
Annotation for Automation: Rapid
Generation of File System Tools

Kuei (Jack) Sun, Daniel Fryer, Angela Demke Brown, Ashvin Goel
University of Toronto

Abstract
Today file system tools and file-system aware storage applications
are tightly coupled with file system implementations. Developing
these applications is challenging because it requires detailed knowl-
edge of the file system format, and the code for interpreting file
system metadata has to be written manually. This code is complex
and file-system specific, and so the application requires significant
re-engineering to support different file systems.

We propose a file system annotation language for specifying a
file system’s on-disk metadata format. File system developers are
asked to annotate the data structure definitions of a file system’s
metadata. The annotated code is parsed and used by tool-specific
code templates to create interpretation routines (e.g., a metadata
parser) for the desired file system tool. The benefit is that different
tools can reuse the interpretation routines, and they are much less
dependent on file system formats and implementations. We show
the feasibility of this approach by implementing a compiler that
generates a runtime metadata interpreter for an annotated toy file
system. The generated code has low overhead (roughly 3%) com-
pared to a hand-written version of the same application.

1. Introduction
There are several file system and storage applications that require
access to file system metadata. For example, offline file system
tools access file system metadata to check and repair file system
consistency [11] and recover deleted files [4]. Online applications
improve storage performance or reliability by taking advantage of
file system metadata at the block layer. For example, differenti-
ated storage services [12] improve performance by preferentially
caching metadata blocks. I/O shepherding [7] improves reliabil-
ity by using file structure information to implement checksumming
and replication. Similarly, the Recon system [6] improves reliabil-
ity by verifying the correctness of metadata operations at runtime.

All of these applications require the ability to recognize or in-
terpret file system metadata structures, in either an offline or on-
line context. Currently these applications must interpret metadata
on an ad-hoc basis, either by implementing their own methods or
by leveraging libraries provided by the file system developer. For
example, applications can use the libext2fs library for offline in-
terpretation of Linux ext2/3 file system images, but the library does
not support online interpretation. Similar libraries for other file sys-
tems, where they exist, provide a different interface and hence these
applications have to be significantly rewritten for each file system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLOS’13, November 03 - 06 2013, Farmington, PA, USA.
Copyright c© 2013 ACM 978-1-4503-2460-1/13/11. . . $15.00.
http://dx.doi.org/10.1145/2525528.2525529

Our aim is to allow developers to focus on the structure and
policies of their applications, rather than the intricacies of any par-
ticular file system. To reduce the burden of developing applications
that access file system metadata, we envision the separation of 1)
the low-level details of a file system’s format, 2) the structure of the
application, and 3) any file-system or application-specific policies
applied by the tool. Our goal is to enable file system developers to
annotate the file system format on disk so that a metadata parser
can be generated automatically, allowing applications to focus on
their structure and policies. We motivate our approach by describ-
ing three use cases.

File System Checker A file system checker must be able to ac-
cess metadata objects to perform diagnostics and/or repair. Devel-
opers nowadays build the consistency checker for each file system
from scratch, which requires significant effort. In our approach, the
consistency checkers for different file systems would use generated
metadata parsers that share a common API, and will only need to
implement their file-system specific rules.

The SQCK file system checker [8] implements all the file sys-
tem consistency rules as SQL queries on a database containing the
file system’s metadata. The database is populated by a file-system
specific parser that iterates over the file system metadata and gen-
erates rows to be inserted into corresponding tables. With proper
annotations, a shared code template can generate the parsing rou-
tines for different file systems.

Type-Specific Storage Policies Mesnier et al. [12] describe a dif-
ferentiated storage service in which different classes of data are
handled with different storage system policies for improved perfor-
mance. In their prototype, the file system source code was modified
to identify the class (e.g. inode, directory) of each block request is-
sued to the block layer, where the policies are implemented. Instead
of requiring application developers to modify each file system, a
runtime metadata interpreter can identify block classes by inter-
preting file system I/O at the block layer. The ability to automat-
ically create file system interpreters allows a developer to quickly
prototype the storage service for different file systems.

Runtime Verification The purpose of runtime verification is to
protect metadata from buggy file system operations [6]. This appli-
cation requires a framework for interpreting metadata at runtime,
similar to the previous example, and in addition it needs to be able
to compare the state of a file system before and after a transaction.
The logical differences between the states are checked against a set
of invariants to determine if a consistency violation has occurred.
To generate the logical differences, the metadata is compared field-
by-field, based on its parsed structure. In our approach, code tem-
plates are used to generate the functions that traverse and compare
the changed structures. These templates use the annotated pointer
relationships between objects to identify the corresponding struc-
tures in the old and new metadata trees.

Our annotation-based approach has several benefits:

• It enables rapid-prototyping of applications for a file system that
may not have an existing parsing library.

• The generated code does not modify the file system source
code, eliminating the chance of introducing file system bugs.

• The annotated structure definitions provide a concise and clear
documentation of the file system’s format, helping with the
development of additional debugging and analysis tools.

• The generated routines can be reused across applications, fur-
ther simplifying application development. For example, with n
file systems and k file system tools, currently n× k programs
needs to be written. Our approach decouples file systems from
file system tools, reducing the effort to n+ k (n annotated file
systems and k code-template based tools).

• Since file system formats are known to be stable over time,
there is minimal cost for maintaining annotations. When format
changes do occur, the specification needs modifications, which
is easier than modifying all the related tools.

We evaluate the feasibility of our approach by designing a file sys-
tem annotation language and a compiler that parses annotated data
structures, defined in C. To facilitate evaluation, we use a simpli-
fied user-space implementation of an ext3-like file system named
TestFS [16] and add annotations to the file system’s metadata def-
initions. We use the annotated definitions to generate code that in-
terprets metadata below the file system (i.e., at the block layer) to
verify the correctness of the file system operations performed by
TestFS. Our results show that the generated code has minimal per-
formance overhead.

In Section 2, we present an overview of our file system annota-
tion language. Section 3 describes the implementation of our sys-
tem. Section 4 evaluates the performance of our implementation.
Finally, we present related work in Section 5 and discuss our con-
clusions and future work in Section 6.

2. Annotating File System Structures
The purpose of our file system annotation language is to specify
the relationships between metadata objects on disk so that they can
be traversed without using hand-written code. Ideally, these rela-
tionships could be extracted from the file system code. Although
the C header files of a file system contain the structural definitions
for each metadata type, they are incomplete descriptions of the file
system format because information may be hidden within the code
of the file system. For example, in the Linux ext3 file system, the
i_dtime field of an inode structure can mean either the deletion
time of the inode, or the inode number of the next inode in the or-
phan list [14]. Our approach helps clarify these relationships.

After a file system developer annotates their file system’s data
structures, we use a compiler to parse the annotated structures and
produce an intermediate representation (IR) of the file system’s
format, as shown in Figure 1. An application is developed by using
a template-based code generator that operates on the file system IR
and generates file-system specific accessor functions and parsing
routines. This code forms the substrate on which high-level policies
can be specified, such as file system invariants to be checked, or
storage policies on specific files or types of metadata.

Analogous to source code that is parsed based on a grammar,
a file system image can be parsed if there is a suitable “grammar”
describing the format. Whereas parsing source code results in an
abstract syntax tree, parsing a file system helps identify distinct file
system objects such as inodes, directory entries, and their fields.
The main difference between syntactic analysis of source code
versus metadata parsing is that a source code parser processes a
character stream sequentially, whereas file system metadata forms
a directed acyclic graph that requires a graph traversal.

The metadata parser starts the graph traversal at the root of the
tree (i.e., the super block), parses the block to find any pointers

Annotated
File System
Metadata

File
System
Parser

Generated
Code

FS

IR

Application
Specific Code

Templates

Figure 1. Annotating file system structures

to file system objects in the block, and then continues parsing the
blocks containing these objects. The parser requires the type of an
object to be known before it can be parsed. This type information
is available in the parent block containing the pointer to the object,
because the file system also needs the same information. However,
this type information is implicit in the file system code. For exam-
ple, the pointer relationship between two file system data structures
may be implicit, as shown in Figure 2(b). We explain Figure 2 and
how our annotations deal with the problem in the next subsection.

Similarly, the placement of structures on disk (e.g., an instance
of structure B optionally follows structure A) may be implicit in the
code that operates on them. The meaning of fields might be context
sensitive (e.g., untagged unions), and some structures may not be
declared at all (e.g., treating a buffer as an array of ints or chars).

2.1 Annotation Language
Our file system annotation language specifies the information
needed by the parser to traverse the file system as a graph. Table 1
shows the complete list of annotations that are provided for ex-
pressing the missing type information. The annotations are written
as keywords, followed by arguments. The value of each argument
is an arbitrary C expression. Our language is designed to be com-
patible with C because the annotations are defined in the format of
C preprocessor macros, which can be ignored during regular com-
pilation.1 In the following paragraphs, we describe each annotation
in detail. Then in Section 2.2, we provide examples of their usage.

The FSSTRUCT annotation specifies that a data structure defini-
tion is used for file system metadata on disk. It distinguishes file
system metadata from in-memory file system structures, and sig-
nals the start of an annotated block to our compiler.

To identify the root of the file system metadata tree, typically
described by the super block structure, we use the SUPER annota-
tion. The location parameter gives the super block’s placement
relative to the beginning of the partition, in bytes. We allow the
C expressions in the arguments of other annotations to reference
fields in the super block through a global variable sb.

The PROPERTY annotation allows developers to specify infor-
mation on how to parse the data structure. For example, the size of
an ext3 inode is specified by the super block’s s_inode_size field,
and not by sizeof(struct ext3_inode). Therefore, the anno-
tation for the ext3 inode size parameter is sb.s_inode_size.
Another example is ext3’s block group descriptor, which is located
in the block right after the super block. Its location parameter is
sb.s_first_data_block+1.

Pointers make up the edges of the metadata graph. Typically,
pointer information is missing from file system metadata defini-
tions. For example, with in-memory data structures, we know that
if struct foo has a member variable of type struct bar *,
then struct foo points to struct bar, as shown in Figure 2(a).
However, file system developers may declare a similar on-disk data
structure as shown in Figure 2(b), which tells us that a pointer value
is stored as a little-endian 32-bit integer. It also suggests that the
value stored is a block number, and that the pointed-to block is of
type bar, but that conjecture is based on the variable naming con-
ventions. We introduce the POINTER annotation to explicitly state
the relationship between the foo and the bar types. It specifies that
a field is a pointer to a metadata object of the specified type.

1 With the exception of FSSTRUCT, which evaluates to struct.

Annotation Description Arguments Meaning
FSSTRUCT This data definition is for a file

system metadata.
N/A N/A

SUPER
This file system metadata is a
super block.

repr The default pointer representation. If repr=byte, pointers are
absolute byte locations on disk. If repr=block, the pointer values
need to be multiplied by blocksize.

blocksize The size of the block when repr=block.
null The default value of a null pointer.

location The location of the super block as an offset in bytes, from the start
of the file system image.

PROPERTY
Specifies any object-level
property about this type of file
system metadata.

size The actual size of the metadata object (default is sizeof(struct
foo)).

location The location of this metadata object, expressed in the default pointer
representation.

POINTER
This field is to be interpreted
as a pointer to a specified
metadata object.

repr,null Overrides the default representation specified in the SUPER
annotation.

type The type of the pointed-to structure or array.
when A precondition that must be satisfied before interpreting the pointer.

VECTOR

1. Defines a variable-length
field that appends to this
metadata object.
2. Defines an array type.

name The symbolic name of the vector field or the array type.
type The type of the vector elements.
size An expression for calculating the actual size of the array.

sentinel The sentinel value which specifies the end of a linked list.

Table 1. File system annotation language

struct foo {
struct bar *a;

};

(a)

struct foo {
__le32 bar_block_ptr;

};

(b)

Figure 2. (a) In-memory pointer representation (b) On-disk
pointer representation

File system code commonly uses variable-sized arrays and ac-
cesses them using pointer arithmetic. We use the VECTOR anno-
tation to express such arrays because they cannot be expressed
in standard C structure definitions2. The VECTOR annotation helps
specify the name, type and length of an array, and can be placed
inside or outside struct definitions. Intuitively (in C terminology),
when placed inside, it defines an implied field of a struct, and when
placed outside, it defines an implied typedef type. These implied
types are available to other annotations and to the code templates,
without affecting the original file system code.

The language allows the keyword arguments to be arbitrary C
expressions. Currently, we support using constants in the expres-
sions, and accessing fields of the super block (referenced as sb)
and the current metadata object (referenced as self) within the
expression (e.g., self.foo_ptr), which is sufficient for our cur-
rent target file system, described in Section 2.2. We plan to ex-
tend the language to allow expressing other variables (e.g., objects
in parent block) and dereferencing pointer annotated fields (e.g.,
self.foo_ptr.foo_field). In addition, we expect that the set
of keyword arguments shown in Table 1 may need to be extended
to support more complex file systems such as btrfs.

2.2 Example: TestFS
Figure 3 shows the format of the TestFS file system, a simplified
variant of the Linux ext3 file system. We have chosen to annotate

2 C allows naming one variable-sized array located at the end of a structure,
but the size of this array cannot be specified. This feature is known as
flexible array member.

Inode
FreemapSuper Block Block

Freemap Inode Table

Inode 1 Inode 2
Directory

Inode

..

Directory
Entry

Directory
Entry

Directory
Entry

…direct block
pointer

Data blocks …..

Indirect
Block

..

Directory
blocks

Figure 3. TestFS metadata layout. Directory blocks and indirect
blocks are placed within the region designated for data blocks.

TestFS because it simplifies the discussion of annotations while
being sufficiently rich to reveal their expressiveness.

The super block holds pointers to three types of metadata: inode
table, inode freemap, and block freemap. Inodes in the inode table
are metadata objects that represent either files or directories. File
inodes hold pointers to file data blocks and directory inodes to
directory blocks. A file data block is not a metadata block and thus
is not interpreted. However, directory blocks are metadata and are
interpreted. An inode may also have a pointer to an indirect block,
which has a set of pointers to either directory blocks or data blocks.
The inode freemap tracks all used and unused inodes, whereas the
block freemap tracks all available blocks.

Figure 4 shows the annotated data structure definition of the
super block. As an example, the inode_freemap_start field is
specified as a pointer of type inode_freemap. Notice that the su-
per block holds a pointer to data blocks (i.e., data_blocks_start),
but this field is not annotated because the blocks are not meta-
data. Metadata blocks in ext3-like file systems often contain a
homogeneous set of objects. The VECTOR annotations, shown in
Figure 5, help specify these arrays of objects. For example, the
inode_freemap vector type is specified as a bit vector.

Figure 6 shows the annotations on the inode structure. The
i_block_nr field declares an array of direct block pointers. This
field has a POINTER annotation with the when argument describing

FSSTRUCT super_block {
SUPER(blocksize=BLOCK_SIZE ,

location=0, null=0, repr=block);

POINTER(type=inode_freemap)
const u32 inode_freemap_start;
POINTER(type=block_freemap)
const u32 block_freemap_start;
POINTER(type=inode_table)
const u32 inode_blocks_start;

const u32 data_blocks_start;
u32 modification_time;

};

Figure 4. Annotated TestFS super block

VECTOR(name=inode_freemap , type=bitmap ,
size=INODE_FREEMAP_SIZE*BLOCK_SIZE);

VECTOR(name=block_freemap , type=bitmap ,
size=BLOCK_FREEMAP_SIZE*BLOCK_SIZE);

VECTOR(name=inode_table , type=struct inode ,
size=BLOCK_SIZE*NR_INODE_BLOCKS);

VECTOR(name=dir_block , type=struct dirent ,
size=BLOCK_SIZE , sentinel=self.d_inode_nr ==0);

VECTOR(name=data_indirect_block , type=u32 ,
size=BLOCK_SIZE);

VECTOR(name=dir_indirect_block ,
type=struct dir_indirect , size=BLOCK_SIZE);

Figure 5. Annotated TestFS metadata blocks

FSSTRUCT inode {
u32 i_type;
u32 i_mod_time;
u32 i_size;

POINTER(type=dir_block ,
when=self.i_type == I_DIR)

u32 i_block_nr[NR_DIRECT_BLOCKS];

POINTER(type=data_indirect_block ,
when=self.i_type != I_DIR)

POINTER(type=dir_indirect_block ,
when=self.i_type == I_DIR)

u32 i_indirect;
};

Figure 6. Annotated TestFS inode

FSSTRUCT dirent {
u32 d_name_len;
s32 d_inode_nr;
VECTOR(name=d_name , type=u8,

size=self.d_name_len);
};

(a)

FSSTRUCT dir_indirect {
POINTER(type=dir_block)
u32 ind_block_nr;

};

(b)

Figure 7. (a) Annotated directory entry (b) Annotated directory
indirect pointer.

when the value can be interpreted as a pointer of the specified type.
When an inode is not a directory (i.e., self.i_type != I_DIR),
the direct pointers do not point to metadata, and are therefore not
annotated. Otherwise, the direct pointers point to the dir_block
type, specified in Figure 5. The i_indirect field can point to
either a data or directory indirect block, and so the field has two
POINTER annotations. The referenced types are vectors, as defined
in Figure 5.

In TestFS, directory blocks contain variable-length directory en-
tries. Figure 7(a) shows the annotation for a directory entry. The
VECTOR annotation, declared here within a structure (unlike the def-
initions in Figure 5), is used as a replacement for C’s flexible array
member so that the length of the array can be specified. It assigns
the label d_name to this field so that it can be symbolically referred
to just like the d_name_len and d_inode_nr fields. Within a dir-
ectory block, the file system sets the d_inode_nr field of the last
directory entry to 0. In Figure 5, the sentinel argument in the
VECTOR annotation of dir_block is used by the code templates
to end the parsing of directory entries, so that the parser does not
attempt to interpret unused bytes of data.

A file system may not have definitions for all of its data struc-
tures. For example, since the indirect blocks of TestFS are just an
array of four byte pointers, the TestFS developer chose to omit its
definition. However, these implicit data structures need to be de-
fined so that TestFS can be specified unambiguously. Figure 7(b)
shows the newly defined structure with the appropriate annotation.

3. Implementation
We have implemented a compiler called jdc (Jack and Daniel’s
Compiler) that enables parsing the annotations described in Ta-
ble 1. It uses Python Lex-Yacc (PLY 3.4) [3] as its parser generator

and lexical analyzer. The grammar, written in Yacc, is based on the
ANSI C grammar with the addition of annotations. The compiler
only parses the VECTOR annotations and data structure definitions
tagged by the FSSTRUCT annotation in C code and keeps all arbi-
trary C expressions in text form (e.g., in the when argument of the
POINTER annotation). These expressions are assumed to be syntac-
tically and semantically correct. We also assume that file system
developers use types of known size (e.g., u32 instead of long) in
structure definitions to avoid portability concerns.

The compiler is invoked with a set of header files that contain
metadata definitions (e.g., jdc �name testfs super.h extra.h dir.h
inode.h). It generates the file system’s internal representation in
the form of a symbol table, which contains the definitions of all the
file system metadata, their annotations, their fields (including type
and symbolic name), and each of their field’s annotations. Next,
semantic analysis is performed to detect errors such as duplicate
declarations or missing arguments. Finally, the symbol table and
compiler options are exported for use by code templates.

3.1 Code Generation
We generate file-system specific metadata interpretation code using
the powerful Django template language [9], which was originally
designed to generate dynamic HTML content. The code generator
works by embedding Django’s template filters and tags directly
into C source code. Figure 8 shows an example template. As a
primer, the set of double brackets (e.g., {{ fs_name }}) allows
text substitution for the string value of the variable. The statements
inside a set of brackets followed by percent signs (e.g., {% for st
in structs %}) are used to specify control logic.

Figure 9 shows a parse function for a TestFS inode object
generated by one iteration of the {% for st in structs %}
loop shown in Figure 8. This function prints each field of the inode

{% for st in structs %}
static void
{{ fs_name }}_{{ st.ident }} _parse(FILE * fsimg , const {{ st.type }} * self , int size) {

{% for fd in st.fields %}
{% include "print_field.c" with field=fd struct=st %}

{% endfor %}
{% for fd in st.fields %}

{% if fd.pointer %}
{% include "chase_pointer.c" with field=fd struct=st %}

{% endif %}
{% endfor %}

}
{% endfor %}

Figure 8. An Django template for generating the metadata dump tool.

static void testfs_inode_parse(FILE * fsimg , const struct inode * self , int size) {
printf (" i_type = %u\n", self ->i_type);
printf (" i_mod_time = %u\n", self ->i_mod_time);
printf (" i_size = %u\n", self ->i_size);
for (int i = 0; i < NR_DIRECT_BLOCKS; i++)

printf (" i_block_nr [%d] = %u\n", i, self ->i_block_nr[i]);
printf (" i_indirect = %u\n", self ->i_indirect);

for (int i = 0; i < NR_DIRECT_BLOCKS; i++) {
if (self ->i_block_nr[i] != 0) {

if (self ->i_type == I_DIR) {
const char * blkdata = read_block(fsimg , self ->i_block_nr[i]);
testfs_dir_block_parse(fsimg , (const char *)blkdata , BLOCK_SIZE);

}
}

}
if (self ->i_indirect != 0) {

if (self ->i_type != I_DIR) {
const char * blkdata = read_block(fsimg , self ->i_indirect);
testfs_data_indirect_block_parse(fsimg , (const char *)blkdata , BLOCK_SIZE);

} else if (self ->i_type == I_DIR) {
const char * blkdata = read_block(fsimg , self ->i_indirect);
testfs_dir_indirect_block_parse(fsimg , (const char *)blkdata , BLOCK_SIZE);

}
}

}

Figure 9. A parse function generated by the template shown in Figure 8.

object using the print_field.c template that contains code for
printing the value of arbitrary types, including arrays. When a field
is annotated as a pointer, then the chase_pointer.c template
generates code that reads the referenced block and invokes the
correct parse function depending on the type of the referenced
block. Next, we describe the code templates for three applications
that we have written:

File System Dump Tool The offline dump tool, partly shown in
Figure 8, parses metadata in a file system image. The template gen-
erates parsing functions for each type of file system metadata. The
parsing functions work by iterating through each metadata block
and displaying all the fields of each metadata object. Whenever a
pointer is encountered, the parser chases that pointer in depth-first
order by invoking the parsing function for that pointer. We plan to
build a file system checker based on this dump tool.

Runtime Metadata Interpretation This template generates inter-
pretation functions for each type of file system metadata that ref-
erences other metadata. For metadata leaf nodes (e.g., containing
a directory entry), no interpretation functions are generated. When
the application intercepts file I/O at the block layer, it uses the inter-
pretation functions to iterate over and record the types of all point-

ers in the block, so that a later file system I/O for the pointed-to
blocks can be interpreted.

Metadata Differencing A metadata difference engine [6, 16]
takes the old and new versions of a metadata object and identi-
fies changes made by a write operation. The template generates
comparison functions for each type of file system metadata block.
Currently, this code template relies on handwritten functions to as-
sociate metadata objects with a specific identity in order to match
old and new versions of an object. Additionally, journaling file sys-
tems do not update blocks in place, requiring us to interpret the
journal before metadata can be interpreted. We plan to fix these
limitations by introducing annotations to specify the identity of
metadata objects and the format of journals.

4. Evaluation
We reimplemented the Recon runtime verification system [6] by
replacing various modules with generated code, and comparing the
performance of hand-written versus generated code. Our code tem-
plate generates routines for interpreting metadata at runtime and
for performing the metadata differencing operations. The bench-
mark consists of 250,000 file system operations, including creating

Handwritten Generated Overhead
User 35.9±0.1s 37.2±0.1s 3.6%
System 22.5±0.1s 23.0±0.1s 2.2%
Sleep 546.3±8.2s 550.8±8.1s 0.8%
Total 604.7±8.3s 611.0±8.2s 1.0%

Table 2. Performance of the Recon runtime verification system
using hand-written vs. annotation-generated code

files and directories, deleting files and directories, writing random
data to files, and changing the current working directory. Our test
machine has an Intel Xeon X430 quad-core processor at 2.4 GHz
with 4GB of RAM; it is running Debian Squeeze Linux version
6.0, kernel version 2.6.32. Since TestFS uses a regular file as its
storage device, we open this file with the O_SYNC flag to mimic
the characteristics of a write-heavy file system by forcing writes to
disk. We ran a total of 22 tests, and removed the fastest and the
slowest run from each set. We also verified that the outputs of both
implementations are identical.

Table 2 shows that the generated code has minimal overhead.
The difference in sleep time is insignificant. Since Recon for TestFS
runs in userspace, we expect the modest increase in user time.
We are surprised by the increase in system time, but we have not
investigated this effect.

5. Related Work
There have been several prior works on specifying binary serializa-
tion formats [10, 15, 17]. However, developers have control over
the serialization format of their protocols whereas file system for-
mats are fixed by the file system developers and not the application
developers. Therefore, parsers generated by these languages can-
not interpret file system I/O, which perform a graph traversal rather
than a sequential scan. Our annotation language overcomes this
limitation by making the pointer information explicit, which de-
fines how metadata objects reference each other. The PADS project
[5] has similar goals to this work, but it also assumes that all objects
are accessed sequentially.

There have been several attempts to extend C to express more
semantic information [1, 13, 18]. CCured [13] enables type and
memory safety, and the Deputy Type System [18] prevents array
out-of-bound errors. Both projects annotate existing source code,
perform static analysis, and add runtime checks, but they are de-
signed for in-memory data structures.

Amani et al. [2] tackles the challenge of fully verifying the cor-
rectness of a file system’s implementation. Their approach uses
static analysis and requires building a new file system from scratch.
In contrast, our approach generates runtime verification frame-
works for existing file systems.

6. Conclusions and Future Work
We have developed a file system annotation language for the on-
disk format of file system data structures. The annotated structures
can be compiled to generate application-specific tools for rapid pro-
totyping. We have shown that the generated code incurs minimal
performance overhead over hand-optimized code. Overall, we be-
lieve this technique will enable many interesting applications that
are based upon parsing of file system metadata.

In the future, we plan to annotate real Linux file systems such as
ext3 and btrfs. We plan to complete the implementation of the com-
piler to support all the annotations. Then we plan to build several
file-system tools and applications that can use these annotations.
We are also looking to extend the language so that metadata invari-
ants can be expressed or derived from the specification.

References
[1] Sparse - a Semantic Parser for C. https://sparse.wiki.kernel.

org/index.php/Main_Page.
[2] S. Amani, L. Ryzhyk, and T. Murray. Towards a fully verified file

system, 2012. EuroSys Doctoral Workshop 2012.
[3] D. Beazley. Ply (python lex-yacc), 2013. http://www.dabeaz.

com/ply/.
[4] B. Buckeye and K. Liston. Recovering deleted files in linux. Retrieved

February, 2006.
[5] K. Fisher and D. Walker. The pads project: an overview. In Proceed-

ings of the 14th International Conference on Database Theory, pages
11–17. ACM, 2011.

[6] D. Fryer, K. Sun, R. Mahmood, T. Cheng, S. Benjamin, A. Goel, and
A. D. Brown. Recon: Verifying file system consistency at runtime.
ACM Transactions on Storage, 8(4):15:1–15:29, Dec. 2012.

[7] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Improving file system reliability with I/O
shepherding. In Proceedings of the Symposium on Operating Systems
Principles (SOSP), pages 293–306, 2007.

[8] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. SQCK: A declarative file system checker. In Proceedings
of the Operating Systems Design and Implementation (OSDI), Dec.
2008.

[9] A. Holovaty and J. Kaplan-Moss. The definitive guide to Django: Web
development done right. Apress, 2009.

[10] G. Inc. Protocol buffers - google developers. https://developers.
google.com/protocol-buffers/.

[11] A. Ma, C. Dragga, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
ffsck: The fast file system checker. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), Feb. 2013.

[12] M. Mesnier, F. Chen, T. Luo, and J. B. Akers. Differentiated storage
services. In Proceedings of the Symposium on Operating Systems
Principles (SOSP), pages 57–70, 2011.

[13] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe
retrofitting of legacy code. In Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’02, pages 128–139, New York, NY, USA, 2002. ACM.

[14] Ryoichi Kato. Ext3 orphaned inode problem.
http://tree.celinuxforum.org/CelfPubWiki/
Ext3OrphanedInodeProblem, July 2007.

[15] D. Steedman. Abstract syntax notation one (ASN. 1): the tutorial and
reference. Technology appraisals, 1993.

[16] J. Sun, D. Fryer, A. Goel, and A. D. Brown. Expressing invariants for
protecting file-system integrity. In Proceedings of the Workshop on
Programming Languages and Operating Systems (PLOS), 2011.

[17] T. Weigert and P. Dietz. Automated generation of marshaling code
from high-level specifications. In SDL 2003: System Design, pages
374–386. Springer, 2003.

[18] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer. Safedrive: Safe and recoverable extensions
using language-based techniques. In Proceedings of the 7th sympo-
sium on Operating systems design and implementation, pages 45–60.
USENIX Association, 2006.

