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Abstract

Data corruption is the most common consequence of file-
system bugs, as shown by a recent study. When such cor-
ruption occurs, the file system’s offline check and recov-
ery tools need to be used, but they are error prone and
cause significant downtime. Previous work has shown
that a runtime checker for the Ext3 journaling file system
can verify that metadata updates within a transaction are
mutually consistent, helping detect corruption in meta-
data blocks at commit time. However, corruption can
still be caused when a bug in the file system’s transac-
tional mechanism loses, misdirects, or corrupts writes.
We show that a runtime checker needs to enforce the
atomicity and durability properties of the file system on
every write, in addition to checking transactions at com-
mit time, to provide the strong guarantee that every block
write will maintain file system consistency.

In this paper, we identify the invariants that need to be
enforced on journaling and shadow paging file systems
to preserve the integrity of committed transactions. We
also describe the key properties that make it feasible to
check these invariants for a file system. Based on this
characterization, we have implemented runtime check-
ers for a modified version of the Ext3 file system and
for the Btrfs file system. Our evaluation shows that both
checkers detect data corruption effectively, and they can
be used during normal operation with low overhead.

1 Introduction

File systems contain bugs that are hard to detect even un-
der heavy testing, as shown by researchers [25} [35] and
painful real-world experiences [24]. These bugs can re-
sult in data corruption, data loss, or persistent applica-
tion crashes. Today, most techniques that enhance the
reliability of storage systems focus on recovery from
crash failures, and a variety of storage hardware fail-
ures [12]]. However, none of these methods address cor-
ruption caused by file system or operating system bugs,
or random memory corruption [36]. For example, a mir-

ror RAID offers no protection against a buggy file sys-
tem write, which would be reliably replicated on multi-
ple disks.

A comprehensive study recently showed that 40% of
file system bugs have severe consequences, because they
lead to in-memory or on-disk data corruption [18]]. When
a file system bug corrupts file-system metadata, the dam-
age can propagate and thus the entire file system must be
checked for possible corruption. This consistency check
is typically performed offline, causing significant down-
time for large storage systems [[14]. Furthermore, repair
is an error-prone process [13, 2].

To avoid downtime and data loss, file system corrup-
tion must be detected before it propagates to disk. To
do so, the file system’s write operations must be checked
at runtime. Unlike a typical offline file system checker,
such as fsck, that checks the consistency of the metadata
already on disk, the Recon system [[10] checks that meta-
data updates preserve the consistency semantics of the
file system at runtime. These semantics are expressed
as a set of invariants that are derived from the proper-
ties checked by the offline checker. When kernel bugs or
memory corruption lead to metadata updates that violate
these consistency invariants, a corruption is detected and
the updates are prevented from reaching the disk.

Recon takes advantage of transactional methods, such
as journaling [34} (7, 132] and shadow paging [15| 5 26],
used by modern file systems for providing crash con-
sistency. In particular, it checks that metadata updates
within a transaction are mutually consistent at transac-
tion commit time. This approach is still vulnerable to
file system corruption when the transactional mechanism
is used incorrectly or has bugs. For example, the Recon
checker for the Ext3 journaling file system verifies writes
to the journal blocks, but it assumes that 1) all metadata
writes first go to the journal, and 2) these writes are then
checkpointed correctly. Any bugs that violate these as-
sumptions, e.g., a lost or failed checkpointing write, will
cause undetected corruption. In Section [2.2] we show
that these bugs manifest in many different ways, such
as lost, misdirected, out-of-order and corrupting writes,



making it difficult to detect them. Unfortunately, these
types of bugs occur regularly [10], are hard to diag-
nose [L1,127], and can have serious impact [33].

In this paper, we describe the design and implemen-
tation of a runtime checking system that enforces cor-
rect usage and implementation of the crash consistency
method used by the file system. Our system enforces the
atomicity and durability properties of the file system at
each block write, in addition to checking consistency at
commit time, providing the strong guarantee that every
block write will maintain file system consistency.

We express the atomicity and durability properties as
invariants, called location invariants because they govern
which blocks are written to given locations. We describe
the location invariants that need to be enforced to pre-
serve the integrity of committed transactions for journal-
ing and shadow paging file systems, and the file system
properties that make it feasible to check these invariants
efficiently at the block layer.

We have implemented runtime checkers for the Btrfs
file system and a slightly modified version of the Linux
Ext3 file system by augmenting the Recon system. Our
evaluation shows that the runtime checkers for both the
file systems detect file-system corruption effectively, pre-
venting any file system metadata inconsistency. We show
that the Ext3 checker has low performance overhead,
while the Btrfs checker overhead is higher due to in-
creased metadata load. Checking location invariants in
both checkers has negligible overheads.

2 Motivation

Our aim is to design a runtime checking system that
can reliably detect file system and other operating sys-
tem software bugs, and memory corruption errors, be-
fore they cause on-disk data corruption. Unlike an offline
file system checker, a runtime checker does not detect
file system corruption caused by I/O hardware failures,
such as device controller failures or latent sector errors
on disks. Instead, the runtime checker depends on hard-
ware redundancy mechanisms, such as checksums and
replication [25], implemented either in the storage sys-
tem or in the file system [3, 9], to detect and recover from
such failures when data is read from disk.

A runtime checking system can be deployed in either
a development or a production setting. During develop-
ment, a runtime checker can serve as a testing tool, catch-
ing subtle errors before the file system image becomes
inconsistent, making it easier to determine the root cause
of a bug. In production, the checker could trigger mea-
sures to preserve existing data, recover from the fail-
ure [31], or alert administrators to the problem. Our run-
time checking system builds on the Recon system [10]],
and so this section starts by providing an overview of Re-

con. Then we motivate this work by discussing the types
of bugs that Recon will fail to detect, leading to unde-
tected data corruption.

2.1 The Recon System

The Recon system takes advantage of transactional meth-
ods, such as journaling and shadow paging, used by mod-
ern file systems for providing crash consistency. These
transactional methods group writes to disk blocks from
one or more operations (such as the creation of a direc-
tory and a file write) into transactions. When transactions
are committed, the file system believes itself to be consis-
tent. At this point, Recon checks that the contents of the
blocks involved in the transaction are mutually consis-
tent, thus detecting the effects of software bugs (or mem-
ory errors) that corrupt blocks within the transaction.

The consistency checks in Recon are derived from the
consistency properties of the file system. These proper-
ties constrain the set of valid file system states that can
be generated by an arbitrary sequence of file system op-
erations. Typically, these properties are checked by the
offline file system checker. For example, a consistency
property in the Btrfs file system is that extents must not
overlap. Checking this property requires a full scan of
the extent tree, making it infeasible to perform at run-
time. Instead, each consistency property is transformed
into a local consistency invariant, which is an assertion
that must hold for the transaction blocks to preserve con-
sistency. In the Btrfs example, the consistency invariant
is that when a new extent item is added to a tree, then the
extent must not overlap with the previous or next extents
in the extent tree. A runtime checker can enforce this
consistency invariant by examining all updated extents
and their adjacent extents.

The Recon system interposes at the block layer, and
can be implemented in the host operating system, a hy-
pervisor or a storage controller. The benefit of this ap-
proach is that the checker only depends on the the format
and the consistency properties of the file system, rather
than depending on the implementation of the file system,
which may be buggy and cannot be trusted. File sys-
tem formats and their consistency properties tend to be
stable over time, even when the implementation changes
significantly over time, or there are multiple different im-
plementations of a particular file system.

The consistency invariants are expressed in terms of
logical file-system data structures, such as the extent in-
formation in the Btrfs example. Since Recon interposes
at the block layer, it uses an introspection approach, sim-
ilar to semantically smart disks [30], to infer the types of
blocks as they are accessed, and then interprets the block
contents to derive the logical file-system data structures.



2.2 Problematic Bugs

Recon ensures that the blocks in a transaction are con-
sistent, but it depends on the transaction mechanism be-
ing both implemented and used correctly. Below, we de-
scribe four classes of bugs that break these assumptions,
and provide some examples of recent bugs in the Ext3,
Ext4 and the Btrfs file system code deployed in “stable”
Linux kernel releases.

Overwrite bugs: A write occurs to a location when it
shouldn’t have happened at all, either due to improper
writing or flushing of buffers, or some other failure that
causes a misdirected write. For example, Ext4 stores
file system quota information as data in special quota
files. The contents of these files are metadata, similar
to directories, but they were overwritten in place with-
out first writing to the journal, when the file system was
used with certain mount options [16]. Recon’s consis-
tency invariants would not detect this problem because
the journal would appear to be consistent. Similarly, a
high profile bug was recently introduced in the Ext4 file
system, in which the inode bitmap was modified with-
out updating the journal, which could lead to occasional
corruption [27]]. Interestingly, after the corruption issue
was reported, the developers at first mistakenly thought
that the root cause was an incorrect update to the jour-
nal superblock [33]]. This suggests that understanding,
using and implementing the transactional mechanism is
challenging and bug prone. In this case, if the file sys-
tem is allowed to continue running, the transaction that
was missing the inode bitmap update in the journal would
commit, and the checkpoint of that transaction would
bring everything back to a consistent state, with no one
the wiser. Consistency problems only occur when an ill-
timed crash forces recovery from the incomplete journal
entries. When Recon is used in production, things ac-
tually become worse. Recon would detect that the jour-
nal contents are inconsistent, because the inode bitmap
updates are missing (e.g., unallocated inodes would ap-
pear to change), and then discard the transaction and stop
the file system. The inode bitmap, overwritten in place,
would cause the file system to become inconsistent.

Lost write bugs: A write that should happen doesn’t
occur. For example, in a journaling file system, a lost
checkpointing or recovery write will cause file system
inconsistency even though the journal is consistent [12].

Werite ordering bugs: The file system needs to enforce
ordering of writes to disk at certain times. While the
block layer may observe writes in the correct order, un-
less the correct disk barrier commands are sent, the disk
or its controller may reorder writes, causing inconsis-
tency of the on-disk state on a power loss. For example,
Linux JBD2 journaling code maintains a pointer to the
journal tail in a journal superblock. When the tail was

updated, the journal superblock was not being flushed
to disk before new transactions could reuse the newly
freed journal space. On a power loss, the recovery code
could replay old transactions containing blocks poten-
tially overwritten in the journal by new transactions [17]],
including blocks from uncommitted transactions. Sim-
ilarly, the Btrfs file system in multi-device setups (e.g.,
mirroring) would send barriers in the wrong order and
not wait for all the barriers before writing the commit
block [21]. These write ordering bugs would not be de-
tected by Recon but they can cause serious file system
inconsistencies.

Corrupting Write bugs: A write occurs to the correct
location but its contents are corrupt. For example, the
Ext3 journaling code modifies (escapes) its data blocks
when they start with a magic code that identifies journal
metadata blocks, to distinguish between the two types
of blocks, similar to bit stuffing [[1]. When Ext3 was
used in data journaling mode, the recovery code had a
bug that would unescape the wrong buffers, causing cor-
ruption of both the block that remains escaped, and the
block that is wrongly unescaped [11]. This bug would
not be caught by Recon’s consistency invariants because
the journal itself is not corrupt. However, blocks from
committed transactions would be corrupt on disk follow-
ing recovery.

3 Location Invariants

File systems that use transactional mechanisms for crash
consistency provide atomicity and durability properties.
Atomicity properties ensure that the file system will be
able to roll back to a consistent state on a crash. Dura-
bility properties ensure that if a new version of a block
is committed, it does not get rolled back or overwritten,
except atomically as part of a subsequent transaction.

The problematic bugs described in Section [2.2] can
cause corruption because they lead to violations of these
properties. For example, a metadata overwrite that is not
first committed to the journal violates atomicity, since
we cannot roll back to the previous correct version of the
block. Durability can be violated by either an omitted
checkpoint write, or a write that corrupts a committed
transaction in the journal, since updates that were suc-
cessfully committed to the journal never reach the file
system. Finally, in both journaling or shadow paging
systems, a misdirected write that overwrites an allocated
metadata block (e.g., a data block write that overwrites a
metadata block) violates both atomicity and durability.

In this section, we first describe what is needed to
detect violations of these properties, and then present
the location invariants for journaling and shadow paging
transactional mechanisms.



3.1 Enforcing Atomicity and Durability

The Recon runtime checker depends on the correctness
of the file system’s transactional mechanism to properly
enforce the atomicity and durability of the metadata up-
dates that it is checking. Unfortunately, in spite of Re-
con’s distrust of buggy file systems, it assumes that the
transactions themselves are implemented and used cor-
rectly. This assumption can be violated by several classes
of bugs, as shown in Section @} To detect these bugs,
a runtime checker needs to enforce atomicity and dura-
bility invariants, in addition to consistency invariants.
Consistency invariants apply to the contents of updated
blocks; they need to be checked at transaction commit
points because the file system does not guarantee that the
updates are consistent until the commit. In contrast, the
atomicity and durability invariants need to be checked on
each block write, because they govern whether the write
is permitted to the given location. Hence, we call them
location invariants collectively. Rather than being de-
rived from the offline checking tool, the location invari-
ants are derived from the semantics of the transactional
mechanism itself. In particular, they concern overwrites
to the blocks, and the ordering of block write operations.

It is possible to enforce both atomicity and durability
invariants on each write because they only depend on the
correctness of committed metadata, which has already
been checked using consistency invariants. Transactional
techniques like journaling or shadow paging must first
write metadata to unallocated blocks — for journaling,
these are free blocks in the journal area, which must
later be checkpointed back to the file system, while for
shadow paging these may be any free blocks, which be-
come part of the file system atomically at the commit
point. To check that these properties are maintained, lo-
cation invariants depend on information about block allo-
cation and block type (data vs. metadata). The block al-
location information must be based on committed meta-
data, since uncommitted changes to the allocation state
may be rolled back following a crash. In particular, we
must not permit a write to a block that has been freed in
an uncommitted transaction, since we would not be able
to recover the previous version of the block if the deallo-
cation operation were rolled back.

As can be seen, correct checking of consistency and
location invariants is interdependent. We begin from the
assumption that the file system state on disk is consistent.
Initially, this is the result of correct file system initializa-
tion, as is done by mkfs. Thereafter, each block write
prior to a transaction commit is checked by the location
invariants using the old, consistent, committed allocation
and block type information. These checks ensure that the
committed state is not corrupted. At the transaction com-
mit point, the contents of the transaction are checked by

the consistency invariants to ensure that the new file sys-
tem state will be consistent. The location invariants then
govern the write of the commit block itself, and the sub-
sequent checkpoint writes to the file system, as well as
the writes of blocks in the next transaction. By enforc-
ing both consistency and location invariants, the runtime
checker can provide the strong guarantee that the file sys-
tem meets its consistency specification on every block
write[l]

As we will see in the next subsection, there are signif-
icant differences between the specific location invariants
that apply to journaling and shadow paging mechanisms.
However, both require the ability to infer block alloca-
tion information and the ability to distinguish between
metadata and data blocks at the block layer.

3.2 Journaling Invariants

Journaling file systems use write-ahead logging to sup-
port failure atomicity. First, they write a consistent set
of blocks and their final location information to a des-
ignated journal area. When all these blocks are durable
in the journal, an atomic journal write signals a commit.
After commit, the contents of the journal are flushed to
their final locations. This flush to the final file system
locations is called checkpointing in the Linux ext3/jbd
terminology.

The journal area must be known to the runtime checker
so that, on each write, it can distinguish between jour-
nal and non-journal writes. This distinction is neces-
sary so that the correctness of both the journal writes and
the checkpointing writes can be verified. Checkpointing
of committed transactions occurs concurrently with new
journal writes, but checkpointing writes must be directed
to the non-journal area. Note that although we expect the
journal to be a circular buffer, with writes occurring se-
quentially, at the block layer there is no guarantee of any
particular ordering within a transaction.

The following four location invariants ensure that the
journaling and checkpointing operations of the file sys-
tem are correct:

1. Log invariant: A write to the journal area must be
to a free block in the journal. A free journal block
becomes allocated when it is written and free again
when it has been checkpointed (see Checkpoint in-
variant below). This invariant checks that the allo-
cated journal blocks are not overwritten.

2. Commit invariant: A write of a commit block,
which marks a transaction as committed, is allowed
to the journal area only after (1) all the blocks in

'While the checker implementation may have bugs that generate
false alarms, it is unlikely that the checker will fail to detect file system
corruption, unless its bugs are correlated with file system bugs [10].



the transaction are allocated in the journal, and (2) a
barrier is issued to flush these transaction blocks to
the disk. The transaction is considered to be com-
mitted (and hence, to be durable) only after the com-
mit block is flushed to disk. When journal check-
sums are included in the commit block, as in IRON
file systems [25], the write of the commit block
can be concurrent with the writes of the transaction
blocks, but a barrier is still needed to ensure that
all these blocks are on disk before the transaction is
deemed to be committed.

3. Flush invariant: A write to an allocated, non-journal
location is permitted only when (1) the committed
part of the journal contains a block that is destined
for the same final location, and (2) the contents of
this block in the journal matches the contents of the
block being written. In other words, overwrites of
allocated non-journal blocks are disallowed if the
new content was not first committed to the journal.
If the block exists only in the uncommitted portion
of the journal, or the block does not appear in the
journal at all, both atomicity and durability viola-
tions can occur. Atomicity is violated by writing
new content into the file system ahead of the commit
of the transaction that should contain it. Durability
is violated by the loss of previously committed con-
tent that has been overwritten.

4. Checkpoint invariant: A write of a checkpoint
record (e.g., in the journal superblock), which indi-
cates that a set of blocks in the journal area are now
free, is permitted only after all the journal blocks
for the associated transaction have been either (1)
flushed (see Flush invariant), or (2) superseded by a
newer version of the corresponding block in a later
committed transaction. If a newer version of a block
exists in a later committed transaction in the journal,
then this version does not need to be flushed before
being freed. The affected journal blocks can only
be considered free after the checkpoint record has
been flushed to disk.

Metadata-only Journaling Since writing to the jour-
nal potentially doubles the total write traffic to disk,
many file systems allow journaling only metadata blocks
to reduce write traffic. The main complication with
metadata-only journaling is that data writes are non-
atomic, and while these writes must be allowed at any
time, they must not overwrite metadata blocks. To ac-
commodate non-journaled data writes, we refine the jour-
naling flush invariant with an exception:

1. Data-flush exception: Any non-journal write that
violates the flush invariant must be to a non-

metadata (data or free) block location. The type
of a block (metadata or not) is determined by the
committed file-system state. The consequence of
this exception is that data writes can overwrite data
blocks unimpeded. Unfortunately, there is no way
to tell if data writes are misdirected among each
other.

The challenge with allowing this exception is that it must
be possible to distinguish metadata blocks from non-
metadata blocks on each write, but a file system may
not provide this information easily. For example, the
Ext3 file system uses allocation bitmaps that allow distin-
guishing between allocated blocks (which may be data or
metadata) and free blocks. However, the file system does
not provide an easy way to distinguish between dynam-
ically allocated metadata (e.g., for directories and indi-
rect blocks) and data blocks, other than by traversing the
entire file system. We discuss this issue further in Sec-

tion4.3]

3.3 Shadow Paging Invariants

Compared to journaling, it is simpler to enforce location
invariants for shadow paging systems because blocks are
updated once per transaction and all these updates occur
before commit. In a file system that uses shadow paging
for all blocks, there are two atomicity invariants:

1. Flush invariant: All writes, other than to special
non-shadow paged blocks, such as the super block,
must be to unallocated blocks. This invariant fol-
lows from the basic copy-on-write properties of
shadow paging systems. To enforce this invariant,
the file system must provide an efficient method for
determining the allocation status of a block. For ex-
ample, the Btrfs file system maintains an extent al-
location tree.

2. Commit invariant: The write of the commit block
(usually a tree root) is flushed to disk only after both
(1) all blocks referenced by the new tree have been
updated, and (2) a barrier is issued to flush these
blocks to disk. That is, there must be no dangling
pointers to potentially uninitialized blocks, before
the commit block is flushed.

Durability (e.g., a lost or corrupting update) is checked in
modern shadow paging file systems using methods such
as block checksums (ZFS) or generation numbers (Btrfs).
This information is embedded in metadata blocks, and
hence our Btrfs runtime checker uses consistency invari-
ants to check the consistency of block headers and gen-
eration numbers for ensuring durability.



Metadata-only Shadow Paging Shadow paging can
lead to fragmentation because the updated blocks are
placed in new, possibly distant, physical locations. Frag-
mentation can be reduced with metadata-only shadow
paging, with data writes being performed in place. To
accommodate non-atomic data writes, we refine the flush
invariant with an exception:

1. Data-flush exception: Any write that violates the
flush invariant must be to a non-metadata (data or
free) block location.

This exception requires being able to distinguish meta-
data and non-metadata blocks. Btrfs tracks whether an
extent has metadata or data in its allocation tree, making
it easy to enforce this invariant. Also, the default be-
havior of Btrfs is to separate metadata and data regions,
making this identification even easier and more efficient.

4 Implementation

As explained in Section [3.1] location and consistency in-
variants are interdependent, and they need to be checked
together. Hence, we have implemented location invari-
ant checking for the Linux Ext3 (journal invariants) and
Btrfs (shadow paging invariants) file systems by aug-
menting the Recon consistency checking system. Recon
uses the block-layer Linux device mapper framework to
interpose on block I/0O, allowing location invariants to be
checked on all writes. The block-layer approach ensures
the independence of the checker and the file-system im-
plementations. Next, we describe the requirements for
implementing a runtime checker, and then discuss how
these requirements are met in our implementation.

4.1 Runtime Checker Requirements

File system design impacts the capabilities and perfor-
mance of a runtime checking system. In this section,
we present the four types of information needed by a
checker. The challenge is to obtain this information cor-
rectly and efficiently at the block layer. The more file
system state that must be examined to do so, the higher
the overhead of the checker.

Consistency Points: Runtime checking at the block
layer requires being able to get a consistent picture of
the file system state from outside the file system. Consis-
tency points provide both a point in time to check consis-
tency invariants and a consistent view of the file system
when checking location invariants on each write.

Allocation Information: A checker needs to distinguish
between allocated and unallocated blocks, particularly
on the write path, to protect against accidental over-
writes. Overwriting an unallocated block is harmless,

but location invariants constrain when allocated metadata
blocks can be overwritten.

Separate Metadata: The checker also needs to distin-
guish between metadata and data blocks on both the
read and the write paths. Metadata blocks are cached
to improve checker performance, since recently accessed
metadata is likely to be relevant to invariant checking,
while data blocks are ignored because they are not inter-
preted. Additionally, the location invariants may permit
or forbid a write depending on whether the destination is
a data or metadata block.

Block Identity: Finally, interpreting a metadata block
requires knowing the identity of the block. The block
identity determines the logical contents of the block in
the file system. For example, suppose that the checker
knows that some block is an inode block, and it identi-
fies the block as the fourth inode block in the file system.
If it knows that inode blocks contain 32 inodes, then it
can determine that this block contains inodes with num-
bers 97-128. A runtime checker can then correlate these
inodes with directory entries that reference them, with
inode bitmaps that allocate them, and with the indirect
blocks to which they point. Without knowing their spe-
cific identities, it would not be possible to make the as-
sociations between the data structures that are needed for
enforcement of invariants.

4.2 Block-Layer Metadata Interpretation

In this section, we discuss two complementary ap-
proaches for determining block identity. The following
sections describe how we apply them to interpret meta-
data in the Ext3 and Btrfs checkers.

Forward Pointers: File systems are tree structures or di-
rected acyclic graph structures, with parent blocks con-
taining some form of a pointer to child blocks. Thus,
the easiest way to identify a block is if we are already
traversing the parent block. For example, if the checker
(or the file system) is looking up some specific metadata,
starting from the root of the tree, it can traverse interme-
diate blocks to locate the desired block.

Back References: A back reference for a block is meta-
data that maps the block’s physical location to blocks that
reference the block [20], providing an efficient method
for locating parent blocks. Back references are used for
various tasks such as defragmentation and bad block re-
placement, in which the parent block containing the ref-
erence must be efficiently located and updated. The par-
ent block has information to help type and identify the
child block, and hence back references greatly simplify
metadata interpretation. However, looking up a back ref-
erence may incur additional I/O operations.



4.3 Ext3 Implementation

Ext3 uses static block allocation bitmaps, making it easy
for the checker to determine the allocation status of
blocks. However, Ext3 does not provide any efficient
method for distinguishing metadata blocks from other
blocks, either on block writes or on block reads that vi-
olate pointer-before-block traversal. One option is for
the checker to also create in-memory back references for
all data blocks when the parent metadata blocks are tra-
versed. This approach would greatly inflate the mem-
ory overhead of the checker. Instead, we have retrofitted
the Ext3 file system with a metadata allocation bitmap
which records whether a given block is metadata. The
new metadata bitmap is stored alongside the block allo-
cation bitmap. Using the metadata bitmap the checker
can ensure that data blocks are never cached on either a
read or a write, and the data flush exception, described in
Section[3.2] can be implemented easily.

4.3.1 Interpreting Metadata

The Ext3 file system does not provide back references.
Instead, we use the file system’s forward pointer traversal
to create in-memory back references dynamically. The
file system needs to read the parent of a block at least
once before it accesses the child block, which we call
pointer-before-block traversal. When the parent block is
read the first time, we create a back reference for each of
the child blocks to which it points. For example, when
an inode block is read by Ext3, we copy the block into
the read cache, parse the inodes in the block, and then
create back references for all child metadata blocks (e.g.,
indirect blocks) directly pointed to by the inodes. The
back reference contains the block type, and for an in-
direct block, it contains the inode number and an off-
set that locates the indirect block. When the indirect
block is read, its back reference will exist, and hence the
block can be typed and identified. These back references
are bootstrapped using the superblock, which exists at a
known location.

The main drawback of in-memory back references is
that they cannot be evicted because the file system may
cache information from the parent block indefinitely, al-
lowing it to access the child block directly at any time
in the future. However, the in-memory references could
be persisted by leveraging the backpointer-based consis-
tency techniques developed in NoFS [6] and ffsck [19]].

4.3.2 Location Invariants

The Ext3 location invariants require tracking the state
of the journal. The checker maintains three data struc-

2Note that the consistency checker implements additional invariants
for checking metadata bitmap consistency.

tures: a list of transactions currently present in the jour-
nal, an array containing information about the status of
each block in the journal, including block checksums,
and a hash table mapping from physical block numbers
to versions of that block in the journal. A block in the
journal can be in one of four states: logged, committed,
flushed, and free. These four states correspond to the
four journaling invariants described in Section[3.2} Note
that a block stays allocated (as explained in the Log in-
variant) during the logged, committed, and flushed states.

Based on writes to different types of journal blocks
(i.e., the descriptor blocks, metadata blocks, commit
blocks, and the journal superblock) and non-journal
blocks, the checker updates its data structures and the
block states, and enforces the journaling invariants de-
scribed in Section

During a commit, if a new metadata pointer is found
without a corresponding new metadata block in the jour-
nal, we detect a violation of the commit invariant (that
all blocks should have been written before commit).

One complication with metadata-only journaling is
that Ext3 uses revoke records to indicate that a metadata
block has been freed, and could be reused as a data block
that is updated non-atomically. As a result, any versions
of this block in previous transactions should no longer be
checkpointed or else the data block could be overwritten.
The checker handles such revoked blocks by marking
their status as checkpointed, so that the Checkpoint In-
variant does not fail if the containing transaction is freed
without seeing a write to that block.

4.4 Btrfs Implementation

Btrfs provides various features such as extent-based allo-
cation (which allows a single allocation record to cover
multiple blocks), back references (which help tasks like
online defragmentation) and writable snapshots (which
are isolated from the original version using copy-on-
write semantics). Btrfs uses shadow paging for ensuring
crash consistency, similar to the WAFL file system [15]].

Btrfs uses multiple B-trees to store its metadata. A
root B-tree contains pointers to the roots of other B-
trees, including the main file system tree, snapshot trees,
and an extent tree that records allocation information.
Each B-tree consists of internal nodes and leaves. In-
ternal nodes contain an array of key/block-pointer pairs,
with the key representing the smallest key stored in the
pointed-to node or leaf, and the block pointer helping lo-
cate the child node or leaf on disk. All Btrfs metadata
blocks begin with a header that has a block checksum, a
generation number, and the id of the tree containing the
block.

We found that Btrfs can issue writes from concurrent
transactions. For example, blocks from the next transac-



tion can be written to disk before the current transaction
commit, but as expected, the next transaction blocks are
unreachable from the current transaction. As a result, the
Btrfs checker assumes that unreachable blocks belong to
a future transaction and delays processing them.

4.4.1 Interpreting Metadata

Btrfs uses shadow paging, so that when a leaf node is up-
dated, all its ancestor nodes are also updated. Because of
this property, the checker can use forward pointer traver-
sal on commit, starting from the superblock.

Btrfs uses an extent B-tree to store allocation infor-
mation, which the checker also uses to determine the al-
location status of blocks. Similarly, separating data and
metadata blocks on both the read and write paths is rel-
atively easy because Btrfs allocates separate large con-
tiguous regions for data and metadata. However, if Btrfs
is operating in a “mixed” region mode (not a common
configuration), data extents can be distinguished from
metadata extents by traversing the extent allocation tree
and examining the per-extent flags.

Btrfs uses typed and self-identifying metadata blocks.
Each metadata block has a header that stores the type
(node or leaf) and level of the block in the tree, and the
first key in the block is its identity, helping locate the
block in the tree. Btrfs also supports back references to
multiple snapshots, storing them with the allocation in-
formation in the extent tree.

Both back references and self-identifying metadata
blocks can be used independently to type and identify
blocks. We initially decided to implement a Btrfs run-
time checker because we thought that both of these prop-
erties would be useful for the runtime checker. However,
neither are necessary due to the forward pointer traversal
enabled by shadow paging.

4.4.2 Location Invariants

The checker ensures atomicity and durability by check-
ing that allocated blocks are never overwritten, which re-
quires looking up the extent allocation tree on each write.
For metadata-only shadow paging, a metadata flag in the
extent record is checked to implement the data-flush ex-
ception. While checking a transaction for consistency,
an invariant is tripped if a pointer to an unwritten block
is encountered within the updated tree.

5 Evaluation

We evaluate our runtime checker in terms of its ability to
detect violations of the location invariants, listed in Sec-
tion 3] and the performance impact of checking location
invariants in addition to consistency invariants for the

Ext3 and Btrfs file systems. We have implemented the
runtime checkers within the Linux kernel using the Re-
con framework, based on the approach described in the
previous sections. Our Btrfs implementation is based on
the Linux 2.6.35 kernel, which does not support passing
disk barrier and flush requests through the device map-
per, and so we cannot check for them. Recon for Ext3 is
implemented and tested on Linux 3.8.11.

5.1 Correctness

We evaluate the ability of our runtime checker to detect
the types of bugs described in Section[2.2] Specifically,
we inject errors into write operations issued to the block
layer that result in lost, misdirected, or corrupted writes.
We refer to these injected errors as corruptions. If writes
are correctly ordered, and no writes are lost, misdirected,
or corrupt, then the transaction mechanism is working
correctly. By deliberately altering writes to violate these
properties, we can evaluate whether the location invari-
ants can successfully protect the file system.

Our corruptor sits between the file system and the
checking system, and has the opportunity to act before
each write is visible to the checker. The actions the cor-
ruptor can take are: 1) discard a write (lost), 2) alter the
destination of the write (misdirect), or 3) alter a range of
bytes within the block being written (content). Because
the location invariants distinguish between several dif-
ferent types of blocks, we perform corruption in a type-
specific manner to increase our coverage of possible sce-
narios and to help explain any uncaught corruption. The
type of a block is determined by its destination, and in
the case of certain journal blocks, by the journal header
stored at the beginning of the block.

5.1.1 Corrupting Ext3

The corruptor can target one of four types of journal
blocks (journal metadata such as a descriptor block,
revoke, and commit blocks, and journaled file system
metadata block), or the two types of non-journal blocks
(file system metadata and data). To misdirect writes,
it must distinguish between free and allocated journal
space, and data and metadata locations outside the jour-
nal. When the corruptor targets a non-journal metadata
block write, it is emulating a bug that corrupts the check-
point write of that metadata block. When the corruptor
targets a data block write, it always misdirects the write
to a non-journal metadata block. Lost write and content
corruption types are not applied to data block writes.
Some corruptions may not violate location invariants
immediately. Instead, they may lead to a future operation
causing metadata corruption. For example, a lost write
to the journal cannot be detected when it is dropped, and



Target Block Type Corruption Type

Journal Blocks Lost | Misdirect | Content
Descriptor 10 10 8
Commit 10 10 4
Revoke 10 10 4
Metadata 10 10 2

Non-Journal Blocks
Metadata 3 10 10
Data N/A 10 N/A

Table 1: Corruptions detected by location invariants.

the resulting transaction may still be consistent, but the
problem should be detected when the checkpoint write
targets a metadata location that has not been committed
to the journal. There are four distinct points in time when
a corruption may be detected: during the corrupted write,
at the next commit point, during the checkpoint of a cor-
rupted transaction, and during transaction free. Any cor-
ruption that occurred in the past must be caught before
a write harms the atomicity, durability, or consistency of
metadata on disk.

There are a total of 16 combinations of target block
types and corruption types, as shown in Table [l We
perform 10 corruptions per combination. Out of 160
corruptions, 131 were detected by the location invari-
ants and 7 were detected by the consistency invariants
(all were content corruptions of metadata blocks in the
journal). We analyzed the remaining 22 corruptions that
did not trigger any invariant violations. There are two
situations in which we miss corruption events, but the
“corruptions” do not affect file system integrity. In the
case of random content corruptions to journal metadata,
much of the space in the block is unused and corruptions
to the unused area have no effect on the block seman-
tics. Together, these cases account for 14 of the missed
corruptions. Similarly, when unused space in a journaled
metadata block is corrupted, which occurred in one case,
no invariants are violated. We verified that the corrupted
space was unused by logging the range of bytes corrupted
and examining the target blocks. The final 7 missed cor-
ruptions were all lost checkpoint writes. In each case, we
verified that these writes were safe to omit because there
was already a newer version of the block committed to
the journal. In all the 22 cases where we didn’t catch the
corruption, the e2fsck offline checker also reported that
the file system was consistent.

5.1.2 Corrupting Btrfs

Testing the Btrfs location invariants is less involved,
since the invariants are simpler, as described in Sec-
tion A buggy write in Btrfs can be redirected to
overwrite an existing data or metadata block, lost, or

redirected to the wrong free block. We simulated a meta-
data block being misdirected by the file system by chang-
ing the block’s header to match the new, incorrect loca-
tion, and updating the block checksum accordingly. Our
checker always detected misdirections that cause over-
writes of allocated data or metadata. Lost writes or writes
that are misdirected to an incorrect free block are always
detected by Recon during transaction processing, when a
new pointer is found to a block that is missing from its
write cache [10].

5.2 Performance

For benchmarking, we select three workload profiles
with different behaviors from the Filebench workload
generator. The varmail profile performs many small, syn-
chronous writes. The webserver profile reads many small
files concurrently (100 threads) in a large directory hi-
erarchy (250,000 files), while appending to a log. The
ms_nfs profile simulates a network file server, operating
on a file system with a file size distribution from a study
of Windows desktops [23].

All benchmarks were run on a dual-core 3.0 Ghz Xeon
server with 4GB of RAM. The target disk for the bench-
marks was a 250GB 7200rpm SATA drive. We allocated
256 MB of memory to the Recon caches [10]. The per-
formance results account for Recon’s memory usage be-
cause Linux implements a shared page cache, and so with
Recon, this memory is not available to the file system
cache.

Figures [T and [2] show the benchmark throughput, and
the time to initialize the benchmark’s file system tree
(setup time), averaged over 5 runs, for the Ext3 and the
Btrfs file systems. Each graph shows the performance of
the native file system, the file system with consistency
checking enabled, and the file system with consistency
and location checking enabled. These figures show that
the overhead of checking location invariants is minimal
compared to the existing overhead of checking consis-
tency invariants in Recon. Even though the location in-
variants require a check on every write, this check is usu-
ally quick and takes advantage of the cached metadata.

Figure [T shows that runtime consistency checking has
relatively low overhead for the Ext3 file system. Fig-
ure 2 shows that the checking overhead is slightly higher
for the Btrfs file system. The total amount of metadata
is higher in Btrfs, due to its increased internal redun-
dancy and larger data structures, putting more pressure
on the Recon caches. The rapid reallocation of metadata
blocks in a copy-on-write system makes it important to
promptly evict blocks in the Recon caches that are no
longer referenced.

The varmail and ms_nfs profiles show minimal over-
heads. Surprisingly, the most significant impact on per-
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Figure 1: Performance on FileBench workloads for Ext3

formance occurs for the webserver profile, which is a
read-heavy benchmark. On closer analysis, we found
that it generates significant metadata write traffic due
to timestamp updates, which affects read performance.
With the noatime mount option enabled, performance
reaches roughly 90% of native performance.

6 Designing Checkable File Systems

Section [4-T] describes the four requirements of a runtime
checker that make it feasible to check invariants effi-
ciently at the block layer: 1) well-defined consistency
points, 2) easily accessible allocation information, 3)
easily distinguishable data versus metadata blocks, and
4) easily available block identity information. In this
section, we describe how well various file systems meet
these requirements. Table [2] provides a summary of our
analysis. Then we recommend features that make file
systems easily checkable at runtime.

6.1 Analysis of File System Design

No-Ordering FS: NoFS [6] aims to provide file system
consistency in the face of poorly-behaved hardware that
ignores ordering constraints and flush commands. They
propose a novel commit-less approach to providing crash
consistency by adding a backpointer to every block by
using the out-of-band bytes provided by some devices,
enabling atomic write of the block and its backpointer
together. The backpointer makes it possible to identify
the contents of blocks. NoFS performs block allocation
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Figure 2: Performance on FileBench workloads for Btrfs

based on an in-memory bitmap, thus avoiding any con-
sistency issues between pointers and a persistent bitmap.
Determining the allocation status at the block layer is
expensive because it requires reading the block and its
parent block to determine if a bidirectional pointer rela-
tionship exists between them. Unfortunately, NoFS does
not provide any ordering guarantees by design, and thus
lacks consistency points, and any consistency or location
invariants. As a result, it is not possible to check any in-
variants in NoFS. Bugs in NoFS that cause data corrup-
tion would not be easily detectable by an offline checker
as well.

FFS with Soft Updates: The soft updates mechanism
provides crash consistency in an update-in-place file sys-
tem without requiring journaling. Soft updates impose a
partial order on writes and prevent cyclic dependencies
between blocks by using a temporary in-memory roll-
back mechanism. Blocks and inodes can “leak” after a
crash, but this problem is much less severe than blocks or
inodes being overwritten while still in use. The ordering
of writes allows some invariants to be checked (for exam-
ple, you can’t write a pointer to a newly-allocated block
before you initialize the block). However, soft updates
are not transactional and thus lack consistency points,
and so most file system invariants cannot be checked be-
cause data might always be in flight.

Ext3: We have described the Ext3 file system properties
in detail in Section[4.3] Ext3 provides consistency points
and allocation information, but it mixes dynamically
allocated metadata (directory data and indirect blocks)
with data, thus requiring a full file system scan to distin-



Consistency Points | Allocation Information | Separate Metadata | Block Identity
NoFS X
Soft Updates X
Ext3 X X
RExt3 X X X X
Btrfs X X X X

Table 2: Designing Checkable File Systems

guish data from metadata at the block layer. Instead, we
distinguish the two types of blocks by retrofitting Ext3
with a metadata bitmap, as described in Section [4.3] In
addition, the dynamically allocated metadata blocks can-
not be easily identified, because they do not contain type
information or information about the inode that points to
them. We solve this problem by using in-memory back
references in the checker.

RExt3: RExt3 [19] is a variant of ext3 that is optimized
for a fast, offline file system checker called ffsck. Speed-
ing up offline fsck involved two changes to the file sys-
tem format, the co-location of metadata within metadata
regions, and the addition of backpointers associating dy-
namically allocated metadata with their corresponding
inodes. The separation of metadata and data into two re-
gions makes it possible to distinguish between them with
low overhead. With the addition of backpointers, the run-
time checker for RExt3 will not need to use in-memory
back references, thus reducing the memory overhead of
the checker.

Btrfs: We have described the Btrfs properties in detail
in Section [4.4] Btrfs provides consistency points, and it
uses a separate extent tree to store allocation informa-
tion. The extent records specify whether an allocated
extent is data or metadata, and also record backpointers
for the extent. Since Btrfs allows snapshots, some ex-
tents (both data and metadata) may have multiple parent
blocks which point to them. A runtime checking system
can identify metadata by its placement in a designated
area, or by looking up the metadata flag in the extent
tree. Furthermore, the contents of a metadata block can
be identified based on the header structure shared by all
metadata blocks. The shadow paging location invariants
are easier to verify than their journaling equivalents be-
cause there is less state that needs to be tracked.

6.2 Design Recommendations

Based on our analysis of these file systems, we now sug-
gest design features that enable efficient runtime check-
ing of file systems. We expect that these same features
will help implementing other file-system aware storage
applications, such as differentiated storage services [22]].

11

Consistency points are essential for runtime checking.
While new file systems, possibly running on new hard-
ware, may avoid providing consistency points, the result-
ing loss in protection is a serious issue. Easily acces-
sible allocation information at the block layer, such as
in bitmaps in fixed locations, allows enforcing location
invariants efficiently. Other applications, like scrubbers
and secure delete utilities, can also benefit from knowing
the allocation status of a block. Separating data from
metadata in well-defined regions allows distinguishing
between them with low overhead because there is no
need to lookup this information in bitmaps or trees. This
approach also allows other policies, such as replication
and placement, to be applied to contiguous metadata re-
gions with ease. Fortunately, the mixing of metadata
and data for performance reasons has been obsoleted by
large disk caches [19]]. Finally, backpointer informa-
tion helps identify blocks at the block layer efficiently.
This information is especially useful for dynamically al-
located metadata in update-in-place file systems, because
the checker may need to interpret an arbitrary block with-
out knowing its position in the file system tree.

7 Related Work

We describe closely related work in the areas of runtime
and offline file system consistency checking, and smart
disk interfaces. Static bug finding tools [35] can reveal
scores of bugs in file systems, but they can suffer from
typical scalability issues, necessitating runtime check-
ing. ZFS [3] uses a checksum-based runtime consistency
checker for detecting and repairing file system corrup-
tion caused by storage hardware, e.g., latent sector errors,
but it may not detect corruption caused by software bugs.
Based on several requests, a check for location and some
consistency invariants was added to Btrfs as a debugging
tool [4]]. These checks catch common errors, but they
are embedded within the file system code itself, and so,
for example, a file system bug could disable them. En-
vyFS [3]] uses N-version programming for detecting file
system bugs at runtime. It uses the common VFS inter-
face to pass each VFS-layer file system request to three
child file systems and uses voting when returning results.
The runtime overheads of this approach are high and sub-
tle differences in file system semantics can make it hard



to compare results. HARDFS [8] detects software bugs
in the Hadoop distributed file system (HDFS) at run-
time by interposing on network messages and I/O, and
verifies that the HDFS implementation behaves accord-
ing to its operational specification. The verification state
is compressed using bloom filters, significantly reducing
the memory overhead. HARDEFS can check certain end-
to-end properties that a consistency checker cannot, such
as whether a request was performed, but HARDEFS does
not attempt to catch all failures or guarantee that it will
not raise false alarms.

Once a bug is detected at runtime, Membrane [31]] pro-
poses tolerating bugs by transparently restarting a failed
file system. It assumes that file system bugs will lead to
detectable, fail-stop crash failures. However, inconsis-
tencies may have propagated to the on-disk metadata by
the time the crash occurs. Our approach is complemen-
tary to Membrane, rather than waiting for the file sys-
tem to crash, a restart could be initiated when a runtime
checker detects an invariant violation.

Recently, there has been significant interest in improv-
ing the performance and robustness of offline consis-
tency checkers. The rext3 file system [[19] uses back-
pointers and collocates its metadata blocks, allowing its
ffsck checker to scan the file system at rates close to the
sequential bandwidth of the drive. Chunkfs [14] reduces
the time to check consistency by breaking the file sys-
tem into chunks that can be checked independent of each
other. The SQCK offline consistency checker [13] ex-
presses file system consistency properties declaratively,
demonstrating that file system checks and repairs are
more easily understood when expressed as SQL queries.
It improves upon the repairs made by e2fsck by correct-
ing the order in which certain repairs are performed and
by using redundant information already provided by the
file system. The SWIFT tool [2] tests the correctness of
offline file system checker recovery code by leveraging
the file system checker itself or by comparing the out-
puts of multiple checkers.

Our checker leverages ideas from semantically-smart
disks [30], which use probing to gather detailed knowl-
edge of file system behavior, allowing functionality or
performance to be enhanced transparently at the block
layer. Sivathanu et al. [29] provide a logic of file sys-
tems that helps reason about the correctness of smart
disks. I/O shepherding [[12]] builds on smart disks, al-
lows a file system developer to write reliability policies
to detect and recover from a wide range of storage sys-
tem failures. Unlike smart disks, a type-safe disk extends
the disk interface by exposing primitives for block allo-
cation [28]], which helps enforce invariants such as pre-
venting accesses to unallocated blocks.
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8 Conclusion

We have presented the design of runtime file system
checkers that can reliably detect file system bugs before
they cause file system inconsistency. We show that the
runtime checker needs to check location invariants on
every write. These invariants enforce the atomicity and
durability properties of the file system, helping preserve
the integrity of committed transactions. Together with
checking consistency properties on commit, the checker
can provide the strong guarantee that every block write
will preserve file system consistency.

We have implemented runtime checkers for the Ext3
journaling file system and the Btrfs copy-on-write file
system. Our experimental results show that while con-
sistency checking imposes some performance overhead,
checking location invariants has almost no additional
overhead. The Ext3 file system checker has low overhead
but the Btrfs checker has higher overhead due to a higher
metadata load. We are currently working on improving
the Btrfs checker performance with better caching poli-
cies. Btrfs keeps a log to enable fast sync operations. We
plan to implement our journaling invariants for this log.
We expect that the checker overhead will be higher on
faster storage devices, such as flash. We plan to evaluate
this overhead in detail in the future.

We have shown that four file system features ease the
design of runtime checkers, and enable checking invari-
ants efficiently: 1) consistency points at which the file
system is expected to be consistent on disk, 2) easily
accessible allocation information at the block level, 3)
distinguishable data versus metadata blocks at the block
layer, and 4) backpointers for block typing and identifi-
cation. We expect that these file system features will be-
nefit other file-system aware storage applications as well.
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