
Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Transactions and Concurrency Control

2

Overview

• Introduction to transactions

• Concurrency control

3

Fault-tolerant replicated systems

• We have seen systems that replicate data across nodes

• E.g., Raft, ZooKeeper

• Replicated systems provide fault tolerance

• Ideally, look like one reliable server

R1 R2
Client1 Client2

Replicated storage system

API API

4

Scalable sharded systems

• We have also seen systems that shard data across nodes

• E.g., Memcache, Dynamo

• Sharded systems enable scaling

• Shards can be accessed in parallel

Database DatabaseDatabase

Storage cluster

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster

A

B

C

h(key1)

sharded
caches

sharded
databases

Keys are
sharded

h(key2)

5

Combining replication and sharding

• Replication for fault tolerance
R

ep
lic

at
io

n

a-f

a-f

a-f

6

Combining replication and sharding

• Replication for fault tolerance

• Sharding for scalability

Sharding

R
ep

lic
at

io
n

a-f g-m n-s t-z

a-f g-m n-s t-z

a-f g-m n-s t-z

7

Scalable, fault-tolerant systems

• Real systems perform both

• Replication for fault tolerance

• Sharding for scalability

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster

Database Database

Storage cluster
(replica)

Geo region

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend clusterWebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster

Database Database

Storage cluster
(master)

Geo region

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster
h(key1)

AC

B

D

E

F

G

replicas

Storage
replication

replicated
caches

replicated
caches

sharded
caches

sharded
databases

Keys are
sharded

h(key2)

8

Sharding

• We will focus on sharded systems in this lecture

a-f g-m n-s t-z

9

Operations access one item

• We have assumed operations access one item at a time

get(k) put(r, V1)

Client 2Client 1

a-f g-m n-s t-z

10

Operations access multiple items

• What if operations access multiple items at a time?

• Such operations are common

• Create comment,
add associations

• Insert new record,
add index entry for record

get(k)
put(m, V0)

put(r, V1)
get(m)

id: 308 =>

 type: USER

 name: “Alice”

id: 2003 =>

 type: COMMENT

 str: “how was it …

id: 1807 =>

 type: POST

 str: “At the summ…

Client 2Client 1

operation can
access items from

same shard

operation can
access items from
different shards

a-f g-m n-s t-z

operation can
access items from

same shard

operation can
access items from
different shards

11

Operations access multiple items

• What if operations access multiple items at a time?

• We would like these operations to execute atomically

• Appear to execute all accesses together (hide concurrency)

• Appear to execute all accesses or none (hide failures)

get(k)
put(m, V0)

put(r, V1)
get(m)

Client 2Client 1

a-f g-m n-s t-z

12

Transactions

• We can use transactions, a well-known database solution

• Programmer marks beginning/end of sequence of code

• begin_tx: starts transaction

• end_tx: transaction done

• Code may access (e.g., read and write) multiple items (e.g., A, B)

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
 …
else
 write(A, a−10)
 b = read(B)
 write(B, b+10)
end_tx

13

Transaction commits

• When transaction is done, it is ready to commit

• Commit may or may not succeed

• If commit succeeds

• All transaction modifications have been written to storage

• Transaction results are sent to client

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
 …
else
 write(A, a−10)
 b = read(B)
 write(B, b+10)
end_tx

14

Transaction aborts

• When a transaction aborts (fails), all changes are undone

• Aborts can occur for various reasons, at any time before commit

• abort_tx: transaction code issues abort

• System may force a transaction to abort, e.g., deadlock, out-of-memory

• Server crashes, media failure

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
 abort_tx
else
 write(A, a−10)
 b = read(B)
 write(B, b+10)
end_tx

15

Transaction behavior

• System ensures transaction code runs atomically

• System handles concurrent operations (e.g., via locking)

• System adds failures (e.g., via crash recovery)

• Programmer is happy!

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
 abort_tx
else
 write(A, a−10)
 b = read(B)
 write(B, b+10)
end_tx

16

Transaction guarantees: ACID

• Atomic: transaction executes completely or not at all,
despite failures

• E.g., transfer(A, B) either commits or makes no changes

• Consistent: system ensures application-specific invariants

• E.g., delete user and all user data together

• Isolated: no interference between concurrent transactions

• E.g., sum(A, B) doesn’t read intermediate updates by transfer(A, B)

• Durable: committed transaction are not lost,
despite failures

17

Transaction guarantees: ACID

• Atomic: transaction executes
completely or not at all,
despite failures

• Consistent: system ensures
application-specific invariants

• Isolated: no interference
between concurrent
transactions

• Durable: committed
transactions are not lost,
despite failures

Guarantee about
correctness

under concurrency

Guarantees about
correctness

under failures

18

Concurrency Control

19

Isolation

• Goal: accesses in the transaction appear to happen
together at a point in time

• Serial execution

• Transactions are run in serial order, ensures isolation

• Problem: poor performance, no concurrency possible

• Concurrent execution

• Transactions are executed concurrently,
accesses are interleaved, provides good performance

• Problem: certain interleaving of accesses may violate isolation,
need to avoid them

Serializability

• A schedule is an ordering of the accesses (reads, writes)
performed by a set of transactions

• A schedule is serializable if there exists some serial
schedule that produces the same results

• Results mean transaction outputs and database state

• A serializable schedule provides isolation

• Transactions appear to execute in some serial order (even if they don’t)

20

Are schedules serializable?

21

Serializable

Serializable

Serializable

Non-serializable

transfer: rA wA rB wB ©
 sum: rA rB ©

transfer: rA wA rB wB ©
 sum: rA rB ©

transfer: rA wA rB wB ©
 sum: rA rB ©

transfer: rA wA rB wB ©
 sum: rA rB ©

rA:
wA:
©:

read item A
write item A
commit txn

Assume A = 40, B = 20

transfer: rA wA rB wB ©
 sum: rA rB ©

transfer: rA wA rB wB ©
 sum: rA rB ©

22

Conflicts

• Two accesses from different transactions are conflicting if
they operate on the same item and at least one is a write

• Conflicting accesses (read-write, write-read, write-write) are
non-commutative (cannot be reordered)

• For serializability, conflicts must occur in same order

Serializable

Non-serializable

23

Implementing serializability

• Concurrent execution can violate serializability

• We need to control concurrent execution to ensure serializability
(i.e., so conflicts occur in same order), and so an implementation
of isolation is also called concurrency control

• Two commonly used concurrency control schemes

• Two-phase locking

• Optimistic concurrency control

24

Two-phase locking (2PL)

• Every data item has an associated lock

• Locks can be mutex or reader-writer locks

• Reader-writer locks

• Shared: Acquire per-item lock before reading item

• Exclusive: Acquire per-item lock before writing item

Shared (S) Exclusive (X)

Shared (S) Yes No

Exclusive (X) No No

25

2PL rule

• Once a transaction has released a lock,
it is not allowed to acquire any other locks

• Growing phase: transaction acquires locks on items it
reads (read set) and writes (write set)

• Shrinking phase: transaction releases locks

• In practice:

• Growing phase is the entire transaction

• Shrinking phase is after commit

• Avoids the problem of transactions accessing data modified by a
transaction that eventually aborts

26

2PL Example

• Database automatically

• Acquires lock on first access to item

• Releases lock on abort or commit

S(I):
X(I):
U(I):

acquire shared lock on item I
acquire exclusive lock on item I
release lock on item I

S(A)

U(A)

X(A)
S(B)
X(B)
U(A),U(B)

S(A)
S(B)

U(A),U(B)

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
 abort_tx
else
 write(A, a−10)
 b = read(B)
 write(B, b+10)
end_tx

transfer: rA wA rB wB ©
 sum: rA rB ©

Are these schedules allowed under 2PL?

27

Serializable,
allowed

Non-serializable,
not allowed

Serializable,
not allowed

Serializable,
allowed

transfer: rA wA rB wB ©
 sum: rA rB ©

transfer: rA wA rB wB ©
 sum: rA rB ©

Assume A = 40, B = 20

transfer: rA wA rB wB ©
 sum: rA rB ©

28

Issues with 2PL

• What do we do if a lock is unavailable?

• Wait: wait until lock becomes available

• Die: give up immediately, i.e., abort

• Wound: force the lock holder to abort to acquire lock

• Waiting for a lock can result in deadlock

• Assuming order A and B are interchanged in the sum() code

• Transfer has locked A, waits on B

• Sum has locked B, waits on A

• Many ways to prevent, detect and handle deadlocks

• Typically wait-die or wound-wait used for prevention

29

2PL is pessimistic

• Acquires locks before accesses

• Pros

• Prevents all potential violations of serializability

• Cons

• Conflicts lead to waiting on locks, which cause delays

• Disallows certain concurrent accesses that are serializable

30

Optimistic Concurrency Control (OCC)

• Be optimistic, assume success!

• Access items without locking, as if they will succeed

• Only check whether reads/writes are serializable at commit time

• If check fails, abort transaction

• Compared to locking, OCC has

• Higher performance when transactions have few conflicts

• Lower performance when transactions have many conflicts

31

OCC implementation

• Optimistic execution

• Transaction executes initial reads from database (read set)

• Caches reads locally, re-reads from cache

• Buffers writes locally (write set)

• Validation and commit

1. Acquire shared locks on read set, exclusive locks on write set

2. Validate (check) items in read set haven’t changed

• i.e., reading item in read set at commit would give the same result

3. Apply buffered writes in write set to commit transaction

• Abort if locks can’t be acquired in Step 1 or validation fails in Step 2

4. Release locks

Many ways to do validation

2PL vs OCC: increasing conflict rate

From Rococo, OSDI 2014

32

33

Linearizability versus serializability

• Linearizability: a guarantee about single accesses on single
items

• Accesses (reads and write) have a total order

• Once write completes, all reads that begin later (in real-time order)
should reflect that write

• Serializability: a guarantee about multiple accesses on
multiple items

• Transactions appear to execute in some serial (total) order

• Doesn’t impose any real-time constraints

• Strict serializability: intuitively, serializability +
real-time constraints of linearizability

34

Conclusions

• Transactions enable executing operations atomically

• All accesses appear to execute together (hide concurrency)

• All accesses are executed or none or executed (hide failures)

• Concurrency control algorithms hide concurrency

• Ensure serializability (equivalence to serial execution)

• Two common methods: 2PL, OCC

• 2PL better for high contention, OCC better for low contention

• Next, we will look at how transactions help hide failures

	Slide 1: Transactions and Concurrency Control
	Slide 2: Overview
	Slide 3: Fault-tolerant replicated systems
	Slide 4: Scalable sharded systems
	Slide 5: Combining replication and sharding
	Slide 6: Combining replication and sharding
	Slide 7: Scalable, fault-tolerant systems
	Slide 8: Sharding
	Slide 9: Operations access one item
	Slide 10: Operations access multiple items
	Slide 11: Operations access multiple items
	Slide 12: Transactions
	Slide 13: Transaction commits
	Slide 14: Transaction aborts
	Slide 15: Transaction behavior
	Slide 16: Transaction guarantees: ACID
	Slide 17: Transaction guarantees: ACID
	Slide 18: Concurrency Control
	Slide 19: Isolation
	Slide 20: Serializability
	Slide 21: Are schedules serializable?
	Slide 22: Conflicts
	Slide 23: Implementing serializability
	Slide 24: Two-phase locking (2PL)
	Slide 25: 2PL rule
	Slide 26: 2PL Example
	Slide 27: Are these schedules allowed under 2PL?
	Slide 28: Issues with 2PL
	Slide 29: 2PL is pessimistic
	Slide 30: Optimistic Concurrency Control (OCC)
	Slide 31: OCC implementation
	Slide 32: 2PL vs OCC: increasing conflict rate
	Slide 33: Linearizability versus serializability
	Slide 34: Conclusions

