Distributed Transactions and
Atomic Commit

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Distributed Systems
ECE419

Motivation for transactions

* When operations access multiple items, we would like
them to execute atomically

* Appear to execute all accesses together (hide concurrency)

 Appear to execute all accesses or none (hide failures)

* Transactions provide these semantics

Client 1 Client 2
operz.atlon can get(k) out(r, V1) operz?tlon can
access items from VO access items from
same shard put(m,) get(m) different shards
a-f g-m n-s t-z

Transaction guarantees: ACID

* | Atomic: transaction executes
completely or not at all,

despite failures Now, we will see how
transactions can
ensure correctness
under failures

* Consistent: system ensures
application-specific invariants

e [Isolated: no interference
between concurrent

transactions We have seen how
concurrency control

* [Durable: committed ensures correctness
transactions are not lost, under concurrency

despite failures

Ensuring atomicity and durability

* We have already looked at write-ahead logging (WAL)

* With WAL, system logs a modified item before overwriting it

* Allows partial modifications to be rolled back (for atomicity), and
completed modifications to be rolled forward (for durability)

e Are we done?

 When discussing write-ahead logging,
we assumed that an operation accesses items on one node

 What if transactions access items from multiple nodes?

* We need atomicity and durability across nodes

* Either all nodes execute transaction and make its updates durable,
or all nodes roll back any updates made by a transaction

Single node vs distributed transactions

e Assume items are sharded across nodes

Client 1 Client 2
begin tx begin_ tx
single-node read(k) write(r, V1) distributed
transaction write(m, VO) read(m) transaction
end_tx end_tx
a-f g-m n-s t-z

e (Clients send their transactions to one of the nodes
e Single-node transactions access items from one node

e Distributed transactions access items from multiple nodes

Distributed transaction execution model

e Coordinator node receives and runs transaction code,
participants nodes store data records

Coordinator Participants

transfer(A, B): Participant 1
begin_tx

a = read(A)

if a < 10 then
abort_tx

else
write(A, a-10)
b = read(B)
write(B, b+10)

end_tx B

7 Participant 2

Distributed transaction execution model

* Coordinator sends read/write RPC requests to participants

Coordinator node: Participant nodes:
runs transaction code, store data records,
coordinates with participants, acquire/release locks,

uses WAL for recovery use WAL for recovery
transfer(A, B): Participant 1
begin_tx A
a = read(A) - —v
if a < 10 then

abort_tx
else

write(A, a-10)7

b = read(B)

write(B, b+10) = 5
end_tx

7 Participant 2

Distributed transaction execution model

e Coordinators

e Concurrent transactions may have different coordinators

* A coordinator can be a participant as well

* Transaction ID

e Coordinator assigns a unique ID (TID) to each transaction

 RPC messages, transaction state at nodes are tagged with TID

* Participants

e Acquire locks when data record is accessed (2PL),
or at commit (OCC), and wait if record is locked

e Release locks on commit

* Log modifications and install them on commit

Atomic commit

* Problems with distributed transactions

* One participant performs all accesses but the other crashes

* One participant performs all accesses but the other needs to abort

* Transaction constraint fails (e.g., a < 10)
e Cannot acquire required lock (e.g., deadlock)

* No memory or disk space available to perform read/write
* Both participants perform all accesses but aren’t sure about other
e Recall Two Generals problem!

e We need atomic commit

* All nodes agree to execute transaction (commit), or else

 Evenif one node fails in any way, no node does anything (abort)

Two-phase commit

* A protocol for ensuring atomic commit

e Runs after transaction execution is done

Coordinator Participants

transfer(A, B):
begin_tx

a = read(pA) —=— —
if a < 10 then

abort_tx
else

write(A, a-10)7

b = read(B)

write(B, b+10)
end_tx

4

Two-phase commit protocol

/

Response
to client

asyed
UOI103||00 810A

aseyd uoisioaQg

transfer(A, B):
begin_tx

a = read(h) =

if a < 10 then
abort_tx

else
write(A, a-10)*
b = read(B)

/

write(B, b+10)

end_tx

I 4

Coordinator

End

Prepare

\().
|

— B

[

Participant

]

vote request

11
1

%:,
/

11

Two-phase commit

e Phase 1: vote collection

 Coordinator sends PREPARE message to all participants

* Each participant votes yes or no
* Records vote, locks held, in its log (in addition to updates)

* Each participant sends yes or no VOTE response to coordinator

* Coordinator inspects all votes

e |f all yes, then commit, else abort transactions
e Records Commit/Abort decision in log (commit point)

* Responds to client

e Phase 2: send decision

* Coordinator sends DECISION message to all participants

* Each participant commits or aborts changes, releases locks,
sends ACK response to the coordinator 12

Two-phase commit guarantees

 Under no failures, easy to see that 2PC guarantees:

* Atomic commit
e Participants commit when all prepared to commit, or else all abort
e Durability

* After coordinator commits, participants will apply changes

 But what happens under failures?

13

Types of failures

e A participant (PA or PB) or transaction coordinator (TC) can

e Crash and restart

 Time out waiting for a message

* Node is up, but didn’t receive expected message
* Maybe the other node crashed, maybe network has failed

* We can't usually tell the difference, so must be correct in either case

14

Participant crash failures

e \What if PA crashes:

 Before logging vote

* PA hasn’t sent VOTE to TC
e TC could not have decided commit

* Onreboot, PA can abort and forget transaction

* After logging NO vote

e TC could not have decided commit

* Onreboot, PA can abort and forget transaction

e After logging YES vote

 TC may decide to commit
* Onreboot, PA should reacquire locks, wait for TC to send DECISION

e After receiving DECISION
* On reboot, PA should reacquire locks, wait for TC to resend DECISION

Coordinator crash failures

e What if TC crashes:

 Before logging decision

e TC hasn’t sent DECISION

* On reboot, TC can decide to abort transaction and send DECISION
e After logging decision

* Some participants may have received decision, others not
* On reboot, TC must send (same) DECISION

16

Time out failures

What if Participant PA times out waiting for PREPARE:

e TC could not have decided commit
* PA can abort transaction

 Respond No to later PREPARE message

What if TC times out waiting for VOTE from PA:
 TC could not have sent DECISION yet

e TC can decide to abort transaction and send DECISION

What if PA voted YES, times out waiting for DECISION:
e Can’t abort, since TC could have decided Commit and let PB know
e Can’t commit, since TC could have decided Abort

* PA must keep waiting for TC’s DECISION forever!

17

Forgetting transaction state

When can PA forget about a committed transaction?

e After it sends ACK

* Ifit gets another Commit DECISION,
and has no record of the transaction, it sends ACK again

When can TC forget about a committed transaction?

* |fitsees ACK from every participant

 Then no participant will ever need to ask again

18

Two-phase commit cost

 Two-phase commit makes distributed transactions costly

Latency

* Requires two additional round trips after transaction code completes

* Votes and decision are logged to disk synchronously

Throughput

* Locks are held from the time reads and writes are performed (2PC) or
from prepare phase (OCC) until the end of two-phase commit

e QOther transactions waiting on locks are also delayed

Scalability

e Need to handle more distributed transactions with more nodes
Availability

* Coordinator crash blocks participants (while they hold locks!)

19

Two-phase commit in practice

* Typically, distributed transactions used within data center

 Round-trip times are short, network failures unlikely

 Much research on speeding up distributed transactions

 Keyideais to limit the power of transactions

* E.g., ensure that participants do not need to abort,
look for "It's Time to Move on from Two Phase Commit"

* E.g., perform transaction operations during commit,
look for Sinfonia mini-transactions

20

Distributed transactions and replication

e We have seen distributed transactions on sharded data

* How does that relate to replication?

<— Replication =—>

Sharding
a-f g-m n-s
a-f g-m n-s
a-f g-m n-s

t-z

t-z

t-z

21

Replication, sharding, atomic commit

* Replication is about doing same thing in multiple places

* Can use majority consensus, since nodes store same data

* Enables handling node failures, primarily for high availability

* Sharding is about doing different things in multiple places

* Enables running operations concurrently, primarily for scalability

 Atomic commit is about doing different things in
multiple places together (all or nothing)

 Can’t use majority consensus, since nodes store different data

* Asingle failed node blocks progress, limits availability

22

Replication, sharding, atomic commit

Replication for fault tolerance

Sharding:

Sharding for scalability, atomic commit for all-or-nothing

Modern databases support both, e.g., Google Spanner

atomic commit

g-m n-s

-
T a-f
.
O 02‘
§o | af
2 2
e
l a-f

g-m n-s

-

t-z

t-z

t-z

23

Conclusions

* Transactions enable executing operations atomically

* All accesses appear to execute together (hide concurrency)

* All accesses execute or none (hide failures)

* Concurrency control algorithms hide concurrency

 Atomic commit protocols hide failures

* Needed for distributed transactions
* Require logging (at coordinator and participants)

* Require two phases, for collecting votes, and sending decision

24

	Slide 1: Distributed Transactions and Atomic Commit
	Slide 2: Motivation for transactions
	Slide 3: Transaction guarantees: ACID
	Slide 4: Ensuring atomicity and durability
	Slide 5: Single node vs distributed transactions
	Slide 6: Distributed transaction execution model
	Slide 7: Distributed transaction execution model
	Slide 8: Distributed transaction execution model
	Slide 9: Atomic commit
	Slide 10: Two-phase commit
	Slide 11: Two-phase commit protocol
	Slide 12: Two-phase commit
	Slide 13: Two-phase commit guarantees
	Slide 14: Types of failures
	Slide 15: Participant crash failures
	Slide 16: Coordinator crash failures
	Slide 17: Time out failures
	Slide 18: Forgetting transaction state
	Slide 19: Two-phase commit cost
	Slide 20: Two-phase commit in practice
	Slide 21: Distributed transactions and replication
	Slide 22: Replication, sharding, atomic commit
	Slide 23: Replication, sharding, atomic commit
	Slide 24: Conclusions

