
Caracal: Contention Management with Deterministic
Concurrency Control

Dai Qin
University of Toronto
mike@eecg.toronto.edu

Angela Demke Brown
University of Toronto
demke@cs.toronto.edu

Ashvin Goel
University of Toronto

ashvin@eecg.toronto.edu

Abstract
Deterministic databases offer several benefits: they ensure
serializable executionwhile avoiding concurrency-control re-
lated aborts, and they scale well in distributed environments.
Today, most deterministic database designs use partition-
ing to scale up and avoid contention. However, partitioning
requires significant programmer effort, leads to poor per-
formance under skewed workloads, and incurs unnecessary
overheads in certain uncontended workloads.

We present the design of Caracal, a novel shared-memory,
deterministic database that performs well under both skew
and contention. Our deterministic scheme batches transac-
tions in epochs and executes the transactions in an epoch in
a predetermined order. Our scheme enables reducing con-
tention by batching concurrency control operations. It also
allows analyzing the transactions in the epoch to determine
contended keys accurately. Certain transactions can then be
split into independent contended and uncontended pieces
and run deterministically and in parallel, further reducing
contention. Based on these ideas, we present two novel opti-
mizations, batch append and split-on-demand, for managing
contention.With these optimizations, Caracal scales well and
outperforms existing deterministic schemes in most work-
loads by 1.9x to 9.7x.

CCS Concepts: • Software and its engineering→ Con-
currency control; • Information systems→Main mem-
ory engines.

Keywords: deterministic concurrency control, contention,
main-memory databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483591

1 Introduction
Deterministic databases are attractive for several reasons.
Their predetermined ordering of transactions ensures serial-
izable execution while avoiding concurrency-control related
deadlocks and aborts. The lack of aborts ensures opacity [19]
because transactions always read consistent data. Further-
more, deterministic execution reduces the need for two-
phase commit, helping scale distributed transaction through-
put [21]. It also simplifies replication and failure recovery
since transactions can be replayed deterministically [17].

Unfortunately, current deterministic databases scale poorly
under skewed and contended workloads. Such workloads
are common because modern web applications frequently
encounter unpredictable demand spikes. These applications
rely critically on high-performance databases but are subject
to events such as holiday sales or social reviews that make
specific data items highly popular, leading to skewed and
contended accesses in the database.

One strategy for dealing with contended data accesses is to
partition the workloads so that contended accesses are seri-
alized on each core. Existing deterministic databases [5, 7, 8]
employ this approach for scaling and for handling contended
accesses. However, partitioning suffers from load imbalance
under skewed accesses, which can make it difficult to parti-
tion the data evenly. As a result, transactions accessing the
popular items can degrade throughput dramatically. Long-
term load spikes and imbalance requires repartitioning data,
which is both expensive and may require rewriting the ap-
plication code to ensure locality under the new partitioning.

Tomanage skewed accesses, databases can employ a shared-
memory architecture and distribute transactions across cores.
This approach allows load balancing transaction execution
among all cores, but its performance can degrade signifi-
cantly with contended accesses. Recently, much recent work
on main-memory databases has focused on managing con-
tention in OCC-based systems [9, 12], but these schemes are
designed for non-deterministic databases.

This work presents Caracal, a novel shared-memory (i.e.,
non-partitioned), deterministic database that performs well
under both skewed and contended workloads. Transactions
running on different cores in Caracal access shared data and
thus concurrency control is required to ensure deterministic
ordering. To achieve parallelism, Caracal batches transac-
tions into epochs; similar to previous deterministic concur-
rency control schemes [7, 21], it initializes the concurrency

180

https://doi.org/10.1145/3477132.3483591
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Versioning Initialization Execution Handle
Skew?

Handle
Contention? Scaling Challenge

Calvin Single Single-
Thread Shared Yes No Single threaded initialization.

Contention during execution.

Bohm Multi Partitioned Shared No No Skewed accesses.
Contention during execution.

Granola Single N/A Partitioned No Yes Skewed accesses.
PWV Single Partitioned Partitioned No Yes Skewed accesses.

Caracal Multi Shared Shared Yes Yes
Contention during initialization and execution.
Addressed by batch append and split-on-
demand.

Table 1. Comparison with Existing Deterministic Schemes

control operations for the batch before transaction execution,
allowing transactions to be executed concurrently while still
maintaining deterministic output. This shared-memory ap-
proach enables maintaining load balance across cores, but it
can lead to poor performance with contended workloads.

We propose two novel optimizations called batch append
and split-on-demand for managing contention. Both these
optimizations are enabled by deterministic execution. Batch
append executes the concurrency control initialization oper-
ations in arbitrary order, which allows batching them and
running them scalably. Split-on-demand detects contended
transactions without depending on accurate historical data.
Then it splits contended transactions into contended and
uncontended pieces. These pieces are run independently and
without requiring synchronization for conflicts or aborts,
which reduces the serial component of contended execution.

We evaluate Caracal using YCSB and TPC-C-like bench-
marks and compare it with three deterministic concurrency
control schemes that use various partitioning methods, Gra-
nola [5], Bohm [7] and PWV [8]. Caracal’s optimizations
enable it to outperform these schemes for most workloads.
For uniform uncontended YCSB, Caracal’s throughput at
32 cores is 1.64× higher than the best-performing alterna-
tive. For skewed YCSB, Caracal’s advantage increases to
2.7× with contention, and 9.7× without contention. For a
contended single-warehouse TPC-C-like workload, Caracal
outperforms the best alternative by up to 1.92×.

This work makes several contributions. Caracal is the first
deterministic database that scales well under skewed and
contended workloads. We provide a detailed comparison of
our approach against previous deterministic schemes. We
show that by leveraging determinism, our optimizations can
provide significant benefits compared to these schemes.
The rest of the paper describes our approach in more

detail. Section 2 provides background on existing determin-
istic concurrency control schemes. Section 3 presents the
design of Caracal system. Section 4 describes the Caracal im-
plementation. Section 5 evaluates Caracal by comparing its
performance with existing deterministic schemes. Section 6
provides our conclusions.

2 Existing Deterministic Schemes
We provide background on existing deterministic concur-
rency control schemes to motivate the design of Caracal. In
a deterministic database, the serial ordering of transactions
is established before transactions are executed and the out-
come of the database is consistent with serial execution in
that order. Thus the database ensures that a transaction’s
outcome is uniquely determined by the database’s initial
state and an ordered set of known previous transactions.
The simplest implementation of a deterministic database ex-
ecutes all transactions serially in the predefined order. This is
clearly correct but unable to utilize the parallelism available
on modern multi-core systems. To enable parallelism, vari-
ous deterministic concurrency control schemes have been
proposed for single and multi-versioned systems and for
shared-memory and partitioned architectures. Table 1 sum-
marizes the differences between these schemes and Caracal.
Calvin is an early, single-version, shared-memory deter-

ministic database [21]. Calvin ensures deterministic execu-
tion by batching transactions and executing them in two
phases, initialization and execution. The initialization phase
establishes a lock order for each row that will be accessed
by transactions in the batch, thereby ensuring that rows are
accessed according to the predefined serial order in the trans-
action execution phase. Calvin uses a centralized lock man-
ager during initialization, which can become a performance
bottleneck for high-performance, main-memory databases.

Bohm [7] is a multi-versioned deterministic database that
develops on Orthrus [18]. Orthrus [18] shows that perfor-
mance degrades under contention in the shared-memory
architecture due to processor state pollution and thus pro-
poses decoupling the lock manager from transaction execu-
tion. The lock manager is partitioned but transactions are
executed in shared memory. Similarly, Bohm partitions the
keys that need to be initialized across cores, thus eliminating
synchronization costs during initialization. These systems
use a hybrid approach: a shared-nothing model for concur-
rency control and a shared-memory execution architecture.
As a result, they suffer under skewed workloads during ini-
tialization and contention during execution.

181

Deterministic databases can scale by partitioning data
across cores. Granola [5] is a single-versioned, partitioned
database that uses a timestamp-based scheme to assign a
serial order to deterministic transactions. Transactions are
split into pieces based on the partitioning scheme, with each
piece accessing a single partition, and run in parallel across
cores (intra-transaction parallelism). Granola does not re-
quire batching transactions or any concurrency control ini-
tialization since each partition executes its pieces serially in
the predefined serial order. This makes Granola especially
suited for independent transactions, whose pieces do not
have intra-transaction dependencies [5, 11].
The piece-wise visibility (PWV) scheme [8] takes advan-

tage of deterministic execution to make transaction writes
visible early, after the transaction commit status is deter-
mined rather than after the transaction finishes execution.
PWV supports partitioned execution, similar to Granola,
while adding support for intra-transaction cross-partition de-
pendencies via rendezvous points. These data dependencies
limit parallelism in Granola since a partition needs to wait
until a piece’s dependencies are satisfied. PWV enables con-
current transaction execution within a partition by building
a dependency graph per partition during the initialization
phase. This graph tracks conflicts among pieces within a
partition, allowing non-conflicting pieces, whose data de-
pendencies have been satisfied, to be scheduled.

Granola and PWV’s shared-nothing (partitioned) architec-
ture provides good performance for contended workloads
since data accesses do not need to be synchronized [2]. How-
ever, this architecture leads to load imbalance and poor scal-
ing with skewed or hard-to-partition workloads. Also, pro-
gramming with a shared-nothing database is non-trivial be-
cause developers need to partition the data, handle data-flow
dependencies, and possibly repartition data to fully exploit
the ever-increasing number of cores on modern systems.
Caracal is a multi-versioned, shared-memory database

that can easily load balance skewed workloads. However,
the shared initialization and execution phases can lead to
performance degradation under contention. As discussed in
the next section, our insight is that batching and determin-
ism enable reducing contention because together they allow
parallelizing operations with low overhead.

3 The Caracal Design
We now describe our transaction model and our shared-
memory, deterministic concurrency control scheme in the
Caracal database, and then present our optimizations for
managing skewed and contended workloads.

3.1 Transaction Model
Our design requires batching transactions, which increases
transaction latency. In practice, manyweb requests are issued
by end users over the wide-area internet or mobile networks.

Our approach targets these use cases and provides latencies
comparable to wide-area network latencies.
Caracal assumes a one-shot transaction model in which

transaction inputs are available at the start of a transaction.
Thus requests do not require any further client input, which
avoids latencies due to client communication. This model is
commonly used in main-memory databases [9, 15, 20, 22].
Our approach requires the write-set keys of transactions

before transaction execution, but unlike most existing deter-
ministic designs [8, 21], we do not require the transaction’s
read-set keys and we support range updates. We rely on
manual effort to infer the write set, which is feasible for
many applications. Handling range updates is more difficult,
but this support in Caracal makes it much easier to program
transactions that need to update all records in a one-to-many
relation, for example, marking all items from an order as “de-
livered” in TPC-CDelivery. We discuss howwe find the write
set for range updates in Section 3.2. We discuss methods for
handling unknown write sets in Section 3.7.

Caracal supports get, scan, insert, delete and update oper-
ations for stored procedures. In non-deterministic databases,
the insert operation fails if the row already exists, and both
delete and update operations fail if the row does not exist,
resulting in transaction aborts. In Caracal, none of these oper-
ations cause aborts. When a row exists, the insert operation
updates the row with the newer value; when a row does not
exist, the delete and the update operations do nothing and
return false. These semantics are consistent with the INSERT
REPLACE, UPDATE WHERE and DELETE WHERE statements in
SQL. If the application needs to abort the transaction, it
should check for the existence of the row via get operations
at the beginning of the stored procedure before issuing any
write operations, as described in Section 3.7.

Caracal’s transaction API allows developers to annotate
rows that may be contended. Caracal may dynamically split
an update to such a row into a piece separate from the rest of
the transaction and run the piece on a separate core when the
row is contended. Currently, developers need to use C/C++
for writing stored-procedure transactions.

3.2 Concurrency Control in Caracal
The key challenge with deterministic concurrency control is
supporting concurrent execution while ensuring the prede-
termined serial ordering of transactions. Caracal uses multi-
versioning and transaction batching to support concurrent
execution. With multi-versioning, transactions can read and
write different versions of rows concurrently, allowing writ-
ers to create new row versions safelywhile readers are access-
ing old versions. Transaction batching enables determining
dependencies across transactions in a batch and parallelizing
independent data accesses while ensuring the serial order.
Caracal batches transactions into epochs and executes

these transactions in two phases, initialization and execu-
tion, as shown in Figure 1. The initialization phase performs

182

WaitWait
New

Epoch
Insert Append Epoch

End
Execution

Execution
Phase

Initialization
Phase

Figure 1. The Caracal Architecture

concurrency control for all the transactions in the epoch,
while the execution phase runs these transactions. By de-
fault, Caracal assigns transactions to cores in round-robin
order and each core initializes and executes the transactions
assigned to it. Transactions can be assigned to cores using
other policies, e.g., to improve load balance or locality.

Figure 2 shows an example in which Caracal batches four
transactions and processes them on three cores in an epoch.
The initialization phase uses the write sets of the transac-
tions to create corresponding row versions with a pending
value that indicates that this version is a placeholder whose
data has not been produced yet. The write set of a transac-
tion contains the keys of all the rows that are to be written
(inserted, updated or deleted) by the transaction. For exam-
ple, Transactions 𝑇1, 𝑇3 and 𝑇4 update Row 𝑅0 and so the
initialization phase creates three pending versions for Row
𝑅0. Unlike Bohm [7], which partitions the initialization phase
by keys, Caracal reduces the impact of skewed accesses by
performing shared initialization, i.e., transactions running
on different cores may create versions for the same row, e.g.,
for 𝑅0 and 𝑅1 in Figure 2.

During the execution phase, writers update pending row
versions without any synchronization. Caracal makes writes
visible before transactions complete, similar to PWV [8]. This
approach is safe because transactions in Caracal do not abort
after issuing their first write, as explained in Section 3.7,
ensuring that transactions read committed data. Readers can
observe all the row versions that will be created in the epoch
(due to the initialization phase) and thus can determine the
correct previous version to read based on the serial order.
This guarantees that readers always read the latest commit-
ted version. For example, Transaction𝑇2 will read the version
of Row 𝑅0 that is written by Transaction𝑇1 in Figure 2. Read-
ers synchronize with writers by waiting when this version
is pending, until it is written. No further synchronization is
needed since the execution is deterministic, deadlock-free,
and has no concurrency-control related aborts.
For most transactions, the write set is provided by the

developer, but inferring the write-set keys accurately for
transactions that perform range updates is difficult, espe-
cially when transactions are initialized concurrently. Con-
sider the range update in the row range 𝑅1 to 𝑅100 performed
by Transaction 𝑇2 in Figure 2. Transaction 𝑇1 inserts 𝑅1, 𝑇3
inserts 𝑅3 and 𝑇4 inserts row 𝑅5, and these rows lie within
the update range. Since 𝑇2 is serialized after 𝑇1 but before
𝑇3 and 𝑇4, 𝑇2 should update Row 𝑅1 but ignore Rows 𝑅3 and

T1: Update R0, Insert R1
T4: Update R0, Insert R5

T2: Read R0, RangeUpdate R1..R100

T3: Update R0, Insert R3

R0 R1 R3Rows

1

Version Array

321 3

Pending

Pending

0

D
ata

R5

44

Pending

TransactionsCores

C0

C1

C2

Pending

Pending

Pending

Pending

Figure 2. Transaction Processing in Caracal

𝑅5. Thus, we require that 𝑇2’s write set contain 𝑅1 but not
𝑅3 or 𝑅5. One method for handling range updates is to run
the initialization phase serially so that we can perform a
range scan during initialization. This scan would determine
that 𝑇2’s write set contains 𝑅1, since the insert of Rows 𝑅3
and 𝑅5 would not have been initialized yet. However, this
serial initialization, such as in Calvin [21], will not scale well.
Bohm [7] partitions the initialization phase and runs initial-
ization serially in each partition. However, as we show in
our evaluation, this approach only scales when the workload
is partitionable and can be load balanced.

We handle range update operations in Caracal by splitting
the concurrent, shared initialization phase into two steps,
insert and append, as shown in Figure 1. During insert, we
create rows and their initial versions for all newly inserted
(but not updated) keys (e.g., create Rows 𝑅1, 𝑅3 and 𝑅5 in
Figure 2). This step ensures that all rows that are inserted
in the epoch will be visible in the next step. During append,
we perform a range scan to acquire the write-set keys for a
range update. Then, we insert row versions for the keys in
the write set. If a key is present in the range, we check the
first version of the key, and only append a new version if
the first version of the key is smaller than the serial id of the
range update. In the example in Figure 2, this step ensures
that 𝑇2’s write set contains 𝑅1 but not 𝑅3 or 𝑅5.
As an example, the TPC-C Delivery transaction needs to

update all the purchase items for a given order id within
a warehouse district. Since these items are not known in
advance, we need to scan the key range [warehouse, district,
order_id, 0] to [warehouse, district, order_id, infinity] in
the OrderLine table to determine the items. This scan is
performed during the append step and it determines the
items correctly because they have already been inserted in
the previous insert step.

A side effect of splitting the initialization phase into sepa-
rate insert and append steps is that we can speed up read-only
operations when the read set or the read range is known.
In this case, the index read and scan operations can be per-
formed during the append step. We show in Section 5.5 that
this optimization can help reduce contention by reducing
index operations during execution.

During the execution phase, a transaction needs to find the
latest version to read that satisfies its serial order. The typical
way to implement a multi-versioned database [6, 10, 16, 19,
24] uses a linked list of versions for each row object. This

183

design assumes that each row has a small number of versions,
so searching the list will be inexpensive. This assumption
is usually true for non-deterministic databases, but with
batching in deterministic systems, some hot keys may have
many versions, all of which must be accessed by transactions
in the epoch, making linked-list traversal expensive.

We observe that epoch-based concurrency control allows
Caracal to use arrays for efficient versioning since all row
versions are created during the initialization phase, and no
versions are created or deleted during execution. As shown in
Figure 2, each element in the version array is a version id (i.e.,
the serial id of the transaction that created this version) and
the version pointer. To accelerate lookups during execution,
the version array is kept sorted by version ids. Instead of
traversing all versions during execution, a transaction does
a binary search to find the latest version to read with respect
to its serial order. To further optimize this procedure, Caracal
first searches around the latest updated version since readers
are more likely to read the latest version. If we find the
required version around the latest update, we can avoid the
cost of a full binary search.

In the append step, Caracal adds new row versions to the
sorted version arrays using insertion sort. Since transactions
are processed in roughly increasing transaction serial id
order across cores, each append is usually close to the end of
the version array, and insertion sort is efficient in this case.
Next, we describe two optimizations, batch append and

split-on-demand, that Caracal uses for managing contention
during the initialization and execution phases, respectively.

3.3 Initialization Phase: Batch Append
Caracal supports concurrent initialization by synchronizing
access to the shared row version arrays with per-row locks.
For uncontended workloads, acquiring the row lock before
inserting a new version scales well. However, under con-
tention, this locking operation limits scalability, similar to
other shared-memory databases.

Our batch append optimization helps manage contention
during the initialization phase. We observe that in our de-
terministic scheme, newly added versions do not need to be
immediately visible. Within an epoch, as long as the row
versions are created before the execution phase, transactions
will execute deterministically and the final outcome will fol-
low the serial order. Thus row locks can be acquired in any
order, which enables batching the append operations for the
row versions and running them scalably with fewer locking
operations. Also, locks are acquired one row at a time and
so lock reordering doesn’t cause any deadlocks.
Instead of waiting to acquire a row lock for each version

that is inserted, we can simply append the new row version
to a per-row, per-core, fixed-size buffer, without any locking.
When this buffer is full, or at the end of the initialization
phase, each version in the buffer is appended to the corre-
sponding rows’ version array using insertion sort, which

lowers overall lock contention. The buffer is then cleared
and reused. Note that the versions in a row buffer may not
be at the end of the version array, which could increase the
cost of insertion sort. We evaluate this cost in Section 5.5.
As an example, in Figure 2, the two updates to Row 𝑅0 on
Core 0 can be batched, which reduces the number of locking
operations on 𝑅0 from 3 to 2.

A naive implementation of this approach would require an
excessive amount of memory for the per-core buffers. To use
memorymore efficiently, we only assign per-core row buffers
to contended rows. If a row doesn’t have a row buffer, Caracal
tries to acquire the row lock to directly insert the row version
into the version array. However, if acquiring the row lock
fails, indicating contention, a per-core row buffer is created.
Thereafter, versions are appended to the slots in the row
buffer. We describe our memory-efficient implementation of
the batch append optimization in Section 4.1.

3.4 Execution Phase: Split-on-Demand
The execution phase synchronizes data accesses by ensuring
that a transaction reading a row version waits until the ver-
sion is written. Under heavy contention, this wait synchro-
nization can occur frequently leading to significant cache
coherence traffic among processors. We aim to reduce this
contention during the execution phase.
We observe that a small number of rows are updated re-

peatedly during contention. To reduce contention due to
cache coherence, we would like to cluster and schedule these
updates on a small set of cores. However, along with per-
forming these contended updates, transactions also perform
other uncontended operations that should be scheduled on
all cores for scaling. We resolve this tension by introducing
a fine-grained transaction piece interface in Caracal that
allows an application developer to annotate rows that may
contend. When such a row is identified as contended, its up-
date operation is dynamically split from the transaction into
a separate piece that is run independently from the rest of
the transaction code on a core that will minimize contention
while maintaining load balance.

To illustrate the idea, suppose accesses to Row 𝑅0 in Fig-
ure 2 are contended during execution. We can split Transac-
tion 𝑇3’s update to Row 𝑅0 into a separate piece and execute
it on Core 0 to reduce contention, while still executing the
rest of Transaction 𝑇3 on Core 2.
This approach works well in a deterministic database be-

cause all the transaction pieces will eventually commit, and
commit in an order that is consistent with the predefined
serial order. In contrast, in a non-deterministic database the
main transaction would need to synchronize with its split
pieces to determine a serial order. For example, with two-
phase locking, the main transaction would need to wait for
its split pieces to finish before it can release locks.

184

3.4.1 Specifying Contended Operations. Application
developers specify that a row may be contended by using
the ApplyRowUpdate(Row, CallbackFunction, Weight)
row update function. This interface takes three arguments:
1. the row to update, 2. a callback function that specifies
how the row values should be updated, and 3. an estimate
of the amount of work needed by the callback function for
scheduling purposes. When the row is likely to be contended,
Caracal splits the callback in a separate piece and invokes
the piece independently of the transaction. Otherwise, the
callback function is invoked serially within the transaction
since splitting uncontended operations provides no perfor-
mance benefits. Instead, it introduces memory and cache
miss overheads associated with running an extra transaction
piece. Note that developers do not specify the core on which
to run the piece, since Caracal automatically schedules it.
Currently, Caracal does not allow specifying contention for
reads for two reasons: 1) reads are less contended due to
multi-versioning, and 2) we do not require the read sets of
transactions and so cannot estimate contention due to reads.

The callback function must handle data dependencies with
the row update in the split piece. For example, say an update
to a contended row B depends on row A’s value. The callback
function for row B can track this dependency by waiting
for the access to row A to complete in the main transaction,
an approach similar to rendezvous points in PWV [8]. How-
ever, this dependency tracking requires expensive synchro-
nization. In our shared-memory approach, a more efficient
solution is to access row A and update row B within the
callback function so that the data dependency is preserved.
Currently, we assume that the callback function will update
at most one contended row, and so the programmer needs to
specify ApplyRowUpdate() for each potentially contended
row. Note that the callback function performs an update and
cannot issue aborts (See Section 3.7).

We normally assign a callbackweight based on the number
of row updates in the callback function. However, if the
callback function performs read-heavy operations, such as
scanning many rows, then this weight is increased.

Caracal’s split-on-demand introduces a parallel program-
ming model similar to PWV and Granola for reducing con-
tention. However, while PWV splits transactions and exe-
cutes them in parallel to speed up execution, Caracal splits
transactions and executes the split pieces on fewer cores to
reduce contention. Unlike partitioning, Caracal can assign
pieces to arbitrary cores, which provides more flexibility
for scheduling and load balancing. For example, Caracal
can avoid splitting parts of a transaction that have data de-
pendencies, avoiding any synchronization costs. Also, the
annotations do not need to be accurate because Caracal only
splits rows that it determines are contended, thus reducing
the overhead of splitting uncontended rows. Finally, the split-
on-demand programming model is optional: developers are
encouraged to use it when contention is a concern.

OnInitializationPhaseFinish():

sum = 0

for row in contention_set:

contended if row.nr_pending_versions >= threshold

row.start = sum

sum += row.sum_weights

ApplyRowUpdate(row, callback):

if row not in contention_set:

do not split...

rand = RandomNumberFrom(row.start,

row.start + row.sum_weights)

core = NR_CORES * rand / sum

RunPieceOnCore(core, new Piece(row, callback))

Listing 1. Probabilistic Pieces Assignment in Caracal

3.4.2 Scheduling ContendedOperations. Our approach
requires efficiently identifying contended rows so that trans-
actions can be split dynamically when they access these rows.
Fortunately, in our batched deterministic model, we know
the number of row versions that are created in an epoch
by the end of the initialization phase. When the number
of versions exceeds a certain threshold, we predict the row
updates will contend during execution.
During execution, Caracal needs to schedule all the con-

tended pieces across all cores. To reduce contention, all the
pieces updating a contended row should be clustered to run
on a small set of cores. Furthermore, to balance load among
all cores, each core should be assigned pieces based on their
weights, so that the piece weights are balanced. Unlike parti-
tioning, Caracal does not require that all the pieces accessing
a contended row be assigned to a single core. As shown
below, this simplifies load balancing, and it also allows lever-
aging parallelismwhen running these contended pieces since
each core is also running other uncontended pieces.

Caracal fulfills our clustering and load balancing require-
ments described above by probabilistically packing pieces to
one or more cores, while ensuring that cores process simi-
lar amounts of work. Listing 1 shows our piece assignment
algorithm that runs at the end of the initialization phase. It
operates on a set of rows that aremarked contended and have
at least as many pending versions as the threshold, which
we call the contention set. For each row in the contention
set, row.sum_weights is the sum of the callback weights
of all the pieces associated with this row. We sum up the
weights from all the rows in the contention set and keep
the partial sum in row.start. When issuing transactions
in the execution phase, ApplyRowUpdate detects if the row
is in the contention set, and if so, we assign the piece to a
core according to a random number between row.start and
row.start + row.sum_weights. The probabilistic assign-
ment algorithm is inspired by lottery scheduling [23].
Figure 3 shows an example assignment. Four rows are

contended and have a total of 24,000 versions, so each core
is assigned 6,000 versions. All updates to Row 1 and Row 4

185

5k versions 10k versions 4k versions 5k versions

Row1:
Core 0: 100%

Row2:
Core 0: 1k/10k = 10%
Core 1: 6k/10k = 60%
Core 2: 3k/10k = 30%

 Row3:
Core 2: 3k/4k = 75%
Core 3: 1k/4k = 25%

Row4:
Core 3: 100%

Core 0 Core 1 Core 2 Core 3

6k versions 6k versions 6k versions 6k versions

Figure 3. Load Balancing Split Pieces

are assigned to Core 0 and Core 3, respectively. However,
updates to Row 2 are probabilistically split across Cores 0, 1
and 2, in the ratio 10%, 60% and 30%. Similarly, updates to
Row 3 are split across Cores 2 and 3. Our evaluation shows
that our probabilistic partitioning scheme has performance
comparable to or better than an offline optimal partitioning
scheme that assigns each contended row to a single core.

3.5 Garbage Collection
Caracal is multi-versioned and so it needs to perform garbage
collection (GC) to reclaim unused versions in the version
array. We use a major collector at the end of each epoch
to reclaim versions for rows that have been updated in the
epoch. This collector is expensive because it operates on
older versions that are likely to have poor cache locality.
It also pollutes the CPU cache with cold rows and version
arrays, which affects the performance of the initialization
phase in the next epoch. We improve GC performance in two
ways. First, we use aminor collector that operates during the
initialization phase and frees unused versions from the rows
that are being initialized. Since the database has to access
these rows during initialization anyway, collecting unused
versions at this point has better cache locality. Second, we
modify the major collector to only collect row versions that
have not been updated in the last 𝐾 epochs. The intuition is
that the rows that have been recently updated are likely to
be updated again and will be collected by the minor GC. By
default, 𝐾 is set to 8 epochs. Currently, our garbage collector
does not support collecting old versions within an epoch,
which can improve performance significantly [3, 12].

3.6 Logging and Recovery
Non-deterministic databases log the outputs of committed
transactions to durable storage for recovery. With deter-
minism, transactions executing in the pre-determined serial
order always have the same outcome. Thus, Calvin [21] pro-
posed logging the transaction inputs before executing the
transactions. When the database fails and restarts, it replays
the log by re-executing the transactions deterministically.
Caracal uses a similar logging method. At each epoch, Cara-
cal logs transaction inputs to storage concurrently with trans-
action processing. However, transaction results are returned
to application clients only after all the transaction inputs in
the epoch are logged and persisted. During recovery, Caracal
replays transactions until the last persisted epoch.

To reduce the replay time during recovery, Caracal needs
to perform periodic checkpointing. Since our logging format
is logical, our checkpointing needs to be atomic. When a
failure occurs, Caracal’s checkpoint image contains consis-
tent and complete data until a certain epoch. Then, during
recovery, Caracal only needs to replay transactions from
later persisted epochs. Checkpointing can be implemented
efficiently using copy-on-write features in modern file sys-
tems that allow sharing storage across files [1]. Currently,
Caracal implements logging but not checkpointing.

3.7 Limitations of Determinism
Caracal inherits certain known limitations from determinis-
tic concurrency control. Next, we discuss these limitations
and how we address some of them.

Aborts. There are two types of aborts in databases, system-
level aborts due to concurrency control, and application-
level aborts in transaction logic. As an example of the latter
abort, a transaction placing an order should abort if there is
not enough stock left. Caracal’s deterministic concurrency
control eliminates all system aborts. For application aborts,
similar to PWV [8] and Granola [5], Caracal requires the ap-
plication developer to issue any aborts before the transaction
issues any writes. This limitation can often be handled by a
transaction performing initial validating reads and aborting
before performing updates. Other recent systems, such as
Rococco [13] and Janus [14], also have similar restrictions.

To support application aborts before any writes have been
issued, the transactionwrites an ignoremarker in a pending
version.When a transaction reads an ignoremarker, Caracal
skips to a previous version that does not have an ignore
marker. Similarly, conditional updates in which some rows
in the write set are only updated when a certain condition is
met are handled using the ignore marker.

Write Sets. Caracal requires transactions to declare write
set or write ranges before execution. For some transactions,
it may not be possible to infer the write set from the trans-
action inputs before execution. Calvin [21] proposes using
reconnaissance transactions to deal with this issue. First, the
transaction is run as a read-only transaction that performs
the reads needed to infer the write set. Then, in the next
epoch, the transaction declares its write set and executes as
a normal transaction. During this execution phase, a transac-
tion first checks if the rows read in the read-only phase have
changed, and if so, the transaction aborts using the mecha-
nism described above. This approach generally works well
since reconnaissance transactions are often used to perform
secondary index lookups on fields that change infrequently.
Currently, Caracal relies on manual effort to declare the

write set of a transaction. Our API only allows transactions
to perform writes that have been declared. However, if a user
declares the write set but does not update the value, read

186

transactions may wait indefinitely. Our current implementa-
tion flags a write transaction when a read waits too long. A
more robust implementation would check for missing writes
on transaction completion. A query compiler framework that
determines the write set would make it easier to use Caracal.

4 Implementation
Caracal is a main-memory, multi-core database that supports
efficient single node operation and scaling out to multiple
nodes. Our implementation uses C++17 and leverages lan-
guage features such as lambda functions and templates to
provide a developer-friendly API for writing stored proce-
dures, including distributed transactions. Transactions are
split into pieces represented by lambda functions; pieces can
be dispatched to multiple cores or multiple machines.

Caracal assigns a globally unique 64-bit serial id (consist-
ing of the epoch number, a per-node sequence counter, and
a node id) and a core id (generated in a round-robin manner)
to each transaction in an epoch. Caracal uses the core id to
assign transactions to cores, ensuring that load is roughly
balanced. In a real deployment, these operations would be
carried out by the event scheduler that processes incoming
network requests, but for our experiments in Section 5 we
do them while generating transactions.
Next, we describe our implementation strategy and sev-

eral optimizations that we have applied to our epoch-based,
deterministic, multi-versioned design.

4.1 Initialization of the Version Array
Caracal uses sorted arrays for row versions, and cores insert
pending versions during epoch initialization using insertion
sort (Section 3.2). If the version array fills up, we re-allocate it
with a larger capacity. During garbage collection, we free the
version data pointed to by the unused array entries, clear the
version number, and set the pointer to NULL to distinguish a
free entry from a pending version. Garbage collection does
not shrink the version array itself to reduce repeated real-
locations in subsequent epochs. We expect that the version
array for a row will quickly grow to the appropriate capacity
for a particular workload, and then remain at that size.

Our batch append optimization requires a per-core buffer
object that is associated with each row to accumulate pend-
ing versions when there is contention on the row-level lock.
The simplest design is to add N buffer pointers to the row
object (where N is the number of cores), each of which points
to a pre-allocated per-core buffer. This design impacts cache
utilization since the row object has many buffer pointers
(e.g., with 32 cores each row object will need an extra 256
bytes for these pointers). Also, creating per-core buffers for
every row in the database would increase memory footprint
dramatically with little benefit since most rows are uncon-
tended and these buffers would never be used. In Caracal,
each row object only needs a single index value to represent

Index	=	2Index	=	1

Core 0

Core 1

Core 2

Core 3

2 1 ...

1 3 ...

4 2 ...

3 4 ...

Index	=	0

Header Slot

Row	Buffer

Figure 4. Per-core Buffers for Batched Initialization

the per-core buffers. The key idea is to pre-allocate memory
for the per-core buffers, but assign buffers only to contended
rows during initialization.
On database startup, Caracal pre-allocates memory for

each core from the local NUMA zone (see Figure 4; each
core’s chunk is shown with a different color). An index value
represents a row buffer, consisting of per-core buffer objects.
Each buffer object has a header and a fixed number of slots
for the row versions (e.g., 4 slots in Fig. 4). The header tracks
the number of filled slots (i.e., the colored boxes in Fig. 4).

If a row doesn’t have a row buffer (indicated by a special
pending index value), Caracal tries to acquire the row-level
lock and add the pending version to the row object’s version
array. Acquiring the row lock will fail if there is contention
on the row, which triggers the assignment of a pre-allocated
per-core row buffer by incrementing the global index value.
The index of the assigned row buffer is stored in the row
object, and pending versions are subsequently appended to
the slots in the buffer objects.
At the end of the initialization phase, each core batch-

appends all versions in its own slice of each row buffer to
the version arrays of the corresponding rows. A core’s batch-
append operations can occur while other cores are still run-
ning the initialization phase and possibly allocating new row
buffers. This is safe because the newly allocated row buffers
will not contain any row versions for cores that have finished
the initialization phase. For example, in Figure 4, say Core
1 finishes initialization and batch-appends the versions in
the red buffers until Index 1. If another core allocates a row
buffer at Index 2, that row buffer will not have any versions
for Core 1, since Core 1 has already finished initialization. If
all cores finish initialization at exactly the same time, they
may contend on some rows during batch-append. If this hap-
pens, Caracal will delay batch-appending the contending
row and process other rows first.

4.2 Transaction Scheduler
Caracal executes transactions using per-core kernel threads.
Each kernel thread implements a user-level thread scheduler
for dispatching and executing transactions on the core (to
avoid confusion, we refer to the kernel thread as a core). Each
scheduler runs two types of threads: a dispatch thread and
one or more worker threads. The scheduler also maintains

187

a piece queue, consisting of transaction pieces that worker
threads execute on that core.

The dispatch thread splits incoming transaction code into
multiple pieces (e.g., for our split-on-demand optimization),
and adds these pieces to the piece queue. Due to on-demand
splitting, pieces may be added to the piece queues of other
cores. To reduce contention, each core keeps a small buffer
for each per-core piece queue, and appends pieces in a batch.
Each time a worker thread chooses a piece to run, it will

pick the one with the smallest serial id from its piece queue.
This approach may deadlock since pieces may be dispatched
from other cores concurrently. For example, say the worker
thread on Core 2 is running a piece of transaction 𝑇2 since it
has the smallest serial id. While this transaction is running,
the dispatch thread on Core 1 could add a piece of Transac-
tion 𝑇1 (serialized before 𝑇2) to Core 2’s piece queue. If 𝑇2’s
read depends on 𝑇1’s write, then 𝑇2 will wait forever even
though 𝑇1 is in the piece queue.
We address this issue by using a preemptive scheduler.

While a worker thread waits for a read during the execution
of a piece, it spins and periodically checks the piece queue
for a piece with a smaller serial id. If such a piece exists then
Caracal suspends the current worker thread and creates a
new worker thread to run the piece with the smallest serial
id. This worker thread executes pieces with serial ids smaller
than the suspended thread’s serial id. When it finishes, it
resumes the suspended thread. When a worker thread waits,
we do not preempt it to run transaction pieces with a larger
serial id since these pieces may depend on the preempted
piece, causing repeated thread creation and preemption and
degrading performance.
Caracal runs the dispatch and worker threads in parallel

in each of the phases shown in Figure 1 and uses a barrier to
synchronize phases. Each dispatch thread tracks the num-
ber of pieces it has dispatched using a global piece counter.
When a worker thread finds that its piece queue is empty, it
decrements the piece counter with the number of pieces it
has executed. While the piece counter is larger than zero, the
worker thread waits for pieces to be added to the piece queue.
Otherwise, the phase is complete and the worker threads
exit. Then a single, light-weight, control thread restarts the
dispatch threads on all the cores for the next phase. We
use epoll to coordinate the user-level threads, which also
enables multiplexing network IO for multi-node Caracal.

The ApplyRowUpdate(Row, CallbackFunction) call dy-
namically splits the callback function into a separate piece
if the row was marked as contended during the initializa-
tion phase. It returns a Future object representing the call-
back result. If the application depends on this result, it uses
the future’s wait function to wait for callback completion.
When the callback function is split, the wait function is im-
plemented in the same way as a piece waiting on a read.
Otherwise, the wait function invokes the callback directly.

4.3 Other Optimizations
Caracal inlines the version array and version data for ta-
bles with small rows and infrequent updates, similar to Ci-
cada [12]. Caracal’s two-phase execution model causes the
same keys to be searched twice, once in each phase. To ad-
dress this issue we allocate a row cache for each transaction.
During initialization, after searching the index for a row, we
store a pointer to the row in the row cache. During execution,
transactions first check the row cache to read or write data.
All accesses to the write set are found in the row cache.

5 Evaluation
We compare Caracal against three deterministic approaches:
Granola [5], Bohm [7], and PWV [8]. All these baselines
use partitioning to improve performance and to eliminate
contention. They are all designed for uniform, partitionable
workloads and don’t tolerate skewed workloads well. Our
evaluation shows that Caracal outperforms all these previ-
ous deterministic databases when the workload is both con-
tended and skewed. We do not compare against Calvin [21]
since its single-threaded initialization phase makes it non-
scalable, and because Bohm already improves on Calvin.

We use the YCSB benchmark and a TPC-C like benchmark
to evaluate all databases. For both benchmarks, we first eval-
uate how Caracal performs against the baseline partitioned
systems for both uncontended and contended workloads.
Then, we show how Caracal’s optimizations benefit these
workloads.

5.1 Hardware and Software Platform
We evaluate Caracal’s single-node performance on an HP
ProLiant DL560 Gen8 with four Xeon E5-4620 processors.
Each processor has eight physical cores with 16MB last level
cache and one NUMA zone, for a total of four NUMA zones
on the machine. Each NUMA zone has eight 16GB DIMMs
of DDR3 DRAM, for a total of 512GB DRAM. Each DIMM
has two ranks and operates at 1333 MT/s.
For the distributed experiments in Section 5.8, we use 8

HP ProLiant DL160 Gen8 machines connected using com-
modity 10Gb Ethernet. Each machine has two Xeon E5-2650
processors with eight physical cores, 20MB last level cache
and 32GB DRAM.

All machines run CentOS 7.6 with 1062.el7 kernel (released
on Aug 7, 2019). We compile Caracal, Granola, Bohm, and
PWV using Clang 9, all with -O3 optimization.

5.2 Comparison Databases
We implement the Granola, Bohm, and PWV deterministic
databases using our code-base to make the comparison as
fair as possible. We process batches of transactions in epochs
for all implementations so that they have bounded latencies
for transactions, similar to Caracal.

188

Bohm is multi-versioned. It partitions the initialization
phase, so our implementation does not acquire locks on rows
during initialization. We also include several optimizations
compared to original Bohm, such as using a version array
and binary search to speed up searching versions.

The original Bohm partitioning implementation uses filter-
ing to assign work to partitions during initialization. When
using 32 cores and assuming a uniformly distributed work-
load, each core would need to filter out 31/32 of the write-set
keys, so 97% of the CPU cycles would bewasted during initial-
ization. To reduce this overhead, our Bohm implementation
reuses our piece infrastructure to implement partitioning.
We split the initialization task into pieces and dispatch these
pieces to the relevant cores. This splitting and dispatch must
be done online since it depends on the input. We optimize
this operation by dispatching pieces in small batches, which
reduces contention on the piece queue.

Granola is single-versioned. We implement it by eliminat-
ing the initialization phase so each epoch contains just the
execution phase. Granola does not perform any concurrency
control and so each partition executes transaction pieces in
serial order. Our Granola implementation supports depen-
dent transactions via PWV-style rendezvous points [8] but
these transactions may stall the serial execution.
PWV is single-versioned. It uses a per-partition depen-

dency graph to track conflicts within the partition. If a piece
depends on a piece that hasn’t finished execution on another
partition, the dependency graph allows PWV to schedule
other non-conflicting pieces in the partition (unlike Granola).
Our implementation constructs the dependency graph us-
ing row or table access information during the initialization
phase. Then, we schedule pieces based on the dependency
graph in the execution phase and support early write visibil-
ity. No synchronization is needed between the initialization
and execution phases since both are partitioned.

All experiments with multi-versioning are performed with
garbage collection. We use a statically generated trace to
avoid network artifacts, similar to other high-performance
database evaluation. We run all experiments for ∼ 5M trans-
actions, and for each workload, we batch the same number
of transactions per epoch. This batch size is chosen to en-
sure that in Caracal an epoch lasts roughly 40-60 ms and
so the maximum transaction latency is roughly 100 ms. We
discuss the throughput at maximum scale (32 cores) when
comparing systems unless otherwise stated.

5.3 YCSB
We use a transactional YCSB microbenchmark. The origi-
nal YCSB is a key-value store benchmark [4] that does not
specify transactions. In our evaluation, we group 10 unique
key accesses (either read or write) in a single transaction.
We use a total of 10M keys, and each row is 1000 bytes. A
read operation reads the entire row, while a write operation
updates the first 100 bytes of the row, representing an update

0 8 16 24 32
Cores

0.0

500k

1.0M

1.5M

2.0M

2.5M

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(a) YCSB Uniform

0 8 16 24 32
Cores

0.0

500k

1.0M

1.5M

2.0M

2.5M

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(b) YCSB Skew, 𝑠 = 0.9

Figure 5. YCSB Performance (8:2 read/write ratio)

to a subset of the columns in a row. There are no data flow
dependencies within a transaction. For Caracal, we specify
that all update operations in YCSB may be contended and
thus eligible for our split-on-demand optimization. Granola,
Bohm’s initialization phase, and PWV evenly partition the
keys among all of the given cores.

We compare Caracal’s performance with other databases
under low contention by using a uniform distribution to
choose keys in a transaction and use a read-write ratio of 8:2.
Figure 5a shows that Caracal achieves 2.12MTxn/s under low
contention. Bohm, Granola, and PWV achieve 1.42 MTxn/s,
975 KTxn/s, and 791KTxn/s. Caracal outperforms partition-
ing because Caracal does not need to split transactions into
pieces, while the other three databases need to split each
transaction into pieces, based on the key accesses. With the
uniform key distribution, most transactions have 10 pieces.
The mean time to create pieces and schedule them is roughly
0.8 µs for Caracal, 6 µs for Bohm, 17 µs for Granola, and 20 µs
for PWV. The rest of the transaction execution time lies be-
tween 13∼16 µs for all databases, showing that the cost of
partitioning the transaction has the most significant impact
on performance in this workload. Bohm outperforms Gra-
nola because Granola splits pieces during execution. Granola
outperforms PWV because PWV constructs the dependency
graph, but YCSB does not have any rendezvous points, and
so the dependency graph has no benefits in this workload.
We evaluate performance under skew by using a Zipfian

distribution with 𝑠 = 0.9 to choose the keys in a transaction.
Figure 5b shows that Caracal achieves 2.04 MTxn/s through-
put. It schedules transactions in round-robin order and thus
is minimally affected by key skew. The other approaches use
partitioning to eliminate contention but suffer under this
skewed workload. Bohm’s partitioned initialization takes
306 ms while Caracal’s shared initialization takes 17 ms per
epoch. Bohm performs better than PWV and Granola be-
cause its uses shared execution. Both Bohm and Caracal
spend roughly 28 ms in the execution phase per epoch.

To evaluate Caracal’s performance under higher contention,
we create a highly contended YCSB workload. First, we set
the read-write ratio to 0:10 so all 10 key accesses are update
operations. Second, 3 of the rows are chosen from the entire
database and the remaining 7 rows are chosen from a small

189

0 8 16 24 32
Cores

0.0

200k

400k

600k

800k

1.0M

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(a) YCSB Uniform Contention

0 8 16 24 32
Cores

0.0

100k

200k

300k

400k

500k

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(b) YCSB Contention+Skew 𝑠 = 0.9

Figure 6. YCSB Contention Performance (7/10 contended keys)

set of 77 rows that are spaced 217 apart in the 10M key space.
The 3 keys and the 7 keys are chosen using either a uniform
or a skewed distribution from their respective set. These
workloads trigger Caracal’s contention optimizations.

Figure 6a shows performance under contention for the
uniform distribution. Bohm does not scale because its shared
execution is contended. It spends 30 ms for its partitioned
initialization and 105 ms for execution, while Caracal spends
14 ms for initialization and 39 ms for execution each epoch.
As shown in Section 5.5, Caracal’s execution time improve-
ment occurs due to the split-on-demand optimization. This
uniformly contended workload, with no data dependencies
across keys, is the best case for a partitioned database like
Granola (920 KTxn/s), which outperformsCaracal (839 KTxn/s)
by 9.7%. PWV’s dependency graph construction and sched-
uling impose significant overheads for this workload.
Figure 6b shows the results when the contended keys

are chosen using the Zipfian distribution. Even with this
challenging skewed and contended workload, Caracal’s per-
formance still scales up to 24 cores. With 32 cores, Caracal
(437 KTxn/s) achieves ∼2.5× the performance of Granola
(180 KTxn/s). Bohm spends 148 ms for initialization and
72 ms for execution while Caracal spends 20 ms for initializa-
tion and 33 ms for execution each epoch. In this workload,
our split-on-demand optimization is applied to 80∼82 con-
tended keys that each have more than 512 versions. One
key is heavily contended with over 30,000 versions. Our
piece scheduling mechanism ensures that all cores are load
balanced and updates this key on multiple cores, achieving
higher throughput than using a single core for this key.
We also experimented with moderately skewed Zipfian

distributions. At 𝑠 = 0.12, Caracal matches Granola’s perfor-
mance (724 KTxn/s vs. 714 KTxn/s).

5.4 TPC-C Like
Next, we use the TPC-C OLTP benchmark to evaluate Cara-
cal. Unlike YCSB, TPC-C specifies transaction behavior in
detail and simulates the activities of a wholesale supplier
that stocks items in multiple warehouses. Customers place
new orders, pay for the orders, and items are eventually de-
livered to the customers. TPC-C models this process using 3
read-write transactions (NewOrder – 45%, Payment – 43%,

Delivery – 4%) and 2 read-only transactions (OrderStatus –
4%, StockLevel – 4%). Although Delivery is only 4% of the
transaction mix, it is heavy-weight compared to NewOrder
and Payment and it creates conflicts with these transaction
types. By default, the number of warehouses in TPC-C is the
same as the number of cores in our experiments.
Our TPC-C like benchmark is based on TPC-C, with a

few modifications because Caracal requires the write-sets of
transactions. First, the TPC-C NewOrder transaction inserts
new order items with an order id, generated by reading and
incrementing a field in the District table. This prevents us
from inferring the write-set of the NewOrder transaction
before execution. Instead, we use auto-increment to generate
the order id: when the NewOrder transaction inserts new or-
der items, it fetches and increments an atomic counter inside
the database. Silo refers to this optimization as “FastIds” [22].
Second, we modify the Payment transaction to remove the
customer name lookup, which provides a customer ID by
scanning a read-only index when the customer only provides
a last name for payment. We remove the read-only index and
limit the Payment transaction to only use the customer ID.
For the two read-only transactions in TPC-C, we perform
index lookup in the OrderLine table and its secondary index
during initialization, which helps reduce contention. Finally,
we ignore the scaling requirement in TPC-C, similar to all
the baselines in our evaluation, as it imposes a throughput
limit at each warehouse (Section 4.1.3 in the TPC-C spec.).

We could use reconnaissance transactions (Section 3.7) to
run TPC-C’s Payment transaction. The reconnaissance trans-
action would read the CustomerName index, which is read-
only, and so the validationwould always succeed, and the rest
of transaction could then be performed using Caracal’s deter-
ministic protocol. However, for TPC-C’s NewOrder, the re-
connaissance transaction would need to read the next_o_id
field, which is updated heavily and thus would cause valida-
tion failure. Our order id auto-increment avoids this issue.

Granola, Bohm and PWV partition TPC-C by warehouse.
Caracal does not need partitioning but we pin transactions
to cores based on their home warehouses for better per-
formance, similar to other shared-memory databases such
Silo [22], Cicada [12], STO[9] etc.

Default TPC-C has low contention. For higher contention,
we use a single warehouse TPC-C workload [8, 9], which
causes contention on the Warehouse, District, Customer
and Stock tables. For this workload, the PWV paper [8]
proposes partitioning all tables by district_id, except the
StockLevel and the Warehouse tables. The latter two ta-
bles are assigned their own cores. Since there are 10 districts,
the District, NewOrder, Customer, Orders and OrderLine
tables each have 10 partitions. These 50 partitions are as-
signed to the rest of the cores in round-robin order. We have
rendezvous points in the Delivery and the StockLevel trans-
actions but not in the NewOrder transaction since we use
auto-increment for the order id.

190

0 8 16 24 32
Cores

0.0

300k

600k

900k

1.2M

1.5M

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(a) TPC-C

0 8 16 24 32
Cores

0.0

120k

240k

360k

480k

600k

T
h
ro
u
gh
p
u
t

Caracal Bohm

PWV Granola

(b) TPC-C Single Warehouse

Figure 7. TPC-C and TPC-C Single Warehouse Performance

In Caracal, the NewOrder, Payment and Delivery transac-
tions can cause contention in the Stock, Warehouse, District
and Customer tables in the single warehouse TPC-C work-
load. We update these tables using our ApplyRowUpdateAPI.
TheDelivery transaction contains a data dependency. It scans
the OrderLine table for items in an order to calculate the
total and to mark these items as delivered. Then, it uses the
calculated total to increment the customer balance. To han-
dle contended updates to the Customer table, we merge the
OrderLine range update and the Customer update in the
same callback function.

Our PWV implementation uses coarse-grained dependen-
cies [8], in which accesses to the Stock table are treated
as a single edge in the graph, instead of an edge per row.
This coarse-grained tracking reduces the graph size and the
scheduling overheads significantly. Also, it avoids the need
to declare the Stock table read-set in PWV, which is not
feasible for the StockLevel transaction.
Figure 7a shows Caracal’s throughput on default TPC-

C compared to the other databases. Granola outperforms
Caracal by 36% for three reasons. First, Granola is single-
versioned, which provides better performance compared to
using version arrays in Caracal and Bohm on this work-
load [9]. Second, default TPC-C is easily partitionable and its
transactions can be run as independent transactions, making
it well suited for Granola [5]. Finally, most TPC-C transac-
tions are processed in a single piece, so unlike with YCSB
(Figure 5a), there is minimal overhead of partitioning. Thus,
PWV and Bohm also benefit from partitioning. PWV per-
forms better than Bohm since it partitions transaction ex-
ecution but its dependency tracking and scheduling add
overheads compared to Granola. Both Bohm and Caracal are
multi-versioned but Bohm partitions its initialization and is
4.4% faster than Caracal. This difference is due to locking
operations during the initialization phase in Caracal.
Figure 7b shows the result for single warehouse TPC-C.

Granola, PWV and Bohm do not scale for this workload,
while Caracal shows much better scaling. Caracal outper-
forms Granola by 64% at 32 cores. Due to skew, Bohm takes
78 ms while Caracal takes 12 ms for initialization, while both
take roughly 19 ms for execution per epoch.With partitioned
execution in Granola and PWV, the Stock table partition

becomes the bottleneck at 8 cores. The Warehouse table parti-
tion has 50% utilization, while the rest of the cores are 60-70%
utilized. Compared to Granola, PWV’s dependency-based
scheduling reduces wait times due to a rendezvous point
on the Customer table, but not the Stock table, which has
coarse-grained dependencies, and so accesses to the table
cannot be scheduled out-of-order.

5.5 Impact of Optimizations
Wehave demonstrated Caracal’s ability tomanage contention.
In this section, we show the impact of Caracal’s contention
optimizations by comparing Caracal’s performance with
three variations: 1) Caracal with both optimizations dis-
abled, 2) Caracal with only batch append, and 3) Caracal with
best-effort partitioning. The last variant enables Caracal’s
batch append and splits transactions based on the number of
versions of the row. However, rather than probabilistically
placing pieces onto cores, this variant performs best-effort
partitioning using an offline bin packing algorithm; the rows
are partitioned and the pieces updating a row are placed on
one core exclusively. Note that we do not show the cost of
bin packing, which is roughly 1-2 seconds for a 50 ms epoch.
For the uniformly contended YCSB workload, Figure 8a

shows that Caracal with no optimizations experiences con-
tention in both the initialization and execution phases; batch
append improves throughput by 33% and when combined
with split-on-demand, Caracal achieves 2.9× higher perfor-
mance compared to no optimization. batch append reduces
initialization time from 60 ms to 15 ms, and split-on-demand
reduces the execution time from 105 ms to 39 ms per epoch at
32 cores. Our probabilistic placement of pieces has no visible
overhead compared to using offline bin-packing partitioning
(which is infeasible to use in a high-performance database).

For the skewed and contended YCSB workload, Figure 8b
shows that batch append achieves 58.5% higher throughput
(267 KTxn/s) compared to no optimizations (168 KTxn/s).
Among all the contended rows, the distribution of the num-
ber of versions is also highly skewed. To maintain load bal-
ance, Caracal assigns a few highly contended rows to mul-
tiple cores. Bin packing performs 8.5% worse than Caracal
because it is hard to partition the skewed keys while main-
taining load balance. The two YCSB workloads have sig-
nificant contention in both the initialization and execution
phases and so both are our optimizations are required to
achieve throughput scaling.
Figure 8c shows the impact of our contention optimiza-

tions for single warehouse TPC-C. In this case, batch append
provides good scalability and reduces the initialization time
from 31 ms to 12 ms per epoch at 32 cores. To understand
why this optimization works, we measured lock wait times.
Without batch append, the average and the 99.9 percentile
lock wait times are 1.3 µs and 61 µs. With batch append,
the corresponding numbers are 43 ns and 0.5 µs. The me-
dian number of element move operations in insertion sort

191

0 8 16 24 32
Cores

0.0

200k

400k

600k

800k

1.0M

T
h
ro
u
gh
p
u
t

Caracal No Optimization

Batch Append Bin Packing

(a) YCSB Uniform Contention

0 8 16 24 32
Cores

0.0

100k

200k

300k

400k

500k

T
h
ro
u
gh
p
u
t

Caracal No Optimization

Batch Append Bin Packing

(b) YCSB Contention+Skew

0 8 16 24 32
Cores

0.0

120k

240k

360k

480k

600k

T
h
ro
u
gh
p
u
t

Caracal No Optimization

Batch Append Bin Packing

(c) Single Warehouse TPC-C

0 8 16 24 32
Cores

0.0

120k

240k

360k

480k

600k

T
h
ro
u
gh
p
u
t

Caracal No Optimization

Batch Append Bin Packing

(d) Single Warehouse TPC-C (index
lookup during execution)

Figure 8. Impact of Optimizations on Different Workloads

is 0 both without or with batch append, but surprisingly,
batch append reduces the average number of element move
operations in insertion sort from 4.9 to 1.4. Without batch ap-
pend, the long tail in lock wait times blocks thread progress,
causing more insertions to happen out of order.

In Figure 8c, the split-on-demand optimization adds over-
head due to splitting pieces while its contention reduction
benefits are small and so the execution time increases from
17 ms to 21 ms per epoch. We found that this workload
stresses index lookup and concurrency control during ini-
tialization but transaction conflicts do not cause much con-
tention during the execution phase. We illustrate this by
performing index lookup for the two read-only transactions
in the execution phase (instead of the initialization phase),
which increases contention in the execution phase. In this
case, Figure 8d shows that the batch append optimization
improves performance by 24% and reduces initialization time
from 30 ms to 10 ms. The split-on-demand optimization im-
proves performance compared to no optimization by another
15% and reduces the execution time from 47 ms to 35 ms.

To further understand the behavior of the split-on-demand
optimization, Figure 9 shows the CDF of the time (in spin
iterations) that a read spins waiting on a pending version,
for the workloads shown in Figure 8. Figure 9 shows that
the split-on-demand optimization reduces the waiting time
significantly for all the workloads except single warehouse
TPC-C, which is consistent with Caracal’s performance im-
provements over Batch Append shown in Figure 8. Single
warehouse TPC-C has one heavily contended key and split-
on-demand spreads accesses to this key across several cores,

0 10,000 20,000 30,000
Wait Time (spin iterations)

0.80

0.85

0.90

0.95

1.00

C
u
m
u
la
ti
ve
D
is
tr
ib
u
ti
on

Caracal Batch Append

(a) YCSB Uniform Contention

0 10,000 20,000 30,000
Wait Time (spin iterations)

0.80

0.85

0.90

0.95

1.00

C
u
m
u
la
ti
ve
D
is
tr
ib
u
ti
on

Caracal Batch Append

(b) YCSB Contention+Skew

0 10,000 20,000 30,000
Wait Time (spin iterations)

0.97

0.98

0.99

1.00

C
u
m
u
la
ti
ve
D
is
tr
ib
u
ti
on

Caracal Batch Append

(c) Single Warehouse TPC-C

0 10,000 20,000 30,000
Wait Time (spin iterations)

0.97

0.98

0.99

1.00

C
u
m
u
la
ti
ve
D
is
tr
ib
u
ti
on

Caracal Batch Append

(d) Single Warehouse TPC-C (index
lookup during execution)

Figure 9. CDF of Read Wait Time for Different Workloads

similar to the skewed and contended YCSB workload. How-
ever, in TPC-C, the different transaction types cause higher
variance in transaction progress across cores. This increases
tail wait times significantly because the pieces are run in the
pre-determined serial order.

5.6 Tuning
In this section, we show the performance impact of tuning
the split-on-demand threshold. Figure 10 shows the through-
put for 4 workloads for the different thresholds values shown
on the X-axis. For YCSB Contention (Figure 10a) and YCSB
Contention+Skew (Figure 10b), there is a large range for
the optimal threshold. Starting from 1 version to 512 ver-
sions, Caracal always maintains optimal performance. For
thresholds larger than 16K versions, performance decreases
because split-on-demand is deactivated. With TPC-C Single
Warehouse (Figure 10c), the range for optimal thresholds
is relatively narrow: from 3 to 8 versions. For thresholds
larger than 16 versions, Caracal splits fewer update opera-
tions and the performance drops by up to 6%. If we instead
perform the index search for read-only transactions in the ex-
ecution phase (Figure 10d), the range for optimal thresholds
remains 3 to 8 versions. For thresholds larger than 8 versions,
Caracal’s performance drops by 17% in the worst case. We
conclude that it is best to set a relatively low threshold when
the database administrator expects contention. In that case,
the worst performance penalty is 10% ∼ 20%.

5.7 Latency
Caracal uses epoch-based concurrency control and so the
commit latency (the time that a transaction stays inside the

192

1 8 64 512 4K 32K 256K
Threshold

0.0

200k

400k

600k

800k

1.0M

T
h
ro
u
gh
p
u
t

YCSB+Contention

(a) YCSB Uniform Contention

1 8 64 512 4K 32K 256K
Threshold

0.0

100k

200k

300k

400k

500k

T
h
ro
u
gh
p
u
t

YCSB+Contention+Skew

(b) YCSB Contention+Skew

1 8 64 512
Threshold

0.0

130k

250k

380k

500k

630k

T
h
ro
u
gh
p
u
t

TPC-C Single Warehouse

(c) Single Warehouse TPC-C

1 8 64 512
Threshold

0.0

130k

250k

380k

500k

630k

T
h
ro
u
gh
p
u
t

TPC-C Single Warehouse

(d) Single Warehouse TPC-C (in-
dex lookup during execution)

Figure 10. Tuning Thresholds for split-on-demand

database) is the execution time of the entire epoch. In this sec-
tion, we evaluate the latency-throughput trade-off in Caracal
by varying the epoch size. Figure 11 shows Caracal through-
put versus latency graph. For this experiment, we vary the
epoch size from 5,000 transactions to 100,000 transactions
and the corresponding epoch length is shown on the X-axis.

For sufficiently large epochs, changing the epoch size has
a minor effect on throughput. Specifically, when the latency
increases above 50 ms, the throughput increases by at most
6%. When the epoch size is decreased so that the latency
is below 50 ms, Caracal’s throughput begins to drop. Un-
contended workloads like YCSB, YCSB Skew and TPC-C are
affected the most. With the smallest epoch size, the latency
drops to 8 ms but the throughput drops by 30% to 40%.

Contended workloads are less sensitive to smaller epochs.
However, we see that YCSB Contention has a sharp through-
put drop when the latency is reduced to less than 50 ms.
Our investigation suggests the major garbage collector’s
overhead increases for YCSB Contention as we shrink the
epoch size. This may indicate that we are running the major
garbage collection too frequently.

5.8 Scaling Out
Caracal leverages determinism to scale out to multiple nodes.
We evaluate Caracal’s throughput on a cluster of 8 machines
running TPC-C. In this experiment, we shard the data by
warehouse. Eachmachine has 16warehouses (onewarehouse
per-core). Roughly 14% of NewOrder transactions and 15%
of Payment transactions access remote warehouses. With 8
machines, roughly 12% of NewOrder transactions and 13%
of the Payment transactions are cross-machine transactions.
Figure 12 shows that Caracal achieves 610 KTxn/s us-

ing a single machine. As we add more machines, Caracal’s

0 10 20 30 40 50 60 70 80 90
Latency (ms)

0.0

500k

1.0M

1.5M

2.0M

2.5M

T
h
ro
u
gh
p
u
t

YCSB YCSB+Contention

YCSB+Skew YCSB+Contention+Skew

(a) YCSB

0 40 80 120 160 200
Latency (ms)

0.0

200k

400k

600k

800k

1.0M

T
h
ro
u
gh
p
u
t

TPC-C TPC-C Single Warehouse

(b) TPC-C

Figure 11. Transaction Latency and Throughput

1 2 3 4 5 6 7 8
Number of Machines

0.00M

0.80M

1.60M

2.40M

3.20M

4.00M

T
h
ro
u
gh
p
u
t

Caracal

Figure 12. Distributed TPC-C Throughput

throughput scales linearly, with no drop-off. With 2 nodes,
Caracal achieves 900 KTxn/s, and with all 8 nodes, Caracal
reaches 3.35 MTxn/s. As a rough comparison with a state-
of-art distributed database, FaRMv2 [19] reports 12 MTxn/s
for TPC-C using 90 machines and an expensive, high-speed
Infiniband network. Caracal achieves a quarter of FaRMv2’s
performance with just 8 (slightly slower) machines using a
commodity 10Gb Ethernet network.

6 Conclusions
Caracal is a high-performance, main-memory database de-
signed for handling skewed and contended workloads. It
uses a shared-memory, deterministic concurrency control
scheme that enables reordering and parallelizing transaction
execution with low overhead. We present two optimizations
that allow scaling under highly contended workloads. The
batch append optimization groups and reorders concurrency
control operations because these operations are commuta-
tive. The split-on-demand optimization splits contending
updates, which reduces the serial component of contended
execution, and performs these updates on fewer cores, thus
reducing contention. Compared to previous deterministic
databases, these schemes enable Caracal to scale well under
contention and skew.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Nat-
acha Crooks, for their valuable feedback. We specially thank
Michael Stumm, Ding Yuan, and the members of the Cara-
cal group, including Zhiqi He and Shirley Wang, for their
insightful suggestions. This work was supported by NSERC
Discovery.

193

References
[1] [n.d.]. ioctl_ficlonerange(2). Linux Manual Pages. share some the

data of one file with another file.
[2] Raja Appuswamy, Angelos C. Anadiotis, Danica Porobic, Mustafa K.

Iman, and Anastasia Ailamaki. 2017. Analyzing the Impact of System
Architecture on the Scalability of OLTP Engines for High-Contention
Workloads. Proceedings of the VLDB Endowment 11, 2 (Oct. 2017),
121–134. https://doi.org/10.14778/3149193.3149194

[3] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019.
Scalable Garbage Collection for In-Memory MVCC Systems. Pro-
ceedings of the VLDB Endowment 13, 2 (Oct. 2019), 128–141. https:
//doi.org/10.14778/3364324.3364328

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the Symposium on Cloud Computing, SoCC.
ACM, Indianapolis, Indiana, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[5] James Cowling and Barbara Liskov. 2012. Granola: Low-Overhead
Distributed Transaction Coordination. In USENIX Annual Technical
Conference - ATC. USENIX Association, 21–33.

[6] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL Server’s Memory-Optimized OLTP Engine. In Proceedings of
the International Conference on Management of Data - SIGMOD. ACM,
1243–1254. https://doi.org/10.1145/2463676.2463710

[7] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Mul-
tiversion Concurrency Control. Proceedings of the VLDB Endowment 8,
11 (July 2015), 1190–1201. https://doi.org/10.14778/2809974.2809981

[8] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High
Performance Transactions via Early Write Visibility. Proceedings of
the VLDB Endowment 10, 5 (Jan. 2017), 613–624. https://doi.org/10.
14778/3055540.3055553

[9] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba
Shrira. 2020. Opportunities for Optimism in Contended Main-Memory
Multicore Transactions. Proceedings of the VLDB Endowment 13, 5 (Jan.
2020), 629–642. https://doi.org/10.14778/3377369.3377373

[10] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis
Pandis. 2016. ERMIA: Fast Memory-Optimized Database System
for Heterogeneous Workloads. In Proceedings of the ACM Interna-
tional Conference on Management of Data - SIGMOD. 1675–1687.
https://doi.org/10.1145/2882903.2882905

[11] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-
Free Consistent Transactions Using In-Network Concurrency Control.
In Proceedings of the Symposium on Operating Systems Principles - SOSP.
ACM, Shanghai, China, 104–120. https://doi.org/10.1145/3132747.
3132751

[12] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017.
Cicada: Dependably Fast Multi-Core In-Memory Transactions. In Pro-
ceedings of the ACM International Conference on Management of Data -
SIGMOD. ACM, Chicago, Illinois, USA, 21–35. https://doi.org/10.1145/
3035918.3064015

[13] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.
Extracting More Concurrency from Distributed Transactions. In Oper-
ating Systems Design and Implementation ’14. 479–494.

[14] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Con-
solidating Concurrency Control and Consensus for Commits under
Conflicts. In Operating Systems Design and Implementation ’16.

[15] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. 2014.
Phase Reconciliation for Contended In-Memory Transactions. In
USENIX Symposium on Operating Systems Design and Implementation -
OSDI. USENIX Association, Broomfield, CO, 511–524.

[16] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast
Serializable Multi-Version Concurrency Control for Main-Memory

Database Systems. In Proceedings of the ACM International Confer-
ence on Management of Data - SIGMOD. ACM, Melbourne, Victoria,
Australia, 677–689. https://doi.org/10.1145/2723372.2749436

[17] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2017. Scalable
Replay-Based Replication For Fast Databases. Proceedings of the VLDB
Endowment 10, 13 (2017), 2025–2036.

[18] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. 2015. Design Principles
for Scaling Multi-Core OLTP Under High Contention. In Proceedings
of the ACM International Conference on Management of Data - SIGMOD.
1583–1598. https://doi.org/10.1145/2882903.2882958

[19] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios
Chatzopoulos, Aleksandar Dragojević, Dushyanth Narayanan, and
Miguel Castro. 2019. Fast General Distributed Transactions with Opac-
ity. In Proceedings of the ACM International Conference on Manage-
ment of Data - SIGMOD. ACM, Amsterdam, Netherlands, 433–448.
https://doi.org/10.1145/3299869.3300069

[20] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. 2007. The End of an Archi-
tectural Era (It’s Time for a Complete Rewrite). In Proceedings of the
VLDB Endowment. 1150–1160.

[21] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Trans-
actions for Partitioned Database Systems. In Proceedings of the ACM
International Conference on Management of Data - SIGMOD. 1–12.
https://doi.org/10.1145/2213836.2213838

[22] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy Transactions in Multicore In-Memory Data-
bases. In Proceedings of the ACM Symposium on Operating Systems
Principles - SOSP. 18–32. https://doi.org/10.1145/2517349.2522713

[23] Carl A Waldspurger and William E Weihl. 1994. Lottery Scheduling:
Flexible Proportional-Share Resource Management. In Proceedings of
the USENIX Conference on Operating Systems Design and Implementa-
tion. 1–11.

[24] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017.
An Empirical Evaluation of In-Memory Multi-Version Concurrency
Control. Proceedings of the VLDB Endowment 10, 7 (March 2017),
781–792. https://doi.org/10.14778/3067421.3067427

194

https://doi.org/10.14778/3149193.3149194
https://doi.org/10.14778/3364324.3364328
https://doi.org/10.14778/3364324.3364328
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3377369.3377373
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/2723372.2749436
https://doi.org/10.1145/2882903.2882958
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.14778/3067421.3067427

	Abstract
	1 Introduction
	2 Existing Deterministic Schemes
	3 The Caracal Design
	3.1 Transaction Model
	3.2 Concurrency Control in Caracal
	3.3 Initialization Phase: Batch Append
	3.4 Execution Phase: Split-on-Demand
	3.5 Garbage Collection
	3.6 Logging and Recovery
	3.7 Limitations of Determinism

	4 Implementation
	4.1 Initialization of the Version Array
	4.2 Transaction Scheduler
	4.3 Other Optimizations

	5 Evaluation
	5.1 Hardware and Software Platform
	5.2 Comparison Databases
	5.3 YCSB
	5.4 TPC-C Like
	5.5 Impact of Optimizations
	5.6 Tuning
	5.7 Latency
	5.8 Scaling Out

	6 Conclusions
	References

