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Overview

• Introduction to transactions

• Concurrency control
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Fault-tolerant replicated systems

• We have seen systems that replicate data across nodes

• E.g., Raft, ZooKeeper

• Replicated systems provide fault tolerance

• Ideally, look like one reliable server

R1 R2
Client1 Client2

Replicated storage system

API API
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Scalable sharded systems

• We have also seen systems that shard data across nodes

• E.g., Memcache, Dynamo

• Sharded systems enable scaling

• Shards can be accessed in parallel

Database DatabaseDatabase

Storage cluster

WebserverWebserverWebserver

MemcacheMemcacheMemcache

Frontend cluster
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Combining replication and sharding

• Replication for fault tolerance
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Combining replication and sharding

• Replication for fault tolerance

• Sharding for scalability

Sharding
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Scalable, fault-tolerant systems

• Real systems perform both 

• Replication for fault tolerance

• Sharding for scalability
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MemcacheMemcacheMemcache
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Sharding

• We will focus on sharded systems in this lecture

a-f g-m n-s t-z
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Operations access one item

• We have assumed operations access one item at a time 

get(k) put(r, V1)

Client 2Client 1

a-f g-m n-s t-z
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Operations access multiple items

• What if operations access multiple items at a time?

• Such operations are common

• Create comment, 
add associations

• Insert new record, 
add index entry for record

get(k)
put(m, V0)

put(r, V1)
get(m)

id: 308 =>

  type: USER

  name: “Alice”

id: 2003 =>

  type: COMMENT

  str: “how was it …

id: 1807 =>

  type: POST

  str: “At the summ…

Client 2Client 1

operation can
access items from 

same shard

operation can
access items from 
different shards

a-f g-m n-s t-z
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Operations access multiple items

• What if operations access multiple items at a time?

• We would like these operations to execute atomically

• Appear to execute all accesses together (hide concurrency)

• Appear to execute all accesses or none (hide failures)

get(k)
put(m, V0)

put(r, V1)
get(m)

Client 2Client 1

a-f g-m n-s t-z
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Transactions

• We can use transactions, a well-known database solution

• Programmer marks beginning/end of sequence of code

• begin_tx: starts transaction

• end_tx: transaction done

• Code may access (e.g., read and write) multiple items (e.g., A, B)

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx   

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    …
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx
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Transaction commits

• When transaction is done, it is ready to commit

• Commit may or may not succeed

• If commit succeeds

• All transaction modifications have been written to storage

• Transaction results are sent to client

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx   

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    …
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx
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Transaction aborts

• When a transaction aborts (fails), all changes are undone

• Aborts can occur for various reasons, at any time before commit

• abort_tx: transaction code issues abort

• System may force a transaction to abort, e.g., deadlock, out-of-memory

• Server crashes, media failure

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx   

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx
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Transaction behavior

• System ensures transaction code runs atomically

• System handles concurrent operations (e.g., via locking)

• System adds failures (e.g., via crash recovery)

• Programmer is happy!

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx   

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx
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Transaction guarantees: ACID

• Atomic: transaction executes completely or not at all, 
despite failures

• E.g., transfer(A, B) either commits or makes no changes

• Consistent: system ensures application-specific invariants

• E.g., delete user and all user data together

• Isolated: no interference between concurrent transactions

• E.g., sum(A, B) doesn’t read intermediate updates by transfer(A, B)

• Durable: committed transaction are not lost, 
despite failures
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Transaction guarantees: ACID

• Atomic: transaction executes 
completely or not at all, 
despite failures

• Consistent: system ensures 
application-specific invariants

• Isolated: no interference 
between concurrent 
transactions

• Durable: committed 
transactions are not lost, 
despite failures

Guarantee about 
correctness 

under concurrency

Guarantees about
correctness 

under failures
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Concurrency Control
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Isolation

• Goal: accesses in the transaction appear to happen 
together at a point in time

• Serial execution

• Transactions are run in serial order, ensures isolation

• Problem: poor performance, no concurrency possible

• Concurrent execution

• Transactions are executed concurrently, 
accesses are interleaved, provides good performance

• Problem: certain interleaving of accesses may violate isolation, 
need to avoid them



Serializability

• A schedule is an ordering of the accesses (reads, writes) 
performed by a set of transactions

• A schedule is serializable if there exists some serial 
schedule that produces the same results

• Results mean transaction outputs and database state

• A serializable schedule provides isolation

• Transactions appear to execute in some serial order (even if they don’t)

20



Are schedules serializable?
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Serializable

Serializable

Serializable

Non-serializable

transfer: rA wA rB wB ©
 sum:                  rA rB ©

transfer:        rA wA rB wB ©
 sum:      rA rB ©

transfer:   rA wA      rB wB ©
 sum:      rA      rB ©

transfer: rA wA        rB wB ©
 sum:           rA rB ©

rA:  
wA:
©:

read item A
write item A
commit txn

Assume A = 40, B = 20



transfer:   rA wA      rB wB ©
 sum:      rA      rB ©

transfer: rA wA        rB wB ©
 sum:           rA rB ©
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Conflicts

• Two accesses from different transactions are conflicting if 
they operate on the same item and at least one is a write

• Conflicting accesses (read-write, write-read, write-write) are 
non-commutative (cannot be reordered)

• For serializability, conflicts must occur in same order

Serializable

Non-serializable
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Implementing serializability

• Concurrent execution can violate serializability

• We need to control concurrent execution to ensure serializability 
(i.e., so conflicts occur in same order), and so an implementation 
of isolation is also called concurrency control

• Two commonly used concurrency control schemes

• Two-phase locking

• Optimistic concurrency control
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Two-phase locking (2PL)

• Every data item has an associated lock

• Locks can be mutex or reader-writer locks

• Reader-writer locks

• Shared: Acquire per-item lock before reading item

• Exclusive: Acquire per-item lock before writing item

Shared (S) Exclusive (X)

Shared (S) Yes No

Exclusive (X) No No
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2PL rule

• Once a transaction has released a lock,
it is not allowed to acquire any other locks

• Growing phase: transaction acquires locks on items it 
reads (read set) and writes (write set)

• Shrinking phase: transaction releases locks

• In practice:

• Growing phase is the entire transaction

• Shrinking phase is after commit

• Avoids the problem of transactions accessing data modified by a 
transaction that eventually aborts
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2PL Example

• Database automatically

• Acquires lock on first access to item

• Releases lock on abort or commit

S(I):  
X(I):
U(I):

acquire shared lock on item I
acquire exclusive lock on item I
release lock on item I

S(A)

U(A)

X(A)
S(B)
X(B)
U(A),U(B)

S(A)
S(B)

U(A),U(B)

sum(A, B):
begin_tx
a = read(A)
b = read(B)
print a + b
end_tx   

transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a−10)
    b = read(B)
    write(B, b+10)
end_tx



transfer: rA wA        rB wB ©
 sum:           rA rB ©

Are these schedules allowed under 2PL?
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Serializable, 
allowed

Non-serializable,
not allowed

Serializable,
not allowed

Serializable,
allowed

transfer: rA wA rB wB ©
 sum:                  rA rB ©

transfer: rA wA   rB wB ©
 sum:           rA        rB ©

Assume A = 40, B = 20

transfer:   rA      wA rB wB ©
 sum:      rA   rB ©
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Issues with 2PL

• What do we do if a lock is unavailable?

• Wait: wait until lock becomes available

• Die: give up immediately, i.e., abort

• Wound: force the lock holder to abort to acquire lock

• Waiting for a lock can result in deadlock

• Assuming order A and B are interchanged in the sum() code

• Transfer has locked A, waits on B

• Sum has locked B, waits on A

• Many ways to prevent, detect and handle deadlocks

• Typically wait-die or wound-wait used for prevention
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2PL is pessimistic

• Acquires locks before accesses

• Pros

• Prevents all potential violations of serializability

• Cons

• Conflicts lead to waiting on locks, which cause delays

• Disallows certain concurrent accesses that are serializable
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Optimistic Concurrency Control (OCC)

• Be optimistic, assume success!

• Access items without locking, as if they will succeed

• Only check whether reads/writes are serializable at commit time

• If check fails, abort transaction

• Compared to locking, OCC has

• Higher performance when transactions have few conflicts

• Lower performance when transactions have many conflicts
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OCC implementation

• Optimistic execution

• Transaction executes initial reads from database (read set)

• Caches reads locally, re-reads from cache

• Buffers writes locally (write set)

• Validation and commit

1. Acquire shared locks on read set, exclusive locks on write set

2. Validate (check) items in read set haven’t changed 

• i.e., reading item in read set at commit would give the same result

3. Apply buffered writes in write set to commit transaction

• Abort if locks can’t be acquired in Step 1 or validation fails in Step 2

4. Release locks

Many ways to do validation



2PL vs OCC: increasing conflict rate

From Rococo, OSDI 2014

32
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Linearizability versus serializability 

• Linearizability: a guarantee about single accesses on single 
items

• Accesses (reads and write) have a total order

• Once write completes, all reads that begin later (in real-time order) 
should reflect that write

• Serializability: a guarantee about multiple accesses on 
multiple items

• Transactions appear to execute in some serial (total) order

• Doesn’t impose any real-time constraints

• Strict serializability: intuitively, serializability + 
real-time constraints of linearizability
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Conclusions

• Transactions enable executing operations atomically

• All accesses appear to execute together (hide concurrency)

• All accesses are executed or none or executed (hide failures)

• Concurrency control algorithms hide concurrency

• Ensure serializability (equivalence to serial execution)

• Two common methods: 2PL, OCC

• 2PL better for high contention, OCC better for low contention

• Next, we will look at how transactions help hide failures
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