

- -
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Node and key assighment

* Key idea of consistent hashing:

 Each node is assigned an ID in the key space,
e.g., node A is assigned h(A)

* Each key, based on its ID, is owned by first clockwise node
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Nodes store key ranges

Each node owns keys in the range between its predecessor
and itself

h(k1)

h(k2)
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Node addition/deletion

Adding or removing a node only affects a part of the key
range, i.e., successor’s key range

h(k1)
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Replication

A key is replicated at the first N (e.g., 3) clockwise nodes

Each node stores key ranges between its 3" predecessor
and itself
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Key load imbalance

* While node IDs are relatively random, key range may be
unbalanced => some nodes may store many more keys
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Load balancing via virtual nodes

 Map each physical node to multiple virtual nodes

* Pros: reduces key range skew across physical nodes

 Cons: increases membership size
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Sloppy Quorum



Why sloppy quorum?

* Goalisto provide both high availability and
user-perceived consistency

* Data should always be writable

* Avoid anomalies due to weak consistency with high probability

e Solution: Be available

* Consistent during normal operation, sloppy during failures
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Majority quorum protocol

Sloppy quorum builds on majority quorum protocol

Basic Majority Quorum protocol

Assume

* N: Number of nodes (or replicas) storing a key
* R:Successful read involves at least R nodes

* \W: Successful write involves at least W nodes
Choose: R+ W >N

* Since reads and writes overlap at least one replica,
majority quorum ensures reads will read the latest data

Example:
e N=3,R=2,W=2 write read
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Majority quorum in Dynamo

e AssumeN=3,R=2,W=2

* put(k, v)

* Coordinated by a node that stores key k

* Typically, first replica is chosen as coordinator

* However, other replicas may also be chosen for load balancing

 Returns when at least W=2 replicas update key and respond to the
coordinator

* get(k)
 Coordinated by any node (whether node stores k or not)

 Returns when at least R=2 replicas respond with the value of key to
the coordinator
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Majority quorum example

* N=3,R=2,W=2

* Assume client performs put(k1, v1)

@ kl=v1,
) E’s response \
\ Q

’ \
B’s response ',

. ' kl=vl @ A forwards put

\

\ {
kl=v1

- -

put(kl, v1) is performed
by coordinator A

put returns when
A receives response
fromEorB

toEandB

B could have failed but
put returns successfully
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Sloppy quorum

always writable operation

4

e When a node is not available,|writes sent to a new node

 Reads and writes are performed on N healthy nodes

 So failed nodes are skipped

* Sloppy: R+W > N does not guarantee that reads, writes overlap

 However, reads still often read the latest data
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Sloppy quorum example

* Assume client performs put(k1, v2)
* |If Bfails, A forwards put(k1, v2) to D (temporary replica)

 Even if B restarts, get(k1) often returns latest version

@ ________ “\\h(kl) put(kl, v2) is performed
/ by coordinator A
@ kl=v2 , put returns when
, E’s response A receives response

-
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/
! h B has failed
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A forwards put
toEand D
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Sloppy quorum and replica divergence

* After node B fails, it will have a stale replica

replicas have

diverged @

- -

1
1 \

1 \

1 \
1 1
1 1
] 1
l @
I

1
1
1
\ 1
\
\
\

24



Sloppy quorum and failure recovery

* After node B fails, it will have a stale replica

* When temporary replica D finds that B has recovered

D sends v2 to B, and may delete v2 from its store

Node B recovers
kl=v2 )
h from failure

- -
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Replica synchronization

* Nodes may have stale replicas, leave or fail permanently

* Replicas synchronize key ranges with an efficient anti-
entropy protocol that uses Merkle trees

@ ........ . h(k)
.- \ (F-A) range stored on A, E, B.

A and E compare
and synchronize (F-A) range

Node B failed, @
Aor Ecansend X
(F-A) rangeto D .-~

- -
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Sloppy quorum configuration

N R W Application

3 2 2 Consistent, durable, user state
(typical configuration)

N 1 N High performance read engine

1 1 1 Distributed web cache
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Optimistic Replication



Why optimistic replication?

* With sloppy quorum, replicas may be stale or conflicting

» Stale replica: replica has old version

e Conflicting replica: process wrote to a stale replica

* Optimistic replication is used to

* Detect stale and conflicting replicas

* Synchronize them so replicas become eventually consistent

 Dynamo implements optimistic replication using
immutable versions and version histories

* put() creates new, immutable object version

 Each node tracks version history, i.e., version information for each
object version and how they are related
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Optimistic replication example

 put(k, vl) writesto A, E, B
put(k, v1)

e Assume vl is both a value,
and a new version
associated with the value @

vl vl vl

Version history

vl




Example

* Say, B and E fail

* put(k, v2), based on v1,
writesto Aand D
« Disatemporary replica

 vlisan ancestor of v2
in version history

put(k, v2)

X | ©@

vl vl vl
v2 v2

Version history

vl

}

v2

31



Example

* Say, B and E fail
put(k, v2)

* put(k, v2), based on v1,

writesto Aand D 5@ @ @

 Disatemporary replica vl vl

. v2 v2
e vlisan ancestor Of v2

in version history

* Aremoves vl (stale version) Version history

vl

}

v2
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Example

e BandE recover
e Say, A fails

e get(k) reads vl from E and B

e vlis astale version

8 &

v2

vl = get(k)

Version history

vl

}

v2

v2
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Example

e A recovers
put(k, v3), based on v1

* put(k, v3), based on v1,

writesto E, A, B @ @

* Creates branch in history,
since put() performed based
on stale version v1

vl vl
v2 v2
v3 v3 v3

Version history

vl
} 1
v2 v3
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Example

* Arecovers

* put(k, v3), based on v1,
writesto E, A, B

* Creates branch in history,
since put() performed based
on stale version v1

 Nodes only store leaf versions
in version history

e E and B remove vl, ancestor of v3

 Astores v2 and v3, since they conflict

put(k, v3), based on v1

@) ® ®

v2 v2
v3 v3 v3

Version history

vl
} 1
v2 v3
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Example

get(k) reads conflicting [v2, v3]
fromA, E, B

Dynamo provides all conflicting
versions to client, since client
knows best how to reconcile them

 E.g., app can merge two conflicting
shopping carts

[v2, v3] = get(k)

v2
v3

v3

Version history

vl
} 1
v2 v3

v3

v2
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Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

*  Dynamo expects app
reconciled [v2, v3]
when it created v4

put(k, v4), based on [v2, v3]

® ®|®

v2 v2
v3 v3 v3
v4 v4 v4

Version history

vl
} 1
v2 v3
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Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

*  Dynamo expects app
reconciled [v2, v3]
when it created v4

* put() merges conflicting versions
into single new version

* Version history has single head

put(k, v4), based on [v2, v3]

® ®|®

v2 v2
v3 v3 v3
v4 v4 v4

Version history
vl
} 1
v2 v3
\ /
v4
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Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

put(k, v4), based on [v2, v3]

® ®|®

*  Dynamo expects app
reconciled [v2, v3]
when it created v4

* put() merges conflicting versions
into single new version

v4 v4 V!

« \ersion history has single head version history

vl
e A, E BandDcanremove | |
stale versions v2 and v3 v2 v3
\/
v4
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Example

put(k, v4),
based on [v2, v3],
writesto A, E, B

put(k, v4), based on [v2, v3]

® ®|®

*  Dynamo expects app
reconciled [v2, v3]
when it created v4

!out() merges conﬂlc.tmg versions —a w as
into single new version

« \ersion history has single head version history

vl
A, E, B and D can remove | |
stale versions v2 and v3 v2 v3
N
v4

 Objectis eventually consistent
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Version history with vector clocks

v4

 Dynamo uses vector clocks (VC) to v2

. . . vl v3
implement version history
* Each object version stores a CED é e @
vector clock
vl vl

vl

* VC efficiently capture causality

v2 v2
» Stale versions can be forgotten v3 v3 v3
v4 v4 v4

* Concurrent versions are conflicting,

require reconciliation o
Version history

[(A, 1)] Vl_l
VC: [(nodel, #updatesl), _/( 1

(node2, #updates2), ..] [(A, 2)] V2 v3 [(A, 1),
(E, 1)]
v4

(A, 3), (B, D] 4



Dynamo API with vector clocks

 The get(k) and put(k, v) APl includes a context that
contains version information (vector clock)

// get returns one or more conflicting object versions, and a context.
// context contains vector clock for each returned version.
object[], context = get(key)

// put supplies context returned by previous get.

// context helps generate vector clock for new object version.
put(key, object, context)
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Gossip-Based Protocols



Membership and mapping

* Dynamo uses gossiping to propagate membership,
mapping information

 Administrator explicitly adds and remove nodes

*  Membership information: nodes communicate with each
other to eventually learn about an added/deleted node

* Mapping information: nodes also learn about node
mappings, i.e., the key ranges stored on a node

 What is an alternative method for propagating this
information?
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Why gossip-based protocols?

* Gossip protocols exchange information between nodes in a
peer-to-peer (symmetric) manner

e A<->B: A and B learn about each other’s state

e B<->C: B and Clearn about each other’s state,
so C learns about A’s state as well

* In general, these protocols enable nodes to

e Learn about the state of other nodes

e Use version history to become eventually consistent

 Tradeoffs:

* Pros: avoid need for a coordinator, provide higher availability

* Cons: nodes may have stale information for a while, limited scaling
45



Routing key lookup

With gossiping, each node knows about 1) all other nodes,
and 2) the key ranges each node stores

Allows one-hop routing (critical for low latency)
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Failure detection

* Initially implemented node failure detection via gossip

* Not needed due to explicit node add/remove

* No need to distinguish between temporarily failed/recovering
nodes versus removed/added nodes

* Simple failure detection
A detects B as failed if it doesnt respond to a ping message
* A periodically checks if B is alive again

* Inthe absense of requests, A doesn’t need to know if B is alive
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Evaluation

Client latencies in milliseconds

1000

(log scale)

500 ms SLA for storage system
for shopping cart application
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(hourly plot of latencies during our peak seson in Dec. 2006)
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Lessons learned: tail latency

* 99.9 percentile is a high bar

* Packet losses, waiting on disk, accessing large objects,
JVM garbage collection, ...

* Techniques used to reduce tail latency

 Use buffered writes to avoid waiting on disk

* Need to deal with version consistency, e.g., if version number is
increased on disk, but failure loses the object version

* Lazy removal of stale versions

* Adaptive throttling of background operations based on observed
foreground operation latency
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Lessons learned: repartitioning

* Slow repartitioning

e Successor (C) splits key range to bootstrap new node (D)

* Requires ordered key traversal (scan), causes heavy random disk
|/O at Node C; with throttling, takes hours/days to finish

© (&)

C splits its key range
tosendto D

new node @ w
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Lessons learned: repartitioning

Use fixed arcs strategy
e Divide hash ring into many fixed key ranges called segments
* Coordinate assignment of segments to nodes

 New node (D) steals entire existing segments

from other nodes, allowing
simple file transfer, sequential 10 @

Scales better @ @
However, moves away @4__new f ode

from decentralized

principle @ :
""""" 51



Dynamo: pros and cons

* Pros

* Highly available - 99.9995% request success over one year
* Meets tight latency requirements
* Incrementally scalable

* Tunable consistency, durability

* (Cons

* No transactional semantics
 More challenging programming model, e.g., handling conflicts
 Doesn’t support ordered key operations, streaming operations

 Not appropriate for large (> 1MB) objects
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Conclusions

* Scalable, replicated, eventually consistent key-value store

* Decentralized (peer-to-peer) techniques can be used for
building highly available system

e High availability: provides an “always-on” experience

* Mostly consistent: clients rarely see conflicting versions

* Highly influential

* Apache Cassandra builds on Dynamo’s design
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