
Behave or Be Watched: Debugging with Behavioral Watchpoints

Akshay Kumar
akshay@eecg.toronto.edu

Peter Goodman
pag@cs.toronto.edu

Ashvin Goel
asvhin@eecg.toronto.edu

Angela Demke Brown
demke@cs.toronto.edu

ABSTRACT
Finding, understanding, and fixing bugs in an operating sys-
tem is challenging. Dynamic binary translation (DBT) sys-
tems provide a powerful facility for building program anal-
ysis and debugging tools. However, DBT abstractions are
too low-level and provide limited contextual information for
instrumentation tools.

We introduce behavioral watchpoints, a new software-based
watchpoint framework that simplifies the implementation of
DBT-based program analysis and debugging tools. Behav-
ioral watchpoints extend the traditional approach of using a
DBT system by providing context-specific information at the
instruction level and specializing instrumentation to individ-
ual data structures. We describe four applications developed
using our watchpoint framework: detecting buffer overflows,
detecting read-before-write and memory freeing bugs, de-
tecting memory leaks and enforcing fine-grained memory ac-
cess policies. We implemented behavioral watchpoints using
Granary, a new DBT framework. We show that the over-
heads are reasonable for their intended use in analyzing and
debugging kernel modules.

1. INTRODUCTION
Program debugging is a tedious and time-consuming part

of software development. Detecting software bugs such as
data corruption, bad pointers, and data races requires de-
velopers to manually inspect millions of instructions that
may modify data. The advent of multicore systems and the
ever-increasing size and complexity of software has made
debugging even more challenging.

Dynamic binary translation (DBT) systems provide a pow-
erful facility for building debugging and analysis tools be-
cause they allow instrumenting the entire program at an in-
struction granularity [4]. For example, Valgrind’s Memcheck
[14] and Helgrind [11] use binary translation to detect com-
mon memory errors (e.g., use-after-free, read-before-write,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

HotDep ’13, November 03-06, 2013, Farmington, PA, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2457-1/13/11 ...$15.00.
http://dx.doi.org/10.1145/2524224.2524234

memory leaks) and threading bugs (e.g., data races) in user
space programs. These tools are powerful but developing
them is challenging for the following three reasons.

First, a DBT system provides infrastructure for code-
centric instrumentation, whereas many interesting debug-
ging applications would prefer to have data-centric instru-
mentation. Applications such as data race detection, mem-
ory usage bugs, or performance debuggers that find false
sharing hotspots are all naturally data-centric. Second, DBT
abstractions are too low-level: individual instructions only
reveal what memory addresses are being accessed. This
makes it challenging to specialize instruction-level instru-
mentation to perform higher-level analysis. For example,
developing a tool to debug the data corruption problem in
a specific field of a data structure (e.g., i_flags field of
a file inode structure), or detecting an invariant violation
in a data structure requires instrumentation to be special-
ized to individual data structures. Third, existing DBT sys-
tems instrument all code to provide comprehensive coverage,
which introduces significant overheads for realistic instru-
mentation. For example, if a memory corruption bug affects
only inode structures, then instrumenting every memory
access in the kernel is excessive. In practice, we would like
to instrument only the code that operates on inodes.

In this paper, we introduce behavioral watchpoints, a novel
software-based watchpoint framework that simplifies the im-
plementation of DBT-based program analysis and debugging
tools. Similar to previous software-based watchpoints [17],
we support millions of watchpoints, enabling large-scale pro-
gram analysis. However, unlike previous approaches that are
limited by their view of memory as an opaque sequence of
bytes, behavioral watchpoints embed context-specific infor-
mation in each watchpoint, and this information is available
when a watched address is accessed. Upon access, the watch-
point action taken depends on this context, implying that
different watchpoints behave differently. For example, if a
programmer wishes to debug corruption to a specific field of
a data structure, such as a field in the TCP buffer header,
then a behavioral watchpoint will be triggered only when
the specific field is updated in any TCP buffer header. This
approach simplifies building powerful DBT tools because the
context-specific information can be arbitrarily rich (e.g., de-
rived from static analysis), and is available as needed at
runtime.

A key feature of behavioral watchpoints is that they en-
able adding instrumentation selectively, by enabling or dis-
abling binary translation on demand, so that overhead is
introduced only when instrumentation is needed. A watch-

point can be triggered by a hardware trap that starts binary
translation and watchpoint interpretation. The translation
may continue until the end of the basic block or current
function. This approach benefits from the lower overhead of
binary translation when several watchpoints are likely to be
triggered, and the lower overhead of infrequent traps when
watchpoints are unlikely to be triggered. For example, ker-
nel modules may initialize structures (such as the sk_buff
structure used by network drivers) that are shared with the
core kernel. The kernel expects such structures to contain le-
gitimate data pointers when they are received from the mod-
ule. However, a module can pass a bad pointer and cause
the kernel to access illegal memory. Finding the source of
this corruption requires complete visibility into all memory
accesses to the structure, whether in the module or the ker-
nel. Behavioral watchpoints enable this visibility with low
overhead by comprehensive instrumentation of module code
and on-demand translation of kernel code.

We have implemented behavioral watchpoints using Gra-
nary, a dynamic binary translation (DBT) framework de-
signed to instrument kernel modules [5, 4]. Granary instru-
ments arbitrary, binary Linux kernel modules efficiently and
without imposing overhead when the core kernel is running.
We have rapidly prototyped several module debugging tools
using behavioral watchpoints. These tools include a buffer-
overflow detector, a memory leak detector, and a shadow
memory based tool for logging the access patterns of differ-
ent types of modules for detecting buggy or malicious be-
havior. We describe these tools in more detail in Section 4.

2. DESIGN
A behavioral watchpoint is a software-based watchpoint

that triggers the invocation of a function when any watched
memory is accessed. Unlike most software-based watch-
points, a behavioral watchpoint watches a range of addresses,
enabling object-granularity watchpoints (i.e., one watchpoint
watches an entire object).

We implement behavioral watchpoints by adding an ex-
tra level of indirection to memory addresses. An unwatched
address is converted into a watched address by changing
its high-order bits. These high-order bits indirectly iden-
tify context-specific information about the range of memory
being watched. This information, called the watchpoint’s
descriptor, contains the originating watched address, meta-
information and a set of functions to invoke when watched
memory is dereferenced. Since watchpoint information is
embedded in the high-order bits, a typical offset of a watched
address is another watched address that shares the same de-
scriptor.

Our design is shown in Figure 1. It uses 15 high-order
bits (called the counter index) and an additional 8 bits (bits
20-27, called the inherited index) of a watched address to
identify the index into a global watchpoint descriptor table
which stores the pointer to the watchpoint’s descriptor. The
key advantage of our watchpoint scheme is the ability to di-
rectly map watched addresses to unwatched addresses using
a simple bitmask. One drawback of the scheme is that an
offset of a watched address can cause the low-order bits to
overflow into the inherited index. We overcome this issue
by assigning multiple descriptors for the watched objects
holding the same meta-information and by putting them in
adjacent indices.

We take advantage of the x86-64 architecture for imple-

...
...

0x000000:

0x765400:

Base Address

Virtual Table

Meta-info

Index
Descriptor

Table

0x7FFFFF:

Counter

Index

Inherited

Index

⋮

Descriptor

⋮

0x 7654 FFFFA 00 92600

0x FFFF FFFFA 00 92600

Watched Address

Unwatched Address

Figure 1: A watched address (bottom left) and its corre-
sponding unwatched address (top left) are compared. The
process of resolving the watchpoint descriptor is shown.

menting watched addresses. In kernel space on x86-64, canon-
ical addresses have their 16 high-order bits set to 1. Watched
addresses do not take this form; they are non-canonical ad-
dresses that trigger a hardware exception when dereferenced.
The watchpoint framework uses two approaches to perform
memory operations on watched objects. First, when watch-
points are expected to be triggered frequently, it dynami-
cally adds instrumentation at every memory load and store
to avoid hardware exceptions. Watched addresses are de-
tected before they are dereferenced and resolved to their
unwatched counterparts (by masking the 16 high-order bits
to 1). Second, when watchpoints are unlikely to be trig-
gered, the alternative approach is to dereference a watched
address and implement behavioral watchpoints in the trap
handler. This enables on-demand binary translation and al-
lows adding instrumentation only when a watchpoint gets
triggered.

Our design separates the allocation and management of
descriptors from the watchpoint framework. It is the re-
sponsibility of each client to manage its descriptors. When
a watchpoint gets added to an object, the client determines
the vtable, type and meta-information that needs to be stored
in the descriptor, as shown in Figure 1. The vtable deter-
mines the function that is invoked when watched memory
is accessed. Each vtable provides eight functions: four read
and four write functions. Each function is specific to a mem-
ory operand size (1, 2, 4, or 8 bytes). A watchpoint de-
scriptor is initialized with either a generic or a type-specific
vtable, which is specific to the type of the watched address.
The meta-information allows the descriptors to be arbitrar-
ily customized or extended based on the needs of the client.

Our design allows the same range of memory to be watched
differently. For example, two pointers to the same object can
be watched separately, so long as they manage different de-
scriptors. This feature is useful for distinguishing logically
different objects that occupy the same memory. For exam-
ple, this feature enables efficient detection of use-after-free
bugs without preventing deallocated memory from being im-
mediately reallocated for use. Having one watchpoint for the
freed memory, and another watchpoint for newly allocated
memory occupying the same space, is critical for this appli-
cation.

Behavioral watchpoints can be used virally. If an ad-
dress A is watched, then every address derived from A (e.g.,

through copying or offsetting) is also watched. This is useful
for memory and taint analysis tools. For instance, a watch-
point that is added early in the lifetime of an address (e.g.,
immediately before the address of newly allocated memory is
returned from an allocator) can persist and propagate until
no more derived addresses exist.

3. IMPLEMENTATION
We implemented behavioral watchpoints using Granary,

a dynamic binary translation (DBT) framework [5]. Gra-
nary instruments arbitrary, binary Linux kernel modules ef-
ficiently and without imposing overhead when the core ker-
nel is running. Our aim is to use Granary to analyze and
debug kernel modules, which are a frequent source of vul-
nerabilities in operating systems [3, 10].

Granary is unique among DBT systems because it an-
alyzes and uses program type information. For example,
Granary can substitute the execution of a function with
a wrapped version of itself. A wrapped function has the
same type specification as its unwrapped counterpart and
can freely modify its arguments and return value. Granary
can wrap some module functions in this way, even if the
module source code is unavailable.

While Granary provides a framework for instrumenting
kernel modules, we found it was hard to write powerful in-
strumentation code using low-level DBT abstractions, which
motivated the design of behavioral watchpoints. Next, we
describe examples of watchpoint-based debugging applica-
tions developed for kernel modules.

4. APPLICATIONS
The following sub-sections describe four applications of

behavioral watchpoints and their implementations. In these
sub-sections, we use the term object to refer to a range of
memory locations that are allocated together.

4.1 Buffer Overflows
A buffer overflow occurs when a program—in an attempt

to write to some object’s memory—actually writes to ad-
jacent memory cells. One method of detecting buffer over-
flows relies on the compiler to allocate “poisoned” regions of
memory around each object [13]. Small overflows (e.g., off-
by-one errors) are detected by this approach because they
access poisoned memory. Big overflows that “skip” over poi-
soned memory and access nearby objects in memory are not
detected.

Our insight is that unrelated objects will have different
base addresses (i.e., the address of one object will not be
derived from the base address of another), and thus each
object can be distinguished and uniquely identified with a
separate watchpoint address

We employ two overflow detection policies: heap-based,
and stack-based.

Heap-based overflow detection.
The heap-based detection policy detects buffer overflow

errors on all heap-allocated objects. We use Granary to wrap
the kernel’s memory allocators (e.g., kmalloc) and add
watchpoints to the addresses returned by those allocators,
as shown in Figure 2. The lifetime of an added watchpoint
is tied to the lifetime of the memory it watches. Each watch-
point’s descriptor records bounds information about the al-

FUNC_WRAPPER(__kmalloc, (size, flags), {
void *addr = __kmalloc(size, flags);
ADD_WATCHPOINT(addr, size);
return addr;

})

Figure 2: Definition of the __kmalloc function wrapper in
Granary. The above code expands into a function for wrap-
ping the __kmalloc allocator. Calls to __kmalloc are
transparently substituted with calls to the generated wrap-
per. The wrapper invokes the original __kmalloc function
and returns a watched version of the allocated address.

located memory in the form of the object’s base and limit
address [8]. A buffer overflow is detected when a dereference
of a watched address occurs outside of the bounds recorded
by the watchpoint’s descriptor. The memory operand-size-
specific vtable functions help catch corner cases where mem-
ory reads or writes access both an object and its adjacent
memory cells.

Stack-based overflow detection.
To detect stack overflows, we view the memory occu-

pied by the activation frame of an invoked function as a
dynamically-sized buffer. We associate a descriptor with
the buffer represented by the activation frame of a called
function. This descriptor tracks the bounds of the frame
over the lifetime of the function call.

We update the bounds of the frame (in the descriptor)
when the frame grows or shrinks. When a function returns,
the descriptor’s bounds shrink to zero, but the descriptor
remains allocated. We detect the two most common sources
of stack overflows. First, if we see an instruction that copies
the stack or frame pointers, then we assume that the copied
address can escape the function. A stack address escap-
ing a function is a potential stack-overflow risk. Adding
the frame’s watchpoint to this address taints the copied ad-
dress. Future copies or displacements of the watched ad-
dress implicitly propagate its taintedness because offsets of
a watched address reference the same descriptor. A deref-
erence of an escaped pointer—even one happening after the
function has returned—is detected as an overflow because
the watchpoint descriptor remains live. Second, if we see an
indexed dereference of the stack or frame pointers that uses
a dynamically bound index, then we assume that the effec-
tive memory address accessed is a potential stack-overflow
risk. We instrument the dereferencing instruction to add
the frame’s watchpoint to the effective address before the
address is dereferenced.

4.2 Selective Memory Shadowing
In this section, we show how to use behavioral watch-

points to shadow memory. Previous work has focused on
full memory shadowing [12], while watchpoints enable selec-
tive shadowing of watched objects. We describe how the ini-
tialization state of each byte of watched memory is tracked
using shadow memory, and how to detect bugs related to
the usage of heap-allocated memory.

We use Granary to wrap kernel memory allocators and
deallocators (e.g., kmalloc, kfree). Wrapped allocators
add watchpoints to allocated memory, and wrapped deal-
locators remove watchpoints before invoking the kernel’s

deallocators. Selective shadow memory is maintained as a
watchpoint descriptor-specific, variable-sized bitset. Each
byte of allocated memory corresponds to one bit of shadow
memory. The bits in shadow memory are initialized to zero.
Individual bits are flipped to one by injected instrumenta-
tion code when a write occurs to the memory shadowed by
those bits.

Read-before-write bugs.
Memory read instrumentation detects read-before-write

bugs by checking if the shadow bit corresponding to one
of the read bytes is zero. However, this method of detec-
tion can report false positives: it is common for larger-than-
needed reads to be performed and for compiler-added struc-
ture padding to be read (but never written). A relaxed
read-before-write memory checking policy requires that at
least one shadow bit is set for every read operation.

Memory freeing bugs.
An invalid free bug occurs when an object passed to a

deallocator was not previously obtained from an allocator.
For example, this may happen if an offset of an allocated
object is freed instead of the original object. We detect in-
valid frees when the freed address doesn’t match the base
address of the watched object. We detect use-after-free bugs
by marking the descriptor of a watched address being deal-
located as dead. The lifetime of a dead descriptor extends
beyond that of the object so that a later use of any watched
address with that descriptor will report a use-after-free bug.
We detect double-free bugs when the descriptor of a watched
address being deallocated is already marked as dead.

4.3 Memory Leak Detection
We built a memory leak detector for module-owned ob-

jects. A module is responsible for deallocating such objects.
Not all module-owned objects are allocated by modules. For
example, sk_buff objects used by network modules are al-
located by kernel interrupt handlers, but must be deallo-
cated by the network modules. Our approach ensures that
all module-owned objects are watched when allocated.

The leak detector scans kernel memory using the conven-
tional mark/sweep algorithm [2] to detect if/when module-
owned objects become unreachable starting from a set of
“root” objects. This is challenging because modules regu-
larly lose internal references to the objects that they own.
For example, a network module can allocate objects and
pass them t othe kernel with the net_device structure,
without retaining references to those objects. The network
module can later indirectly access these objects using the
kernel’s netdev_priv interface. Tracking the liveness of
these objects requires a view on kernel execution not nor-
mally provided by module-only instrumentation. Behavioral
watchpoints solve this problem by giving the leak detector
visibility into kernel accesses to watched objects, which trig-
ger hardware traps that attach instrumentation to the kernel
code. This instrumentation marks kernel-accessed watched
objects as live.

The leak detector benefits from using watchpoints in three
ways: i) watched addresses are easily disambiguated from
normal memory addresses and integers that look like watched
addresses; ii) descriptors provide meta-information that al-
lows our system to limit the scope of scanning; and iii) scan-
ning can stop if all watched objects are reached.

// Invariant: rtc_fops->ioctl == &rtc_ioctl
WATCH_WRITE(struct file_operations, ioctl, {
if(&rtc_fops == base_address
&& &rtc_ioctl != ioctl) {
// potential attack: prevent an anti-
// virus scan from being scheduled!

}
})

Figure 3: This code example shows how to check invariant
1(h) from [1] using field-accessor API. The invariant checked
prevents a (potential) kernel rootkit from installing its own
ioctl handler into the Real-Time Clock and preventing
virus-scans from being scheduled, thus allowing rootkit to
go undetected.

4.4 Field-grained Access Policies
We briefly describe the use of watchpoints at the granu-

larity of object fields. Using a field-accessor API, we can
detect Linux kernel rootkits, which is challenging because
rootkits actively try to hide their existence. However, rootk-
its often leave hints of their presence in the form of vio-
lated data structure invariants [1, 7]. Figure 3 shows an
example use of the field-accessor API that checks an invari-
ant on the ioctl field of any watched object whose type
is struct file_operations. A rootkit violating this
invariant can prevent an anti-virus program from schedul-
ing periodic scans—scans which might otherwise detect the
presence of a rootkit. However, a violation of this invariant
is immediately detected by our run-time system because the
field-accessor API enables active rather than passive check-
ing of invariants.

5. EVALUATION
We evaluated behavioral watchpoints using a microbench-

mark and measured the performance of common filesystem
operations on an in-memory disk. Our tests ran on a desktop
equipped with an Intel® Core™ 2 Duo 2.93 GHz CPU with
4GB physical memory. The microbenchmark performed a
tight-loop of memory operations and exhibits the worst-case
CPU overhead of the baseline watchpoints instrumentation
(3.8×). For the same microbenchmark, the buffer-overflow
detector’s overhead was ≈21×, which is caused by the in-
strumentation needed for precise bounds checking.

IOzone.
The IOzone benchmark creates two processes (one reader

and one writer) that perform common file operations on a file
of size 480Mb with a record size of 1Kb. In our experimental
setup, we mounted the ext3 filesystem on a 1GB RAMDisk
to eliminate the high overhead of disk I/O, which would
hide the CPU overhead of adding instrumentation. We also
ensured that all operations go through the file system mod-
ule code by enabling direct I/O to avoid the effect of the
buffer cache. The mount operation loads two kernel mod-
ules: the ext3 filesystem module and the jbd journaling
module. Watchpoints were added to addresses returned by
the two most-used allocators in ext3 and jbd: __kmalloc
and kmem_cache_alloc.

Figure 4 shows the drop in throughput of filesystem oper-
ations relative to native execution when using Granary and
the watchpoints instrumentation. The Granary bar shows

 0

 100

 200

 300

 400

 500

 600

 700

seq(w) random(w) mixed(rw) seq(r) reverse(r) stride(r) random(r)

Th
ro

ug
hp

ut
 (M

b/
se

c.
)

 Native
 Granary
 Watch None
 Watch All
 Buffer Overflow

Figure 4: Throughput (in Mb/sec) for common file system
operations (write workloads (w), read workloads (r)).

the cost of the dynamic binary instrumentation framework
on which we build watchpoints. The Watch None bar repre-
sents the overhead of baseline watchpoints instrumentation
with no added watchpoints. In this configuration, mod-
ule code has added instrumentation to check each mem-
ory access instruction for watched addresses, however, no
additional action is needed since no objects are watched.
The Watch All bar shows the overhead where all module-
allocated objects are watched. In this case, we see two costs.
First, instrumented module code must check for watched ad-
dresses and convert them to their unwatched counterparts to
perform the memory access. Second, when uninstrumented
kernel code accesses a watched address, we must handle the
resulting fault and perform some limited instrumentation
around the faulting instruction. Finally, Figure 4 also shows
the overhead of the heap-allocated buffer overflow detector
using behavioral watchpoints. This case includes the cost
of executing the appropriate watchpoint vtable function to
check the bounds on each watched memory access.

The overhead of watching all module-allocated objects is
high (≈70%) because many watched objects are accessed by
uninstrumented kernel code, which results in many hardware
exceptions. Our system recovers from these exceptions by
instrumenting kernel code on-demand. We discovered that
inodes are frequently accessed by the kernel (thus causing
many exceptions) and that not watching inodes improves
the performance of Watch All to be near that of Watch
None. We also observed that the added cost of Buffer Over-
flow is smaller than expected, considering the additional
work that it performs. This result again suggests that the
overhead in Watch All is dominated by the cost of faults
and our recovery mechanism, thereby masking the cost of
the bounds checking. We are exploring strategies to auto-
matically adapt the granularity of instrumentation to reduce
repeated faults in core kernel code.

6. RELATED WORK
Greathouse et al. [6] propose a hardware solution that

efficiently supports an unlimited number of watchpoints.
Witchel and Asanovic [16] describe the implementation of
memory protection domains for the Linux kernel. Protec-

tion domains are implemented using specialized hardware
and enable fine- and coarse-grained memory protection us-
ing a mechanism similar to hardware watchpoints. Unlike
our approach, both of these depend on specialized hardware
and require that applications using this hardware separately
maintain context-specific information. Suh et al. [15] pro-
pose a method of secure program execution by tracking dy-
namic information flow. Memory tagging at the hardware
level allows their system to track tainted data as it propa-
gates through a running program. Behavioral watchpoints
are similar insofar as a watched address is tagged, and this
tag propagates through a program.

Zhao et al. [17] describe a method of implementing an ef-
ficient and scalable DBT-based watchpoint system. It uses
page protection and indirection through a hash table to track
watched memory. This approach supports neither watching
ranges of memory, nor context-specific information. Lueck
et al. [9] introduce semantic watchpoints as part of the
PinADX system. It enables interactive debugging by trig-
gering debugger breakpoints when semantic conditions are
met. While similar in spirit to behavioral watchpoints, se-
mantic watchpoints do not maintain context-specific, per-
watchpoint state.

7. CONCLUSIONS AND FUTURE WORK
We created behavioral watchpoints to simplify the imple-

mentation of DBT-based program analysis and debugging
tools. Behavioral watchpoints address both the scalability
limits of hardware watchpoints and the lack of contextual
information with traditional software watchpoints. The key
innovation is to maintain context-specific information about
the memory being watched, which is required for large-scale
program analysis, with the watchpoint itself. Thus, behav-
ioral watchpoints resolve the incongruency between how ex-
isting software implements watchpoints and how program
analysis tools use watchpoints. We demonstrated the usabil-
ity of behavioral watchpoints by describing several memory
error detection and protection applications. Although our
current evaluation is limited, the overheads of behavioral
watchpoints are quite reasonable for the target use of de-
bugging kernel modules.

As future work, we will investigate the applicability of
behavioral watchpoints for isolating and enforcing control-
flow integrity policies on Linux kernel modules.

8. REFERENCES
[1] A. Baliga, V. Ganapathy, and L. Iftode. Detecting

kernel-level rootkits using data structure invariants.
IEEE Trans. Dependable Secur. Comput., 2011.

[2] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly
parallel garbage collection. In Proceedings of the ACM
SIGPLAN 1991 conference on Programming language
design and implementation, PLDI ’91, pages 157–164,
New York, NY, USA, 1991. ACM.

[3] M. Castro, M. Costa, J.-P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast Byte-Granularity Software Fault Isolation. In
SOSP, 2009.

[4] P. Feiner, A. D. Brown, and A. Goel. Comprehensive
Kernel Instrumentation via Dynamic Binary
Translation. In ASPLOS, 2012.

[5] P. Goodman, A. Kumar, A. D. Brown, and A. Goel.
Granary: Comprehensive kernel module
instrumentation. Poster at OSDI’12, 2012.

[6] J. L. Greathouse, H. Xin, Y. Luo, and T. M. Austin.
A case for unlimited watchpoints. In ASPLOS, 2012.

[7] O. Hofmann, A. M. Dunn, S. Kim, I. Roy, and
E. Witchel. Ensuring operating system kernel integrity
with OSck. In ASPLOS, 2011.

[8] S. Kendall. Bcc: Run-time checking for C programs.
In USENIX Toronto 1983 Summer Conference
Proceedings, 1983.

[9] G. Lueck, H. Patil, and C. Pereira. PinADX: an
interface for customizable debugging with dynamic
instrumentation. In CGO, 2012.

[10] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich,
and M. F. Kaashoek. Software fault isolation with API
integrity and multi-principal modules. In SOSP, 2011.

[11] A. Müehlenfeld and F. Wotawa. Fault detection in
multi-threaded c++ server applications. In Proceedings
of the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’07,
pages 142–143, New York, NY, USA, 2007. ACM.

[12] N. Nethercote and J. Seward. How to shadow every
byte of memory used by a program. In VEE, 2007.

[13] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. In USENIX ATC 2012, 2012.

[14] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In
Proceedings of the annual conference on USENIX
Annual Technical Conference, ATEC ’05, pages 2–2,
Berkeley, CA, USA, 2005. USENIX Association.

[15] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. In ASPLOS, 2004.

[16] E. Witchel, J. Rhee, and K. Asanovic. Mondrix:
Memory isolation for Linux using Mondriaan memory
protection. In SOSP, pages 31–44, 2005.

[17] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph,
and W.-F. Wong. How to do a million watchpoints:
efficient debugging using dynamic instrumentation. In
CC / ETAPS, 2008.

