Checking the Integrity of Transactional Mechanisms

DANIEL FRYER, MIKE QIN, JACK SUN, KAH WAI LEE, ANGELA DEMKE BROWN,
and ASHVIN GOEL, University of Toronto

Data corruption is the most common consequence of file-system bugs. When such corruption occurs, offline
check and recovery tools must be used, but they are error prone and cause significant downtime. Previously
we showed that a runtime checker for the Ext3 file system can verify that metadata updates are consistent,
helping detect corruption in metadata blocks at transaction commit time. However, corruption can still occur
when a bug in the file system’s transactional mechanism loses, misdirects, or corrupts writes. We show that
a runtime checker must enforce the atomicity and durability properties of the file system on every write,
in addition to checking transactions at commit time, to provide the strong guarantee that every block write
will maintain file system consistency.

We identify the invariants that need to be enforced on journaling and shadow paging file systems to
preserve the integrity of committed transactions. We also describe the key properties that make it feasible
to check these invariants for a file system. Based on this characterization, we have implemented runtime
checkers for Ext3 and Btrfs. Our evaluation shows that both checkers detect data corruption effectively, and
they can be used during normal operation with low overhead.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management; D.4.5
[Operating Systems]: Reliability; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—Assertions; invariants

General Terms: Reliability, Verification, Performance, Measurement

Additional Key Words and Phrases: Metadata consistency, atomicity, durability, runtime verification, file
system checker, Ext3, Btrfs

ACM Reference Format:

Fryer, D., Qin, M., Sun, J., Lee, K. W., Demke Brown, A., and Goel, A. 2014. Checking the integrity of
transactional mechanisms. ACM Trans. Storage 10, 4, Article 17 (October 2014), 23 pages.
DOI:http://dx.doi.org/10.1145/2675113

1. INTRODUCTION

File systems contain bugs that are hard to detect even under heavy testing, as shown
by researchers [Prabhakaran et al. 2005; Yang et al. 2006] and painful real-world
experiences [Miller 2008]. These bugs can result in data corruption, data loss, or
persistent application crashes. Today, most techniques that enhance the reliability of
storage systems focus on recovery from crash failures, and a variety of storage hard-
ware failures [Gunawi et al. 2007]. However, none of these methods address corruption
caused by file system or operating system bugs, or random memory corruption [Zhang
et al. 2010]. For example, a mirror RAID offers no protection against a buggy file
system write, which would be reliably replicated on multiple disks.

A comprehensive study recently showed that 40% of file system bugs have
severe consequences, because they lead to in-memory or on-disk data corruption

This research was supported by NSERC through the Discovery Grants and Graduate Scholarships
programs.

Author’s address: A. Demke Brown (corresponding author); email: demke@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org

© 2014 ACM 1553-3077/2014/10- ART17 $15.00

DOI:http://dx.doi.org/10.1145/2675113

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:2 D. Fryer et al.

[Lu et al. 2013]. When a file system bug corrupts file-system metadata, the damage
can propagate, and thus the entire file system must be checked for possible corruption.
This consistency check is typically performed offline, causing significant downtime
for large storage systems [Henson et al. 2006]. Furthermore, repair is an error-prone
process [Carreira et al. 2012; Gunawi et al. 2008].

To avoid downtime and data loss, file system corruption must be detected before
it propagates to disk. To do so, the file system’s write operations must be checked
at runtime. Unlike a typical offline file system checker, such as fsck, that checks the
consistency of the metadata already on disk, the Recon system [Fryer et al. 2012]
checks that metadata updates preserve the consistency semantics of the file system at
runtime. These semantics are expressed as a set of invariants that are derived from
the properties checked by the offline checker. When kernel bugs or memory corruption
lead to metadata updates that violate these consistency invariants, a corruption is
detected and the updates are prevented from reaching the disk.

Recon takes advantage of transactional methods, such as journaling [Custer 1994,
Sweeney et al. 1996; Tweedie 1998] and shadow paging [Bonwick and Moore 2008;
Hitz et al. 1994; Rodeh et al. 2013], used by modern file systems for providing crash
consistency. In particular, it checks that metadata updates within a transaction are
mutually consistent at transaction commit time. This approach is still vulnerable to
file system corruption when the transactional mechanism is used incorrectly or has
bugs. For example, the Recon checker for the Ext3 journaling file system verifies writes
to the journal blocks, but it assumes that (1) all metadata writes first go to the jour-
nal, and (2) these writes are then checkpointed correctly. Any bugs that violate these
assumptions (e.g., a lost or failed checkpointing write) will cause undetected corrup-
tion. In Section 2.2, we show that these bugs manifest in many different ways, such
as lost, misdirected, out-of-order, and corrupting writes, making it difficult to detect
them. Unfortunately, these types of bugs occur regularly [Fryer et al. 2012], are hard
to diagnose [Griffin 2008; Sandeen 2012], and can have serious impact [Ts’o 2012].

In this article, we describe the design and implementation of a runtime checking sys-
tem that enforces correct usage and implementation of the crash consistency method
used by the file system. Our system enforces the atomicity and durability properties
of the file system at each block write, in addition to checking consistency at commit
time, providing the strong guarantee that every block write will maintain file system
consistency.

We express the atomicity and durability properties as invariants, called location
invariants because they govern which blocks are written to given locations. We de-
scribe the location invariants that need to be enforced to preserve the integrity of
committed transactions for journaling and shadow paging file systems as well as the
file system properties that make it feasible to check these invariants efficiently at the
block layer.

We have implemented runtime checkers for the Btrfs file system and a slightly mod-
ified version of the Linux Ext3 file system by augmenting the Recon system. Our
evaluation shows that the runtime checkers for both the file systems detect file-system
corruption effectively, preventing any file system metadata inconsistency. We show
that the Ext3 checker has low performance overhead, while the Btrfs checker over-
head is higher due to increased metadata load. Checking location invariants in both
checkers has negligible overheads.

2. MOTIVATION

Our aim is to design a runtime checking system that can reliably detect file system
and other operating system software bugs and memory corruption errors before they

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:3

cause on-disk data corruption. Unlike an offline file system checker, a runtime checker
does not detect file system corruption caused by I/O hardware failures, such as de-
vice controller failures or latent sector errors on disks. Instead, the runtime checker
depends on hardware redundancy mechanisms, such as checksums and replication
[Prabhakaran et al. 2005], implemented either in the storage system or in the file sys-
tem [Bonwick and Moore 2008; Rodeh et al. 2013], to detect and recover from such
failures when data is read from disk.

A runtime checking system can be deployed in either a development or a production
setting. During development, a runtime checker can serve as a testing tool, catching
subtle errors before the file system image becomes inconsistent, thus making it easier
to determine the root cause of a bug. In production, the checker could trigger measures
to preserve existing data, recover from the failure [Sundararaman et al. 2010], or alert
administrators to the problem. Our runtime checking system builds on the Recon sys-
tem [Fryer et al. 2012], and so this section starts by providing an overview of Recon.
Then we motivate this work by discussing the types of bugs that Recon will fail to
detect, leading to undetected data corruption.

2.1. The Recon System

The Recon system takes advantage of transactional methods, such as journaling and
shadow paging, used by modern file systems for providing crash consistency. These
transactional methods group writes to disk blocks from one or more operations (such
as the creation of a directory and a file write) into transactions. When transactions
are committed, the file system believes itself to be consistent. At this point, Recon
checks that the contents of the blocks involved in the transaction are mutually consis-
tent, thus detecting the effects of software bugs (or memory errors) that corrupt blocks
within the transaction.

The consistency checks in Recon are derived from the consistency properties of the
file system. These properties constrain the set of valid file system states that can be
generated by an arbitrary sequence of file system operations. Typically, these proper-
ties are checked by the offline file system checker. For example, a consistency prop-
erty in the Btrfs file system is that extents must not overlap. Checking this property
requires a full scan of the extent tree, making it infeasible to perform at runtime.
Instead, each consistency property is transformed into a local consistency invariant,
which is an assertion that must hold for the transaction blocks to preserve consistency.
In the Btrfs example, the consistency invariant is that when a new extent item is added
to a tree, then the extent must not overlap with the previous or next extents in the
extent tree. A runtime checker can enforce this consistency invariant by examining all
updated extents and their adjacent extents.

The Recon system interposes at the block layer and can be implemented in the host
operating system, a hypervisor, or a storage controller. The benefit of this approach is
that the checker only depends on the the format and the consistency properties of the
file system, rather than depending on the implementation of the file system, which may
be buggy and cannot be trusted. File system formats and their consistency properties
tend to be stable over time, even when the implementation changes significantly over
time, or there are multiple different implementations of a particular file system.

Figure 1 shows the architecture of the Recon runtime checker. Recon is composed of
a generic framework and file system specific components that plug in through a sim-
ple API. Since Recon interposes at the block layer, it uses an introspection approach,
similar to semantically smart disks [Sivathanu et al. 2003], to infer the types of blocks
as they are accessed and then interprets the block contents to derive the logical file-
system data structures. The consistency invariants are expressed in terms of logical
file-system data structures, such as the extent information in the Btrfs example.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:4 D. Fryer et al.

FS request

User ‘

Kernel *

File System

3

FS Recon API
Block Layer
recon_write,
recon _*commit Recon Ext3_Recon
Metadata
Write Cache
Metadata
Read Cache <::> Btrfs_Recon
recon_read

3

Fig. 1. The Recon runtime file system checker.

The read cache in Figure 1 caches the on-disk file system state, while the write
cache caches the metadata blocks updated in a transaction. During commit, Recon
uses file-system specific components to compare the file-system data structures in the
two caches, generating records of logical changes.

These records capture any modifications to file system objects, such as the addition
of a new object, an update to a field in an existing object, or the removal of an ob-
ject in a transaction. Invariant checks are triggered by change records, but the check
may require additional information about objects that have not changed in the current
transaction. Query primitives are used to retrieve this information from the metadata
caches. The consistency invariants verify that when the logical changes are applied to
the read cache, they will result in a consistent file system state. If so, the transaction
commit is allowed, and then the contents of the write cache are merged into the read
cache, updating the checker’s view of on-disk state, and the write cache is cleared.

2.2. Problematic Bugs

Recon ensures that the blocks in a transaction are consistent, but it depends on the
transaction mechanism being both implemented and used correctly. We next describe
four classes of bugs that break these assumptions and provide some examples of recent
bugs in the Ext3, Ext4, and the Btrfs file system code deployed in “stable” Linux kernel
releases.

Overwrite Bugs. A write occurs to a location when it shouldn’t have happened at
all, either due to improper writing or flushing of buffers, or some other failure that
causes a misdirected write. For example, Ext4 stores file system quota information as
data in special quota files. The contents of these files are metadata, similar to direc-
tories, but they were overwritten in place without first writing to the journal, when
the file system was used with certain mount options [Kara 2010]. Recon’s consistency

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:5

@: descriptor block . : transaction i
@: commit block [:] : earlier transaction, already checkpointed

o [B CO0E
’/

1

I Misdirected
: write
1
1

L

Journal

) (b) Misdirected checkpoint write of block
(a) Write to metadata block S bypasses the Q corrupts previously committed and

journal. checkpointed block O.

Fig. 2. Examples of overwrite bugs in a journaling file system.

invariants would not detect this problem because the journal would appear to be con-
sistent. Similarly, a high-profile bug was recently introduced in the Ext4 file system, in
which the inode bitmap was modified without updating the journal, which could lead to
occasional corruption [Sandeen 2012]. Interestingly, after the corruption issue was re-
ported, the developers at first mistakenly thought that the root cause was an incorrect
update to the journal superblock [Ts’o 2012]. This suggests that understanding, using,
and implementing the transactional mechanism is challenging and bug prone. In this
case, if the file system is allowed to continue running, the transaction that was miss-
ing the inode bitmap update in the journal would commit, and the checkpoint of that
transaction would bring everything back to a consistent state, with no one the wiser.
Consistency problems only occur when an ill-timed crash forces recovery from the in-
complete journal entries. When Recon is used in production, things actually become
worse. Recon would detect that the journal contents are inconsistent, because the in-
ode bitmap updates are missing (e.g., unallocated inodes would appear to change), and
then discard the transaction and stop the file system. The inode bitmap, overwritten
in place, would cause the file system to become inconsistent. Figure 2 illustrates two
of these forms of overwrite bugs. In Figure 2(a), the metadata block S is being written
directly to its final destination without first updating the journal, similar to the Ext4
inode bitmap bug. In Figure 2(b) metadata block Q has been successfully committed to
the journal, but the subsequent write of that block to its final location is misdirected,
corrupting a previously committed (and checkpointed) metadata block O and leaving
an older, inconsistent version of Q on the disk.

Lost Write Bugs. A write that should happen doesn’t occur. For example, in a jour-
naling file system, a lost checkpointing or recovery write will cause file system incon-
sistency even though the journal is consistent [Gunawi et al. 2007].

Write Ordering Bugs. The file system needs to enforce ordering of writes to disk at
certain times. While the block layer may observe writes in the correct order, unless the
correct disk barrier commands are sent, the disk or its controller may reorder writes,
causing inconsistency of the on-disk state on a power loss. For example, Linux JBD2
journaling code maintains a pointer to the journal tail in a journal superblock. When
the tail was updated, the journal superblock was not being flushed to disk before new

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:6 D. Fryer et al.

transactions could reuse the newly freed journal space. On a power loss, the recovery
code could replay old transactions containing blocks potentially overwritten in the jour-
nal by new transactions [Kara 2012], including blocks from uncommitted transactions.
Similarly, the Btrfs file system in multidevice setups (e.g., mirroring) would send bar-
riers in the wrong order and not wait for all the barriers before writing the commit
block [Mason 2011]. These write ordering bugs would not be detected by Recon, but
they could cause serious file system inconsistencies.

Corrupting Write Bugs. A write occurs to the correct location, but its contents are
corrupt. For example, the Ext3 journaling code modifies (escapes) its data blocks when
they start with a magic code that identifies journal metadata blocks, to distinguish
between the two types of blocks. When Ext3 was used in data journaling mode, the
recovery code had a bug that would unescape the wrong buffers, causing corruption of
both the block that remains escaped, and the block that is wrongly unescaped [Griffin
2008]. This bug would not be caught by Recon’s consistency invariants because the
journal itself is not corrupt. However, blocks from committed transactions would be
corrupt on disk following recovery.

3. LOCATION INVARIANTS

File systems that use transactional mechanisms for crash consistency provide atomic-
ity and durability properties. Atomicity properties ensure that the file system will be
able to roll back to a consistent state on a crash. Durability properties ensure that if a
new version of a block is committed, it does not get rolled back or overwritten, except
atomically as part of a subsequent transaction.

The problematic bugs described in Section 2.2 can cause corruption because they
lead to violations of these properties. For example, a metadata overwrite that is not
first committed to the journal violates atomicity, since we cannot roll back to the
previous correct version of the block. Durability can be violated by either an omitted
checkpoint write or a write that corrupts a committed transaction in the journal, since
updates that were successfully committed to the journal never reach the file system.
Finally, in both journaling or shadow paging systems, a misdirected write that over-
writes an allocated metadata block (e.g., a data block write that overwrites a metadata
block) violates both atomicity and durability.

In this section, we first describe what is needed to detect violations of these proper-
ties and then present the location invariants for journaling and shadow paging trans-
actional mechanisms.

3.1. Enforcing Atomicity and Durability

The Recon runtime checker depends on the correctness of the file system’s transac-
tional mechanism to properly enforce the atomicity and durability of the metadata
updates that it is checking. Unfortunately, in spite of Recon’s distrust of buggy file sys-
tems, it assumes that the transactions themselves are implemented and used correctly.
This assumption can be violated by several classes of bugs, as shown in Section 2.2.
To detect these bugs, a runtime checker needs to enforce atomicity and durability
invariants, in addition to consistency invariants. Consistency invariants apply to the
contents of updated blocks; they need to be checked at transaction commit points be-
cause the file system does not guarantee that the updates are consistent until the com-
mit. In contrast, the atomicity and durability invariants need to be checked on each
block write, because they govern whether the write is permitted to the given location.
Hence, we call them location invariants collectively. Rather than being derived from
the offline checking tool, the location invariants are derived from the semantics of the

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:7

transactional mechanism itself. In particular, they concern overwrites to the blocks,
and the ordering of block write operations.

It is possible to enforce both atomicity and durability invariants on each write, be-
cause they only depend on the correctness of committed metadata, which has already
been checked using consistency invariants. Transactional techniques like journaling
or shadow paging must first write metadata to unallocated blocks: for journaling,
these are free blocks in the journal area, which must later be checkpointed back to
the file system, while for shadow paging these may be any free blocks, which become
part of the file system atomically at the commit point. To check that these proper-
ties are maintained, location invariants depend on information about block allocation
and block type (data vs. metadata). The block allocation information must be based on
committed metadata, since uncommitted changes to the allocation state may be rolled
back following a crash. In particular, we must not permit a write to a block that has
been freed in an uncommitted transaction, since we would not be able to recover the
previous version of the block if the deallocation operation were rolled back.

As can be seen, correct checking of consistency and location invariants is interde-
pendent. We begin from the assumption that the file system state on disk is consis-
tent. Initially, this is the result of correct file system initialization, as is done by mkfs.
Thereafter, each block write prior to a transaction commit is checked by the location
invariants using the old, consistent, committed allocation and block type information.
These checks ensure that the committed state is not corrupted. At the transaction com-
mit point, the contents of the transaction are checked by the consistency invariants to
ensure that the new file system state will be consistent. The location invariants then
govern the write of the commit block itself, and the subsequent checkpoint writes to
the file system, as well as the writes of blocks in the next transaction. By enforcing
both consistency and location invariants, the runtime checker can provide the strong
guarantee that the file system meets its consistency specification on every block write.!

As we will see in the next section, there are significant differences between the spe-
cific location invariants that apply to journaling and shadow paging mechanisms. How-
ever, both require the ability to infer block allocation information and the ability to
distinguish between metadata and data blocks at the block layer.

3.2. Journaling Invariants

Journaling file systems use write-ahead logging to support failure atomicity. First, they
write a consistent set of blocks and their final location information to a designated
journal area. When all these blocks are durable in the journal, an atomic journal write
signals a commit. After commit, the contents of the journal are flushed to their final
locations. This flush to the final file system locations is called checkpointing in the
Linux ext3/jbd terminology.

The journal area must be known to the runtime checker so that, on each write, it
can distinguish between journal and non-journal writes. This distinction is necessary
so that the correctness of both the journal writes and the checkpointing writes can be
verified. Checkpointing of committed transactions occurs concurrently with new jour-
nal writes, but checkpointing writes must be directed to the non-journal area. Note
that although we expect the journal to be a circular buffer, with writes occurring se-
quentially, at the block layer there is no guarantee of any particular ordering within a
transaction.

IWhile the checker implementation may have bugs that generate false alarms, it is unlikely that the checker
will fail to detect file system corruption, unless its bugs are correlated with file system bugs [Fryer et al.
2012].

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:8 D. Fryer et al.

The following four location invariants ensure that the journaling and checkpointing
operations of the file system are correct.

(1) Log Invariant. A write to the journal area must be to a free block in the journal.
A free journal block becomes allocated when it is written and free again when it
has been checkpointed (see checkpoint invariant). This invariant checks that the
allocated journal blocks are not overwritten.

(2) Commit Invariant. A write of a commit block, which marks a transaction as com-
mitted, is allowed to the journal area only after (1) all the blocks in the transaction
are allocated in the journal, and (2) a barrier is issued to flush these transaction
blocks to the disk. The transaction is considered to be committed (and hence, to be
durable) only after the commit block is flushed to disk. When journal checksums
are included in the commit block, as in IRON file systems [Prabhakaran et al.
2005], the write of the commit block can be concurrent with the writes of the trans-
action blocks, but a barrier is still needed to ensure that all these blocks are on
disk before the transaction is deemed to be committed.

(8) Flush Invariant. A write to an allocated, non-journal location is permitted only
when (1) the committed part of the journal contains a block that is destined for the
same final location, and (2) the contents of this block in the journal matches the
contents of the block being written. In other words, overwrites of allocated non-
journal blocks are disallowed if the new content was not first committed to the
journal. If the block exists only in the uncommitted portion of the journal, or the
block does not appear in the journal at all, both atomicity and durability violations
can occur. Atomicity is violated by writing new content into the file system ahead
of the commit of the transaction that should contain it. Durability is violated by
the loss of previously committed content that has been overwritten.

(4) Checkpoint Invariant. A write of a checkpoint record (e.g., in the journal su-
perblock), which indicates that a set of blocks in the journal area are now free,
is permitted only after all the journal blocks for the associated transaction have
been either (1) flushed (see flush invariant), or (2) superseded by a newer version
of the corresponding block in a later committed transaction. If a newer version of a
block exists in a later committed transaction in the journal, then this version does
not need to be flushed before being freed. The affected journal blocks can only be
considered free after the checkpoint record has been flushed to disk.

Metadata-Only Journaling. Since writing to the journal potentially doubles the total
write traffic to disk, many file systems allow journaling only metadata blocks to reduce
write traffic. The main complication with metadata-only journaling is that data writes
are non-atomic, and while these writes must be allowed at any time, they must not
overwrite metadata blocks. To accommodate non-journaled data writes, we refine the
journaling flush invariant with an exception.

Data-Flush Exception. Any non-journal write that violates the flush invariant must
be to a non-metadata (data or free) block location. The type of a block (metadata or not)
is determined by the committed file-system state. The consequence of this exception is
that data writes can overwrite data blocks unimpeded. Unfortunately, there is no way
to tell if data writes are misdirected among each other.

The challenge with allowing this exception is that it must be possible to distin-
guish metadata blocks from non-metadata blocks on each write, but a file system may
not provide this information easily. For example, the Ext3 file system uses allocation
bitmaps that allow distinguishing between allocated blocks (which may be data or
metadata) and free blocks. However, the file system does not provide an easy way to
distinguish between dynamically allocated metadata (e.g., for directories and indirect

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:9

blocks) and data blocks, other than by traversing the entire file system. We discuss
this issue further in Section 4.3.

3.3. Shadow Paging Invariants

Compared to journaling, it is simpler to enforce location invariants for shadow paging
systems, because blocks are updated once per transaction and all these updates occur
before commit. In a file system that uses shadow paging for all blocks, there are two
atomicity invariants.

(1) Flush Invariant. All writes, other than to special non-shadow paged blocks, such
as the super block, must be to unallocated blocks. This invariant follows from the
basic copy-on-write properties of shadow paging systems. To enforce this invariant,
the file system must provide an efficient method for determining the allocation
status of a block. For example, the Btrfs file system maintains an extent allocation
tree.

(2) Commit Invariant. The write of the commit block (usually a tree root) is flushed to
disk only after both (1) all blocks referenced by the new tree have been updated,
and (2) a barrier is issued to flush these blocks to disk. That is, there must be
no dangling pointers to potentially uninitialized blocks, before the commit block is
flushed.

Durability (e.g., a lost or corrupting update) is checked in modern shadow paging file
systems using methods such as block checksums (ZFS) or generation numbers (Btrfs).
This information is embedded in metadata blocks, and hence our Btrfs runtime checker
uses consistency invariants to check the consistency of block headers and generation
numbers for ensuring durability.

Metadata-Only Shadow Paging. Shadow paging can lead to fragmentation because
the updated blocks are placed in new, possibly distant, physical locations. Fragmen-
tation can be reduced with metadata-only shadow paging, with data writes being per-
formed in place. To accommodate non-atomic data writes, we refine the flush invariant
with an exception.

Data-Flush Exception. Any write that violates the flush invariant must be to a non-
metadata (data or free) block location.

This exception requires being able to distinguish metadata and non-metadata
blocks. Btrfs tracks whether an extent has metadata or data in its allocation tree,
making it easy to enforce this invariant. Also, the default behavior of Btrfs is to sepa-
rate metadata and data regions, making this identification even easier and more effi-
cient.

4. IMPLEMENTATION

As explained in Section 3.1, location and consistency invariants are interdependent,
and they need to be checked together. Hence, we have implemented location invariant
checking for the Linux Ext3 (journal invariants) and Btrfs (shadow paging invariants)
file systems by augmenting the Recon consistency checking system. Recon uses the
block-layer Linux device mapper framework to interpose on block I/O, allowing lo-
cation invariants to be checked on all writes. The block-layer approach ensures the
independence of the checker and the file-system implementations. Next, we describe
the requirements for implementing a runtime checker and then discuss how these
requirements are met in our implementation.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:10 D. Fryer et al.

4.1. Runtime Checker Requirements

File system design impacts the capabilities and performance of a runtime checking
system. In this section, we present the four types of information needed by a checker.
The challenge is to obtain this information correctly and efficiently at the block layer.
The more file system state that must be examined to do so, the higher the overhead of
the checker.

Consistency Points. Runtime checking at the block layer requires being able to get
a consistent picture of the file system state from outside the file system. Consistency
points provide both a point in time to check consistency invariants and a consistent
view of the file system when checking location invariants on each write.

Allocation Information. A checker needs to distinguish between allocated and unal-
located blocks, particularly on the write path, to protect against accidental overwrites.
Overwriting an unallocated block is harmless, but location invariants constrain when
allocated metadata blocks can be overwritten.

Separate Metadata. The checker also needs to distinguish between metadata and
data blocks on both the read and the write paths. Metadata blocks are cached to im-
prove checker performance, since recently accessed metadata is likely to be relevant to
invariant checking, while data blocks are ignored because they are not interpreted. Ad-
ditionally, the location invariants may permit or forbid a write depending on whether
the destination is a data or metadata block.

Block Identity. Finally, interpreting a metadata block requires knowing the identity
of the block. The block identity determines the logical contents of the block in the
file system. For example, suppose that the checker knows that some block is an inode
block, and it identifies the block as the fourth inode block in the file system. If it knows
that inode blocks contain 32 inodes, then it can determine that this block contains
inodes with numbers 97-128. A runtime checker can then correlate these inodes with
directory entries that reference them, with inode bitmaps that allocate them, and with
the indirect blocks to which they point. Without knowing their specific identities, it
would not be possible to make the associations between the data structures that are
needed for enforcement of invariants.

4.2. Block-Layer Metadata Interpretation

In this section, we discuss two complementary approaches for determining block iden-
tity. The following sections describe how we apply them to interpret metadata in the
Ext3 and Btrfs checkers.

Forward Pointers. File systems are tree structures or directed acyclic graph struc-
tures, with parent blocks containing some form of a pointer to child blocks. Thus, the
easiest way to identify a block is if we are already traversing the parent block. For ex-
ample, if the checker (or the file system) is looking up some specific metadata, starting
from the root of the tree, it can traverse intermediate blocks to locate the desired block.

Back References. A back reference for a block is metadata that maps the block’s phys-
ical location to blocks that reference the block [Macko et al. 2010], providing an effi-
cient method for locating parent blocks. Back references are used for various tasks
such as defragmentation and bad block replacement, in which the parent block con-
taining the reference must be efficiently located and updated. The parent block has in-
formation to help type and identify the child block, and hence back references greatly
simplify metadata interpretation. However, looking up a back reference may incur
additional I/O operations.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:11

4.3. Ext3 Implementation

Ext3 uses static block allocation bitmaps, making it easy for the checker to determine
the allocation status of blocks. However, Ext3 does not provide any efficient method for
distinguishing metadata blocks from other blocks, either on block writes or on block
reads that violate pointer-before-block traversal. One option which we explored is to
retrofit the Ext3 file system with a metadata allocation bitmap, which records whether
a given block is metadata. The new metadata bitmap is stored alongside the block al-
location bitmap. Using the metadata bitmap, the checker can ensure that data blocks
are never cached on either a read or a write, and the data flush exception, described in
Section 3.2, can be implemented easily. Without modifying the file system, an alterna-
tive is to track all data and metadata pointers that have been seen, in order to ensure
that the type of a block is known before that block is written to. This approach would
incur a high memory overhead.

4.3.1. Interpreting Metadata. The Ext3 file system does not provide back references.
Instead, we use the file system’s forward pointer traversal to create in-memory back
references dynamically. The file system needs to read the parent of a block at least
once before it accesses the child block, which we call pointer-before-block traversal.
When the parent block is read the first time, we create a back reference for each of
the child blocks to which it points. For example, when an inode block is read by Ext3,
we copy the block into the read cache, parse the inodes in the block, and then create
back references for all child metadata blocks (e.g., indirect blocks) directly pointed to
by the inodes. The back reference contains the block type, and for an indirect block, it
contains the inode number and an offset that locates the indirect block. When the in-
direct block is read, its back reference will exist, and hence the block can be typed and
identified. These back references are bootstrapped using the superblock, which exists
at a known location.

The main drawback of in-memory back references is that they cannot be evicted
because the file system may cache information from the parent block indefinitely,
allowing it to access the child block directly at any time in the future. However,
the in-memory references could be persisted by leveraging the backpointer-based
consistency techniques developed in NoFS [Chidambaram et al. 2012] and ffsck
[Ma et al. 2013].

4.3.2. Location Invariants. The Ext3 location invariants require tracking the state of
the journal. We refer to physical storage blocks allocated to the journal as slots, each
of which may contain either a version of a metadata block that has been written into
the journal, or journal control structures such as descriptor blocks and the commit
blocks that end a transaction. A slot in the journal can be in one of four states: logged,
committed, flushed, and free. These four states correspond to the four journaling in-
variants described in Section 3.2. Note that a slot stays allocated (as explained in the
Log invariant) during the logged, committed, and flushed states.

The checker maintains three data structures: a list of transactions currently present
in the journal, an array containing information about the status of each journal slot,
including block checksums, and a hash table mapping from metadata block numbers
to versions of that block in the journal.

Figure 3(a) shows an example set of blocks in the journal, including the descriptor
and commit blocks and the journaled metadata blocks themselves. Figure 3(b) shows
the checker’s data structures for this set of transactions. The octagons on the left repre-
sent the list of transactions. For each transaction, we build a list of the slots containing
blocks written in that transaction, shown by the dashed arrows in the figure. The hash

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:12 D. Fryer et al.

@: descriptor block C] : transaction O (not in journal) C] : transaction 2
@: commit block - : transaction 1 :] : transaction 3 (not committed)

j¢———Committed Transactions ——————|

Journal ... a a G]@

l€—— Final locations ——>l

(a) Blocks in the journal at a particular point in time, belonging to multiple transactions.

Set of blocks r I
in journal \I Block P Block Q Block R Block S Block T 1

List of blocks ®_ ----------------------------- -)&]

written in each

transaction\ @____

List of
block
versions

e Block#

e Checksum
e Flags

(b) Data structures used to check location invariants on every file system write to disk.

Fig. 8. Checking location invariants in Ext3.

table is shown as the shaded rectangle at the top, with the solid arrows representing
a linked list of versions of each block in the journal.

Based on writes to different types of journal blocks (i.e., the descriptor blocks, meta-
data blocks, commit blocks, and the journal superblock) and non-journal blocks, the
checker updates its data structures and the block states, and enforces the journaling
invariants described in Section 3.2. For example, when we see a write to a metadata
block, we can use the hash table to locate committed versions of that block in the jour-
nal and verify that it matches one of them. If it does not, this indicates a violation of
the flush invariant.

During a commit, if a new metadata pointer is found without a corresponding new
metadata block in the journal, we detect a violation of the commit invariant (that all
blocks should have been written before commit).

One complication with metadata-only journaling is that Ext3 uses revoke records to
indicate that a metadata block has been freed and could be reused as a data block that
is updated non-atomically. As a result, any versions of this block in previous transac-
tions should no longer be checkpointed or else the data block could be overwritten. The
checker handles such revoked blocks by marking their status as checkpointed so that
the checkpoint invariant does not fail if the containing transaction is freed without
seeing a write to that block.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:13

4.4. Btrfs Implementation

Btrfs provides various features, such as extent-based allocation (which allows a sin-
gle allocation record to cover multiple blocks), back references (which help tasks like
online defragmentation), and writable snapshots (which are isolated from the original
version using copy-on-write semantics). Btrfs uses shadow paging for ensuring crash
consistency, similar to the WAFL file system [Hitz et al. 1994].

Btrfs uses multiple B-trees to store its metadata. A root B-tree contains pointers
to the roots of other B-trees, including the main file system tree, snapshot trees, and
an extent tree that records allocation information. Each B-tree consists of internal
nodes and leaves. Internal nodes contain an array of key/block-pointer pairs, with the
key representing the smallest key stored in the pointed-to node or leaf, and the block
pointer helping locate the child node or leaf on disk. All Btrfs metadata blocks begin
with a header that has a block checksum, a generation number, and the ID of the tree
containing the block.

We found that Btrfs can issue writes from concurrent transactions. For example,
blocks from the next transaction can be written to disk before the current transaction
commit, but as expected, the next transaction blocks are unreachable from the current
transaction. As a result, the Btrfs checker assumes that unreachable blocks belong to
a future transaction and delays processing them.

4.4.1. Interpreting Metadata. Btrfs uses shadow paging so that when a leaf node is up-
dated, all its ancestor nodes are also updated. Because of this property, the checker
can use forward pointer traversal on commit, starting from the superblock.

Btrfs uses an extent B-tree to store allocation information, which the checker also
uses to determine the allocation status of blocks. Similarly, separating data and meta-
data blocks on both the read and write paths is relatively easy because Btrfs allocates
separate large contiguous regions for data and metadata. However, if Btrfs is operat-
ing in a “mixed” region mode (not a common configuration), data extents can be distin-
guished from metadata extents by traversing the extent allocation tree and examining
the per-extent flags.

Btrfs uses typed and self-identifying metadata blocks. Each metadata block has a
header that stores the type (node or leaf) and level of the block in the tree, and the first
key in the block is its identity, helping locate the block in the tree. Btrfs also supports
back references to multiple snapshots, storing them with the allocation information in
the extent tree.

Both back references and self-identifying metadata blocks can be used indepen-
dently to type and identify blocks. We initially decided to implement a Btrfs runtime
checker because we thought that both of these properties would be useful for the run-
time checker. However, neither are necessary due to the forward pointer traversal en-
abled by shadow paging.

4.4.2. Location Invariants. The checker ensures atomicity and durability by checking
that allocated blocks are never overwritten, which requires looking up the extent al-
location tree on each write. For metadata-only shadow paging, a metadata flag in
the extent record is checked to implement the data-flush exception. While checking
a transaction for consistency, an invariant is tripped if a pointer to an unwritten block
is encountered within the updated tree.

5. EVALUATION

We evaluate our runtime checker in terms of its ability to detect violations of the lo-
cation invariants, listed in Section 3, and the performance impact of checking location

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:14 D. Fryer et al.

invariants in addition to consistency invariants for the Ext3 and Btrfs file systems.
We have implemented the runtime checkers within the Linux kernel using the Recon
framework, based on the approach described in the previous sections. Recon was ini-
tially developed on the device-mapper interface for Linux 2.6.27, which did not support
passing disk barrier and flush requests. Recon’s support for barriers in later kernels
is still experimental. Our Btrfs implementation is based on the Linux 2.6.35 kernel.
Recon for Ext3 is implemented and tested on Linux 3.8.11. Rather than using our mod-
ified version of ext3 with a metadata bitmap, we use the ext4 subsystem’s emulation
of ext3, using metadata-only journaling. In our test environment, all pointers to meta-
data are seen while the filesystem is being populated, and so the invariants can be
enforced without referring to the metadata bitmap.

5.1. Correctness

We evaluate the ability of our runtime checker to detect the types of bugs described in
Section 2.2. Specifically, we inject errors into write operations issued to the block layer
that result in lost, misdirected, or corrupted writes. We refer to these injected errors
as corruptions. If writes are correctly ordered, and no writes are lost, misdirected, or
corrupt, then the transaction mechanism is working correctly. By deliberately altering
writes to violate these properties, we can evaluate whether the location invariants can
successfully protect the file system.

Our corruptor sits between the file system and the checking system and has the
opportunity to act before each write is visible to the checker. The actions the corruptor
can take are (1) discard a write (lost), (2) alter the destination of the write (misdirect),
or (3) alter a range of bytes within the block being written (content). Because the
location invariants distinguish between several different types of blocks, we perform
corruption in a type-specific manner to increase our coverage of possible scenarios
and to help explain any uncaught corruption. The type of a block is determined by its
destination, and in the case of certain journal blocks, by the journal header stored at
the beginning of the block.

5.1.1. Corrupting Ext3. The corruptor can target one of four types of journal blocks
(journal metadata such as a descriptor block, revoke, and commit blocks, and journaled
file system metadata block), or the two types of non-journal blocks (file system meta-
data and data). To misdirect writes, it must distinguish between free and allocated
journal space, and data and metadata locations outside the journal. As ext3 doesn’t
support easy metadata/data distinction on the write path, we can only target meta-
data blocks that we have seen pointers to, although this eventually converges on all the
metadata in the file system. When the corruptor targets a non-journal metadata block
write, it is emulating a bug that corrupts the checkpoint write of that metadata block.
When the corruptor targets a data block write, it always misdirects the write to a non-
journal metadata block, as misdirecting to another data block is undetectable when
using metadata-only journaling. Likewise, lost write and content corruption types are
not applied to data block writes.

Some corruptions may not violate location invariants immediately. Instead, they
may lead to a future operation causing metadata corruption. For example, a lost write
to the journal cannot be detected when it is dropped, and the resulting transaction
may still be consistent, but the problem should be detected when the checkpoint write
targets a metadata location that has not been committed to the journal. There are four
distinct points in time when a corruption may be detected: during the corrupted write,
at the next commit point, during the checkpoint of a corrupted transaction, and dur-
ing transaction free. Any corruption that occurred in the past must be caught before a
write harms the atomicity, durability, or consistency of metadata on disk.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:15

Table I. Corruptions Detected by Location Invariants

Target Block Type Corruption Type
Journal Blocks Lost | Misdirect | Content
Descriptor 10 10 8
Commit 10 10 4
Revoke 10 10 4
Metadata 10 10 2
Non-Journal Blocks
Metadata 3 10 10
Data N/A 10 N/A

There are a total of 16 combinations of target block types and corruption types, as
shown in Table I. We perform 10 corruptions per combination. Out of 160 corruptions,
131 were detected by the location invariants and 7 were detected by the consistency
invariants (all 7 were content corruptions of metadata blocks in the journal). We ana-
lyzed the remaining 22 corruptions that did not trigger any invariant violations. There
are two situations in which we miss corruption events, but the “corruptions” do not
affect file system integrity. In the case of random content corruptions to journal meta-
data, much of the space in the block is unused and corruptions to the unused area have
no effect on the block semantics. Together, these cases account for 14 of the missed cor-
ruptions. Similarly, when unused space in a journaled metadata block is corrupted,
which occurred in one case, no invariants are violated. We verified that the corrupted
space was unused by logging the range of bytes corrupted and examining the target
blocks. The final 7 missed corruptions were all lost checkpoint writes. In each case, we
verified that these writes were safe to omit because there was already a newer version
of the block committed to the journal. In all the 22 cases where we didn’t catch the
corruption, the e2fsck offline checker also reported that the file system was consistent.

5.1.2. Corrupting Btrfs. Testing the Btrfs location invariants is less involved, since the
invariants are simpler, as described in Section 3.3. A buggy write in Btrfs can be
redirected to overwrite an existing data or metadata block, lost, or redirected to the
wrong free block. We simulated metadata blocks being misdirected by the file system
by changing the block’s header to match the new, incorrect location, and updating the
block checksum accordingly, before feeding the block to Recon. Our checker always de-
tected misdirections that cause overwrites of allocated data or metadata. Lost writes
or writes that are misdirected to an incorrect free block are always detected by Recon
during transaction processing, when a new pointer is found to a block that is missing
from its write cache [Fryer et al. 2012]. Lost superblock writes can potentially go un-
detected unless the lack of commit causes future operations to be treated as invalid.
One way to mitigate this would be to check correspondence between sync() operations
and a commit that Recon observes. Since system calls themselves are not visible at the
block layer, this type of check is outside the current scope of Recon.

5.2. Performance

5.2.1. Setup. To measure Recon’s overhead, we select three workload profiles with dif-
ferent behaviors from the Filebench workload generator [Filebench 2011]. We modify
the workloads from their original versions in order to provide more realistic working
set sizes for modern storage systems. The varmail profile performs many small, syn-
chronous writes on a set of 250,000 files. The webserver profile reads many small files
concurrently (100 threads) in a large directory hierarchy (approximately 250,000 files,
on average four levels deep), while appending to a log. The ms_nfs profile simulates
a single-threaded network file server, operating on a file system (100,000 files) with a

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:16 D. Fryer et al.

Throughput Setup Time
1
1200 Native ——= 500 Native ——
00 Recon mmmm Recon mmmm
'g 1400 + Recon+AD mmmm = 400 Recon+AD mmmm
g 1200 + 2
% 1000 | g 300
S 800} 2
g 600 1 E 200
& 400t 100
0 - 0 -
varmail webserver ms_nfs varmail webserver ms_nfs
Fig. 4. Performance on FileBench workloads for Ext3 on HDD.
Throughput Setup Time
3000 | Native —— Native ——
Recon mmm 250 Recon mmmm
'g 2500 | Recon+AD s = Recon+AD s
=
3 2000 | g 200
E Q
& 1500 | g 150
1 Q
£ 1000 | £ 100
=] e
0 ﬁ 0 -
varmail webserver ms_nfs varmail webserver ms_nfs

Fig. 5. Performance on FileBench workloads for Btrfs on HDD.

file size distribution from a study of Windows desktops [Meyer and Bolosky 2011]. Our
ms_nfs workload does not throttle the request rate, unlike the networkfs profile that it
was originally based on, in order to measure maximum system performance. Finally,
as a fourth distinct type of workload, we also measure the time it takes to create the
file sets used in the benchmarks. This provides a metadata-write intensive workload
which is asynchronous (in contrast to varmail), stressing write throughput rather than
latency. No dataset fits entirely in the buffer cache.

All benchmarks were run on a dual-core 3.0 Ghz Xeon server with 3GB of RAM.
We allocated 256 MB of memory to the Recon caches, which is sufficient to cache the
file system metadata for all benchmarks. The performance results account for Recon’s
memory usage because Linux implements a shared page cache, and so with Recon, this
memory is not available to the file system cache. File systems were mounted with the
‘noatime’ option enabled, to clearly distinguish read intensive workloads from meta-
data write workloads. Specifically, the webserver benchmark generates high volumes
of metadata write traffic without this option.

5.2.2. Hard Disk Drive. Our first experiments were run on a 250GB 7200rpm SATA
drive. Figures 4 and 5 show the benchmark throughput and the time to initialize the
benchmark’s file system tree (setup time) averaged over five runs, for the Ext3 and
the Btrfs file systems. Each graph shows the performance of the native file system, the
file system with consistency checking enabled (Recon), and the file system with consis-
tency and location checking enabled (Recon+AD). The throughput graphs measure the
benchmark performance in operations per second, where higher is better. The setup
time figures are in seconds, where lower is better. These figures show that the over-
head of checking location invariants is minimal compared to the existing overhead of
checking consistency invariants in Recon. Even though the location invariants require
a check on every write, this check is usually quick because it takes advantage of the
cached metadata.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:17

Throughput Setup Time

8000 Native —— 180 Native ——
7000 Recon mmmm 160 | Recon mmmm
6000 Recon+AD mmmm Recon+AD mmmm

5000

I 120 |
4000 | g0
3000 | 2 ol
2000 | w0l
1000 | H—. 2|

0 0

varmail webserver ms_nfs varmail webserver ms_nfs

Operations/second
Time (seconds)
-
(=1
(=}

Fig. 6. Performance on FileBench workloads for Btrfs on SSD.

For the ms_nfs workload, Recon (both with and without location invariants) causes
noticeable overhead because Recon’s additional memory usage increases the pressure
on the page cache. Recon’s memory overhead comes from its read cache, which is limi-
ted to 256MB in between transaction commits, the write cache, which is the size of
the metadata in the current transaction, and also from Recon’s data structures dur-
ing transaction processing. Transaction processing overheads are particularly high in
Recon for Btrfs, because it constructs sets of all the items in the new and old versions
of the metadata tree, in order to find the new, changed, and deleted items by set inter-
section. We observed that the btrfs-recon memory requirements for these sets during
transaction processing could exceed 100MB. Recon for ext3 does not explicitly con-
struct these sets, but instead generates the new/changed/deleted items as it directly
compares the new version of a block to the old one. This direct comparison is possi-
ble because ext3’s metadata is updated in place. A possible optimization to Recon for
Btrfs is to consider leaves in key-sorted order, which would limit the number of un-
processed items in the “old” and “new” sets to those contained in a single leaf. Another
difference between Btrfs and ext3 is that Btrfs’s transaction commits tend to be less
frequent but larger. Tuning the transaction size and frequency might reduce some of
Recon’s impact.

Recon has a greater impact on the setup times for the varmail and webserver
workloads than for ms nfs because they involve larger numbers of small files than
the ms_nfs workload; the higher ratio of metadata to data writes is more taxing for
Recon. Since the metadata caches are of sufficient size, the overhead in this case is
due to CPU time spent in transaction checking.

5.2.3. Solid-State Drive. The relatively high I/O latencies of spinning media affect the
impact of Recon’s overhead. In order to investigate this impact further, we ran the Btrfs
experiments on a 256GB Intel 510 SSD. Figure 6 compares native SSD performance to
Recon interposing between the SSD and file system.

On the SSD, Recon pays an approximately 20% overhead for the varmail workload,
which calls fsync frequently. This overhead is caused by Recon’s CPU usage, because
the fsync operations must wait for Recon to complete processing before returning.
When running varmail, the CPU time used by Recon+AD was approximately 160 sec-
onds spent on consistency checking and 38 seconds spent on location invariants, over
a 20-minute benchmark. This represents an approximately 80/20 split between consis-
tency and location invariant checking for varmail, but it is only the time spent on the
consistency invariants that affects fsync() latency, as long as the CPU is not saturated.
While the other workloads have similar CPU costs (in total, 45s for webserver and 129s
for ms nfs), they are not as sensitive to commit latency. Experiments with the Linux
perf tool suggest that there are several effective ways to reduce Recon’s CPU overhead,

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:18 D. Fryer et al.

Table II. Requirements for Checkable File Systems

NoFS | Soft Updates | Ext3 | RExt3 | Btrfs
Consistency Points X X X
Allocation Information X X X X
Separate Metadata X X
Block Identity X X X

including more efficient implementations of hash functions and avoiding many calls to
kmalloc/kfree for tiny allocations.

One aspect of fast SSD I/0 is that it decreases Recon’s overhead on the ms_nfs work-
load. While there is still a higher miss rate because of Recon’s memory pressure, the
page cache misses are much less costly on an SSD than on a spinning disk.

When we first ran the Btrfs benchmarks on an SSD, the webserver benchmark took a
significant performance hit when running with Recon. Profiling the behavior revealed
that Recon was doing unnecessary work when it processed a read request to a data
block. Unlike metadata reads, Recon does not need to process data reads once they
complete, however, it still introduces some latency on the read path by dispatching the
completed request to a work queue and acquiring the Recon lock before deciding that
it doesn’t need further processing. By taking advantage of clearly separated data and
metadata, Recon can quickly determine that a read is for a data block before it issues
the read request to the underlying device. We optimized this path by checking the data
or metadata status of a read request at the time it is being issued, and if it is for a data
block, it is returned to the caller immediately upon completion bypassing Recon. This
optimization gained us approximately 7% on the read-intensive webserver profile.

6. DESIGNING CHECKABLE FILE SYSTEMS

Section 4.1 describes the four requirements of a runtime checker that make it feasible
to check invariants efficiently at the block layer: (1) well-defined consistency points, (2)
easily accessible allocation information, (3) easily distinguishable data versus meta-
data blocks, and (4) easily available block identity information. In this section, we
describe how well various file systems meet these requirements. Table II provides a
summary of our analysis. Then we recommend features that make file systems easily
checkable at runtime.

6.1. Analysis of File System Design

No-Ordering FS. NoFS [Chidambaram et al. 2012] aims to provide file system con-
sistency in the face of poorly-behaved hardware that ignores ordering constraints and
flush commands. They propose a novel commit-less approach to providing crash con-
sistency by adding a backpointer to every block by using the out-of-band bytes pro-
vided by some devices, enabling atomic write of the block and its backpointer together.
The backpointer makes it possible to identify the contents of blocks. NoF'S performs
block allocation based on an in-memory bitmap, thus avoiding any consistency issues
between pointers and a persistent bitmap. Determining the allocation status at the
block layer is expensive because it requires reading the block and its parent block to
determine if a bidirectional pointer relationship exists between them. Unfortunately,
NoF'S does not provide any ordering guarantees by design, and thus lacks consistency
points, and any consistency or location invariants. As a result, it is not possible to
check any invariants in NoF'S. Bugs in NoF'S that cause data corruption would not be
easily detectable by an offline checker as well.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:19

FFS with Soft Updates. The soft updates mechanism provides crash consistency in
an update-in-place file system without requiring journaling. Soft updates impose a
partial order on writes and prevent cyclic dependencies between blocks by using a
temporary in-memory rollback mechanism. Blocks and inodes can “leak” after a crash,
but this problem is much less severe than blocks or inodes being overwritten while
still in use. The ordering of writes allows some invariants to be checked (e.g., you can’t
write a pointer to a newly-allocated block before you initialize the block). However, soft
updates are not transactional and thus lack consistency points, and so most file system
invariants cannot be checked because data might always be in flight.

Ext3. We have described the Ext3 file system properties in detail in Section 4.3.
Ext3 provides consistency points and allocation information, but it mixes dynamically
allocated metadata (directory data and indirect blocks) with data. In addition, the dy-
namically allocated metadata blocks cannot be easily interpreted, because they do not
contain type information or information about the inode that points to them. We solve
this problem partially by using in-memory back references in the checker. Unfortu-
nately, this approach will not protect a metadata block from being overwritten if we
have not yet seen a pointer to it. We experimented with a modified version of ext3
which kept a bitmap for metadata, making it possible to distinguish metadata from
data at the block layer without scanning the entire file system for metadata pointers.
This required only minimal changes to ext3 and mkfs, but the design of RExt3, de-
scribed next, satisfies the prerequisites for online checking of an ext3-like file system
more thoroughly.

RExt3. RExt3 [Ma et al. 2013] is a variant of ext3 that is optimized for a fast, of-
fline file system checker called ffsck. Speeding up offline fsck involved two changes to
the file system format, the co-location of metadata within metadata regions, and the
addition of backpointers associating dynamically allocated metadata with their corre-
sponding inodes. The separation of metadata and data into two regions makes it possi-
ble to distinguish between them with low overhead. With the addition of backpointers,
the runtime checker for RExt3 will not need to use in-memory back references, thus
reducing the memory overhead of the checker.

Btrfs. We have described the Btrfs properties in detail in Section 4.4. Btrfs provides
consistency points, and it uses a separate extent tree to store allocation information.
The extent records specify whether an allocated extent is data or metadata and also
record backpointers for the extent. Since Btrfs allows snapshots, some extents (both
data and metadata) may have multiple parent blocks which point to them. A runtime
checking system can identify metadata by its placement in a designated area, or by
looking up the metadata flag in the extent tree. Furthermore, the contents of a meta-
data block can be identified based on the header structure shared by all metadata
blocks. The shadow paging location invariants are easier to verify than their journal-
ing equivalents because there is less state that needs to be tracked.

6.2. Design Recommendations

Based on our analysis of these file systems, we now suggest design features that enable
efficient runtime checking of file systems. We expect that these same features will help
implementing other file-system-aware storage applications, such as differentiated stor-
age services [Mesnier et al. 2011]. Consistency points are essential for runtime check-
ing. While new file systems, possibly running on new hardware, may avoid providing
consistency points, the resulting loss in protection is a serious issue. Easily accessible
allocation information at the block layer, such as in bitmaps in fixed locations, allows
enforcing location invariants efficiently. Other applications, like scrubbers and secure

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

17:20 D. Fryer et al.

delete utilities, can also benefit from knowing the allocation status of a block. Separat-
ing data from metadata in well-defined regions allows distinguishing between them
with low overhead, because there is no need to lookup this information in bitmaps
or trees. This approach also allows other policies, such as replication and placement,
to be applied to contiguous metadata regions with ease. Fortunately, the mixing of
metadata and data for performance reasons has been obsoleted by large disk caches
[Ma et al. 2013]. Finally, backpointer information helps identify blocks at the block
layer efficiently. This information is especially useful for dynamically allocated meta-
data in update-in-place file systems, because the checker may need to interpret an
arbitrary block without knowing its position in the file system tree.

7. RELATED WORK

We describe closely-related work in the areas of runtime and offline file system consis-
tency checking and smart disk interfaces. Static bug finding tools [Yang et al. 2006] can
reveal scores of bugs in file systems, but they can suffer from typical scalability issues,
necessitating runtime checking. ZFS [Bonwick and Moore 2008] uses a checksum-
based runtime consistency checker for detecting and repairing file system corruption
caused by storage hardware (e.g., latent sector errors), but it may not detect corrup-
tion caused by software bugs. Based on several requests, a check for location and some
consistency invariants was added to Btrfs as a debugging tool [Behrens 2011]. These
checks catch common errors, but they are embedded within the file system code itself,
and so, for example, a file system bug could disable them. EnvyFS [Bairavasundaram
et al. 2009] uses N-version programming for detecting file system bugs at runtime. It
uses the common VF'S interface to pass each VFS-layer file system request to three
child file systems and uses voting when returning results. The runtime overheads of
this approach are high and subtle differences in file system semantics can make it hard
to compare results. HARDF'S [Do et al. 2013] detects software bugs in the Hadoop dis-
tributed file system (HDFS) at runtime by interposing on network messages and I/0,
and verifies that the HDF'S implementation behaves according to its operational speci-
fication. The verification state is compressed using bloom filters, significantly reducing
the memory overhead. HARDF'S can check certain end-to-end properties that a con-
sistency checker cannot, such as whether a request was performed, but HARDFS does
not attempt to catch all failures or guarantee that it will not raise false alarms.

Once a bug is detected at runtime, Membrane [Sundararaman et al. 2010] pro-
poses tolerating bugs by transparently restarting a failed file system. It assumes that
file system bugs will lead to detectable, fail-stop crash failures. However, inconsis-
tencies may have propagated to the on-disk metadata by the time the crash occurs.
Our approach is complementary to Membrane, rather than waiting for the file sys-
tem to crash, a restart could be initiated when a runtime checker detects an invariant
violation.

Recently, there has been significant interest in improving the performance and ro-
bustness of offline consistency checkers. The RExt3 file system [Ma et al. 2013] uses
backpointers and collocates its metadata blocks, allowing its ffsck checker to scan the
file system at rates close to the sequential bandwidth of the drive. Chunkfs [Henson
et al. 2006] reduces the time to check consistency by breaking the file system into
chunks that can be checked independent of each other. The SQCK offline consistency
checker [Gunawi et al. 2008] expresses file system consistency properties declaratively,
demonstrating that file system checks and repairs are more easily understood when
expressed as SQL queries. It improves upon the repairs made by e2fsck by correcting
the order in which certain repairs are performed and by using redundant information
already provided by the file system. The SWIFT tool [Carreira et al. 2012] tests the

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

Checking the Integrity of Transactional Mechanisms 17:21

correctness of offline file system checker recovery code by leveraging the file system
checker itself or by comparing the outputs of multiple checkers.

Our checker leverages ideas from semantically-smart disks [Sivathanu et al. 2003],
which use probing to gather detailed knowledge of file system behavior, allowing func-
tionality or performance to be enhanced transparently at the block layer. Sivathanu
et al. [2005] provide a logic of file systems that helps reason about the correctness of
smart disks. I/O shepherding [Gunawi et al. 2007] builds on smart disks, allowing a file
system developer to write reliability policies to detect and recover from a wide range of
storage system failures. Unlike smart disks, a type-safe disk extends the disk interface
by exposing primitives for block allocation [Sivathanu et al. 2006], which helps enforce
invariants such as preventing accesses to unallocated blocks.

8. CONCLUSION

We have presented the design of runtime file system checkers that can reliably detect
file system bugs before they cause file system inconsistency. We show that the runtime
checker needs to check location invariants on every write. These invariants enforce the
atomicity and durability properties of the file system, helping preserve the integrity
of committed transactions. Together with checking consistency properties on commit,
the checker can provide the strong guarantee that every block write will preserve file
system consistency.

We have implemented runtime checkers for the Ext3 journaling file system and the
Btrfs copy-on-write file system. Our experimental results show that while consistency
checking imposes some performance overhead, checking location invariants has almost
no additional overhead. The Ext3 file system checker has low overhead but the Btrfs
checker has higher overhead due to a higher metadata load. We are currently working
on improving the Btrfs checker performance with better caching policies. Btrfs keeps a
log to enable fast sync operations. We plan to implement our journaling invariants for
this log. We expect that the checker overhead will be higher on faster storage devices,
such as flash. We plan to evaluate this overhead in detail in the future.

We have shown that four file system features ease the design of runtime checkers,
and enable checking invariants efficiently: (1) consistency points at which the file sys-
tem is expected to be consistent on disk, (2) easily accessible allocation information at
the block level, (3) distinguishable data versus metadata blocks at the block layer, and
(4) backpointers for block typing and identification. We expect that these file system
features will benefit other file-system aware storage applications as well.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our FAST 2014 shepherd, Remzi Arpaci-Dusseau, for their detailed
comments on this work. We also thank Andrei Soltan for designing and implementing the metadata bitmap
for the Ext3 file system. We had many discussions and received feedback about this work from several
members of the Computer Systems and Networking group and the SSRG group at the University of Toronto.
Ali Hashemi provided invaluable system administration support.

REFERENCES

Bairavasundaram, L. N., Sundararaman, S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2009. Toler-
ating file-system mistakes with envyfs. In Proceedings of the USENIX Annual Technical Conference.

Behrens, S. 2011. BTRF's: Runtime integrity check tool. http:/lwn.net/Articles/466493.

Bonwick, J. and Moore, B. 2008. ZFS - The last word in file systems.
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf.

Carreira, J. A. C. M., Rodrigues, R., Candea, G., and Majumdar, R. 2012. Scalable testing of file system
checkers. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). ACM,
New York, NY, 239-252.

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf

17:22 D. Fryer et al.

Chidambaram, V., Sharma, T., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2012. Consistency without
ordering. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

Custer, H. 1994. Inside the Windows NT File System. Microsoft Press.

Do, T., Harter, T, Liu, Y., Gunawi, H. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2013. HARDFS:
Hardening HDF'S with selective and lightweight versioning. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST).

Filebench. 2011. Filebench version 1.4.9. http:/filebench.sourceforge.net.

Fryer, D., Sun, K., Mahmood, R., Cheng, T., Benjamin, S., Goel, A., and Brown, A. D. 2012. Recon: Verifying
file system consistency at runtime. ACM Trans. Storage 8, 4, 15:1-15:29.

Griffin, D. 2008. jbd: Correctly unescape journal data blocks.
http://kerneltrap.org/mailarchive/git-commits-head/2008/3/20/1206404/thread.

Gunawi, H. S., Prabhakaran, V., Krishnan, S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2007.
Improving file system reliability with I/O shepherding. In Proceedings of the Symposium on Operating
Systems Principles (SOSP). 293-306.

Gunawi, H. S., Rajimwale, A., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2008. SQCK: A declara-
tive file system checker. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Henson, V., van de Ven, A., Gud, A., and Brown, Z. 2006. Chunkfs: Using divide-and-conquer to improve file
system reliability and repair. In Proceedings of the Workshop on Hot Topics in System Dependability
(HotDep).

Hitz, D., Lau, J., and Malcolm, M. 1994. File system design for an NF'S file server appliance. In Proceedings
of the USENIX Annual Technical Conference.

Kara, J. 2010. ext4: Always journal quota file modifications.
http://www.kerneltrap.org/mailarchive/linux-ext4/2010/6/2/6884775.

Kara, J. 2012. jbd: Write journal superblock with WRITE_FUA after checkpointing.
https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/
?id=fd2cbd4dfa3db477dd6226d387d3f1911d36a6a9.

Lu, L., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Lu, S. 2013. A study of Linux file system evolution.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

Ma, A., Dragga, C., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2013. ffsck: The fast file system
checker. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

Macko, P., Seltzer, M., and Smith, K. A. 2010. Tracking back references in a write-anywhere file system.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

Mason, C. 2011. https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/
?1d=387125fc722a8ed432066b85a552917343bdafca.

Mesnier, M., Chen, F., Luo, T., and Akers, J. B. 2011. Differentiated storage services. In Proceedings of the
Symposium on Operating Systems Principles (SOSP). 57-70.

Meyer, D. T. and Bolosky, W. J. 2011. A study of practical deduplication. In Proceedings of the 9th USENIX
Conference on File and Storage Technologies (FAST). 1-13.

Miller, R. 2008. Joyent services back after 8 day outage.
http://www.datacenterknowledge.com/archives/2008/01/21/joyent-services-back-after-8-day-outage/.
Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi, H. S., Arpaci-Dusseau, A. C., and Arpaci-
Dusseau, R. H. 2005. IRON file systems. In Proceedings of the Symposium on Operating Systems

Principles (SOSP). 206—220.

Rodeh, O., Bacik, J., and Mason, C. 2013. BTRFS: The Linux B-tree filesystem. ACM Trans. Storage 9, 3,
9:1-9:32.

Sandeen, E. 2012. ext4: Fix unjournaled inode bitmap modification. https:/lwn.net/Articles/521819/.

Sivathanu, G., Sundararaman, S., and Zadok, E. 2006. Type-safe disks. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 15-28.

Sivathanu, M., Arpaci-Dusseau, A. C., Arpaci-Dusseau, R. H., and Jha, S. 2005. A logic of file systems.
In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).

Sivathanu, M., Prabhakaran, V., Popovici, F. 1., Denehy, T. E., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. 2003. Semantically-smart disk systems. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST). 73—88.

Sundararaman, S., Subramanian, S., Rajimwale, A., Arpaci-dusseau, A. C., Arpaci-dusseau, R. H., and Swift,
M. M. 2010. Membrane: Operating system support for restartable file systems. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST).

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/?id=fd2cbd4dfa3db477dd6226d387d3f1911d36a6a9
https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/?id=fd2cbd4dfa3db477dd6226d387d3f1911d36a6a9
https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/?id=387125fc722a8ed432066b85a552917343bdafca
https://git.kernel.org/cgit/linux/kernel/git/tytso/ext4.git/commit/?id=387125fc722a8ed432066b85a552917343bdafca

Checking the Integrity of Transactional Mechanisms 17:23

Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M., and Peck, G. 1996. Scalability in the XFS
file system. In Proceedings of the USENIX Annual Technical Conference. 1-14.

Ts’o, T. 2012. Re: Apparent serious progressive ext4 data corruption bug in 3.6.3.
https://lkml.org/lkml/2012/10/23/690.

Tweedie, S. C. 1998. Journalling the ext2fs filesystem. In Proceedings of the 4th Annual Linux Expo.

Yang, J., Twohey, P., Engler, D., and Musuvathi, M. 2006. Using model checking to find serious file system
errors. ACM Trans. Comput. Syst. 24, 4, 393—-423.

Zhang, Y., Rajimwale, A., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2010. End-to-end data integrity
for file systems: A ZF'S case study. In Proceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST).

Received September 2014; accepted September 2014

ACM Transactions on Storage, Vol. 10, No. 4, Article 17, Publication date: October 2014.

