Case Study 4:
Dynamo: Amazon’s Highly Available
Key-value Store

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Authors: Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels

Many slides adapted from a talk by Peter Vosshall

Amazon’s eCommerce Platform

* Loosely coupled,
service-oriented architecture

Client Requests

Page

e Stringent latency requirements o B BJ B .. B Rendenn

Components

« Services must adhere to formal SLAs I —~ l
equest Routing
* Measured at 99.9 percentile I7e 'I‘// e % ——
e S o 35 R Services
. \-\,\ N o 1L
* 500 ms for client requests l Feass oG
5 -~ - Services
e 10-100 ms for core services > ™ e W ™
Lt o g) kg
* Availability is paramount | [|
S | L‘ J | .
Tha. o e N l
. L & i e ‘._"__ [—}
5 v\ ‘ -
* Large scale, keeps growing 317

‘Dynamo instances Other datastores

 10,000s servers worldwide

How does Amazon use Dynamo?

* Shopping cart

e Session information

 E.g., recently visited products

e Product list

* Mostly read-only, replicated for high read throughput

Motivation

* Need a highly available, scalable storage system

 Key-value storage is prevalent, powerful pattern

* Data is mostly accessed by primary key

« Data served is often self-describing blobs (not structured)

e RDMS is not a good fit

* Most features are unused, e.g., query optimizer,
stored procedures, triggers, etc.

e Scales up, but scale out is not so easy

e Strongly consistent, limits availability

Key requirements

* High “always writable” availability is critical

* Accept writes during failure scenarios
* Total ordering not possible
* Allow writes without prior context, e.g., after failure

* Ordering a client’s writes may not be possible

* User-perceived consistency is also very important

 Anomalies due to weak consistency should be rare

 Guaranteed latency, measured in 99.9 percentile
* Incremental scalability, reduces TCO

* Tunable latency, consistency, availability, durability

Designh overview

« Dynamo is a decentralized (peer-to-peer) replicated,
distributed hash table

 Key design questions
* How is data placed and replicated on nodes?

 How to provide availability and consistency under failures?

« How to route requests to nodes storing the data?

 Techniques

Consistent hashing for partitioning the key space

Sloppy quorum for high availability and consistency

Optimistic replication for eventual consistency

Gossip-based protocols for membership and mapping

Consistent Hashing

Dynamo API

 The get(k) and put(k, v) APl includes a context that
contains version information (discussed later)

// get returns one or more object versions, and a context.

//
object[], context = get(key)

// put supplies context returned by previous get.

//
put(key, object, context)

Why consistent hashing?

* Enables partitioning (sharding) the key space across nodes

 Handles adding and deleting nodes
* |f you use standard hashing, why would this be a problem?

 Enables incremental scalability

 Handles data replication

Hash ID

 Hash the key to a 128 bit ID

* |D = h(key), where h is MD5

 |D liesin a circular key space

- -

10

Node and key assighment

* Key idea of consistent hashing:

 Each node is assigned an ID in the key space,
e.g., node A is assigned h(A)

* Each key, based on its ID, is owned by first clockwise node

J— __ hik1)

;O ()
h(k2) (

1
1
1

- -

11

Nodes store key ranges

Each node owns keys in the range between its predecessor
and itself

h(k1)

h(k2)

12

Node addition/deletion

Adding or removing a node only affects a part of the key
range, i.e., successor’s key range

h(k1)

13

Replication

A key is replicated at the first N (e.g., 3) clockwise nodes

Each node stores key ranges between its 3" predecessor
and itself

- -

14

Key load imbalance

* While node IDs are relatively random, key range may be
unbalanced => some nodes may store many more keys

large

@ y range

1 \

1 \
1 \
1 \
1 1
1 1
1 1

I
. small
\
\
\

<— range

- -

15

Load balancing via virtual nodes

 Map each physical node to multiple virtual nodes

* Pros: reduces key range skew across physical nodes

 Cons: increases membership size

large

y range
@ (&)

.E small

<— range

16

Sloppy Quorum

Why sloppy quorum?

* Goalisto provide both high availability and
user-perceived consistency

* Data should always be writable

* Avoid anomalies due to weak consistency with high probability

e Solution: Be available

* Consistent during normal operation, sloppy during failures

18

Majority quorum protocol

Sloppy quorum builds on majority quorum protocol

Basic Majority Quorum protocol

Assume

* N: Number of nodes (or replicas) storing a key
* R:Successful read involves at least R nodes

* \W: Successful write involves at least W nodes
Choose: R+ W >N

* Since reads and writes overlap at least one replica,
majority quorum ensures reads will read the latest data

Example:
e N=3,R=2,W=2 write read

19

Majority quorum in Dynamo

e AssumeN=3,R=2,W=2

* put(k, v)

* Coordinated by a node that stores key k

* Typically, first replica is chosen as coordinator

* However, other replicas may also be chosen for load balancing

 Returns when at least W=2 replicas update key and respond to the
coordinator

* get(k)
 Coordinated by any node (whether node stores k or not)

 Returns when at least R=2 replicas respond with the value of key to
the coordinator

20

Majority quorum example

* N=3,R=2,W=2

* Assume client performs put(k1, v1)

@ kl=v1,
) E’s response \
\ Q

’ \
B’s response ',

. ' kl=vl @ A forwards put

\

\ {
kl=v1

- -

put(kl, v1) is performed
by coordinator A

put returns when
A receives response
fromEorB

toEandB

B could have failed but
put returns successfully

21

Sloppy quorum

always writable operation

4

e When a node is not available,|writes sent to a new node

 Reads and writes are performed on N healthy nodes

 So failed nodes are skipped

* Sloppy: R+W > N does not guarantee that reads, writes overlap

 However, reads still often read the latest data

22

Sloppy quorum example

* Assume client performs put(k1, v2)
* |If Bfails, A forwards put(k1, v2) to D (temporary replica)

 Even if B restarts, get(k1) often returns latest version

@ ________ “\\h(kl) put(kl, v2) is performed
/ by coordinator A
@ kl=v2 , put returns when
, E’s response A receives response

-
-
-~
7
4
4

‘ / kl=v2
/
/

/ /
,/ D’s response @
/
! h B has failed

\ fromEorD

A forwards put
toEand D

23

Sloppy quorum and replica divergence

* After node B fails, it will have a stale replica

replicas have

diverged @

- -

1
1 \

1 \

1 \
1 1
1 1
] 1
l @
I

1
1
1
\ 1
\
\
\

24

Sloppy quorum and failure recovery

* After node B fails, it will have a stale replica

* When temporary replica D finds that B has recovered

D sends v2 to B, and may delete v2 from its store

Node B recovers
kl=v2)
h from failure

- -

25

Replica synchronization

* Nodes may have stale replicas, leave or fail permanently

* Replicas synchronize key ranges with an efficient anti-
entropy protocol that uses Merkle trees

@ h(k)
.- \ (F-A) range stored on A, E, B.

A and E compare
and synchronize (F-A) range

Node B failed, @
Aor Ecansend X
(F-A) rangeto D .-~

- -

26

Sloppy quorum configuration

N R W Application

3 2 2 Consistent, durable, user state
(typical configuration)

N 1 N High performance read engine

1 1 1 Distributed web cache

27

Optimistic Replication

Why optimistic replication?

* With sloppy quorum, replicas may be stale or conflicting

» Stale replica: replica has old version

e Conflicting replica: process wrote to a stale replica

* Optimistic replication is used to

* Detect stale and conflicting replicas

* Synchronize them so replicas become eventually consistent

 Dynamo implements optimistic replication using
immutable versions and version histories

* put() creates new, immutable object version

 Each node tracks version history, i.e., version information for each
object version and how they are related

29

Optimistic replication example

 put(k, vl) writesto A, E, B
put(k, v1)

e Assume vl is both a value,
and a new version
associated with the value @

vl vl vl

Version history

vl

Example

* Say, B and E fail

* put(k, v2), based on v1,
writesto Aand D
« Disatemporary replica

 vlisan ancestor of v2
in version history

put(k, v2)

X | ©@

vl vl vl
v2 v2

Version history

vl

}

v2

31

Example

* Say, B and E fail
put(k, v2)

* put(k, v2), based on v1,

writesto Aand D 5@ @ @

 Disatemporary replica vl vl

. v2 v2
e vlisan ancestor Of v2

in version history

* Aremoves vl (stale version) Version history

vl

}

v2

32

Example

e BandE recover
e Say, A fails

e get(k) reads vl from E and B

e vlis astale version

8 &

v2

vl = get(k)

Version history

vl

}

v2

v2

33

Example

e A recovers
put(k, v3), based on v1

* put(k, v3), based on v1,

writesto E, A, B @ @

* Creates branch in history,
since put() performed based
on stale version v1

vl vl
v2 v2
v3 v3 v3

Version history

vl
} 1
v2 v3

34

Example

* Arecovers

* put(k, v3), based on v1,
writesto E, A, B

* Creates branch in history,
since put() performed based
on stale version v1

 Nodes only store leaf versions
in version history

e E and B remove vl, ancestor of v3

 Astores v2 and v3, since they conflict

put(k, v3), based on v1

@) ® ®

v2 v2
v3 v3 v3

Version history

vl
} 1
v2 v3

35

Example

get(k) reads conflicting [v2, v3]
fromA, E, B

Dynamo provides all conflicting
versions to client, since client
knows best how to reconcile them

 E.g., app can merge two conflicting
shopping carts

[v2, v3] = get(k)

v2
v3

v3

Version history

vl
} 1
v2 v3

v3

v2

36

Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

* Dynamo expects app
reconciled [v2, v3]
when it created v4

put(k, v4), based on [v2, v3]

® ®|®

v2 v2
v3 v3 v3
v4 v4 v4

Version history

vl
} 1
v2 v3

37

Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

* Dynamo expects app
reconciled [v2, v3]
when it created v4

* put() merges conflicting versions
into single new version

* Version history has single head

put(k, v4), based on [v2, v3]

® ®|®

v2 v2
v3 v3 v3
v4 v4 v4

Version history
vl
} 1
v2 v3
\ /
v4

38

Example

* put(k, v4),
based on [v2, v3],
writesto A, E, B

put(k, v4), based on [v2, v3]

® ®|®

* Dynamo expects app
reconciled [v2, v3]
when it created v4

* put() merges conflicting versions
into single new version

v4 v4 V!

« \ersion history has single head version history

vl
e A, E BandDcanremove | |
stale versions v2 and v3 v2 v3
\/
v4

39

Example

put(k, v4),
based on [v2, v3],
writesto A, E, B

put(k, v4), based on [v2, v3]

® ®|®

* Dynamo expects app
reconciled [v2, v3]
when it created v4

!out() merges conﬂlc.tmg versions —a w as
into single new version

« \ersion history has single head version history

vl
A, E, B and D can remove | |
stale versions v2 and v3 v2 v3
N
v4

 Objectis eventually consistent
40

Version history with vector clocks

v4

 Dynamo uses vector clocks (VC) to v2

. . . vl v3
implement version history
* Each object version stores a CED é e @
vector clock
vl vl

vl

* VC efficiently capture causality

v2 v2
» Stale versions can be forgotten v3 v3 v3
v4 v4 v4

* Concurrent versions are conflicting,

require reconciliation o
Version history

[(A, 1)] Vl_l
VC: [(nodel, #updatesl), _/(1

(node2, #updates2), ..] [(A, 2)] V2 v3 [(A, 1),
(E, 1)]
v4

(A, 3), (B, D] 4

Dynamo API with vector clocks

 The get(k) and put(k, v) APl includes a context that
contains version information (vector clock)

// get returns one or more conflicting object versions, and a context.
// context contains vector clock for each returned version.
object[], context = get(key)

// put supplies context returned by previous get.

// context helps generate vector clock for new object version.
put(key, object, context)

42

Gossip-Based Protocols

Membership and mapping

* Dynamo uses gossiping to propagate membership,
mapping information

 Administrator explicitly adds and remove nodes

* Membership information: nodes communicate with each
other to eventually learn about an added/deleted node

* Mapping information: nodes also learn about node
mappings, i.e., the key ranges stored on a node

 What is an alternative method for propagating this
information?

44

Why gossip-based protocols?

* Gossip protocols exchange information between nodes in a
peer-to-peer (symmetric) manner

e A<->B: A and B learn about each other’s state

e B<->C: B and Clearn about each other’s state,
so C learns about A’s state as well

* In general, these protocols enable nodes to

e Learn about the state of other nodes

e Use version history to become eventually consistent

 Tradeoffs:

* Pros: avoid need for a coordinator, provide higher availability

* Cons: nodes may have stale information for a while, limited scaling
45

Routing key lookup

With gossiping, each node knows about 1) all other nodes,
and 2) the key ranges each node stores

Allows one-hop routing (critical for low latency)

46

Failure detection

* Initially implemented node failure detection via gossip

* Not needed due to explicit node add/remove

* No need to distinguish between temporarily failed/recovering
nodes versus removed/added nodes

* Simple failure detection
A detects B as failed if it doesnt respond to a ping message
* A periodically checks if B is alive again

* Inthe absense of requests, A doesn’t need to know if B is alive

47

Evaluation

Client latencies in milliseconds

1000

(log scale)

500 ms SLA for storage system
for shopping cart application

e RS ATV RN T
—99.9 Reads

T AV WIeS
| - Ay Reads

JU

]
-
|

Timeline

(hourly plot of latencies during our peak seson in Dec. 2006)

48

Lessons learned: tail latency

* 99.9 percentile is a high bar

* Packet losses, waiting on disk, accessing large objects,
JVM garbage collection, ...

* Techniques used to reduce tail latency

 Use buffered writes to avoid waiting on disk

* Need to deal with version consistency, e.g., if version number is
increased on disk, but failure loses the object version

* Lazy removal of stale versions

* Adaptive throttling of background operations based on observed
foreground operation latency

49

Lessons learned: repartitioning

* Slow repartitioning

e Successor (C) splits key range to bootstrap new node (D)

* Requires ordered key traversal (scan), causes heavy random disk
|/O at Node C; with throttling, takes hours/days to finish

© (&)

C splits its key range
tosendto D

new node @ w

50

Lessons learned: repartitioning

Use fixed arcs strategy
e Divide hash ring into many fixed key ranges called segments
* Coordinate assignment of segments to nodes

 New node (D) steals entire existing segments

from other nodes, allowing
simple file transfer, sequential 10 @

Scales better @ @
However, moves away @4__new f ode

from decentralized

principle @ :
""""" 51

Dynamo: pros and cons

* Pros

* Highly available - 99.9995% request success over one year
* Meets tight latency requirements
* Incrementally scalable

* Tunable consistency, durability

* (Cons

* No transactional semantics
 More challenging programming model, e.g., handling conflicts
 Doesn’t support ordered key operations, streaming operations

 Not appropriate for large (> 1MB) objects

52

Conclusions

* Scalable, replicated, eventually consistent key-value store

* Decentralized (peer-to-peer) techniques can be used for
building highly available system

e High availability: provides an “always-on” experience

* Mostly consistent: clients rarely see conflicting versions

* Highly influential

* Apache Cassandra builds on Dynamo’s design

53

	Slide 1: Case Study 4: Dynamo: Amazon’s Highly Available Key-value Store
	Slide 2: Amazon’s eCommerce Platform
	Slide 3: How does Amazon use Dynamo?
	Slide 4: Motivation
	Slide 5: Key requirements
	Slide 6: Design overview
	Slide 7: Consistent Hashing
	Slide 8: Dynamo API
	Slide 9: Why consistent hashing?
	Slide 10: Hash ID
	Slide 11: Node and key assignment
	Slide 12: Nodes store key ranges
	Slide 13: Node addition/deletion
	Slide 14: Replication
	Slide 15: Key load imbalance
	Slide 16: Load balancing via virtual nodes
	Slide 17: Sloppy Quorum
	Slide 18: Why sloppy quorum?
	Slide 19: Majority quorum protocol
	Slide 20: Majority quorum in Dynamo
	Slide 21: Majority quorum example
	Slide 22: Sloppy quorum
	Slide 23: Sloppy quorum example
	Slide 24: Sloppy quorum and replica divergence
	Slide 25: Sloppy quorum and failure recovery
	Slide 26: Replica synchronization
	Slide 27: Sloppy quorum configuration
	Slide 28: Optimistic Replication
	Slide 29: Why optimistic replication?
	Slide 30: Optimistic replication example
	Slide 31: Example
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Version history with vector clocks
	Slide 42: Dynamo API with vector clocks
	Slide 43: Gossip-Based Protocols
	Slide 44: Membership and mapping
	Slide 45: Why gossip-based protocols?
	Slide 46: Routing key lookup
	Slide 47: Failure detection
	Slide 48: Evaluation
	Slide 49: Lessons learned: tail latency
	Slide 50: Lessons learned: repartitioning
	Slide 51: Lessons learned: repartitioning
	Slide 52: Dynamo: pros and cons
	Slide 53: Conclusions

