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Abstract

Dynamic binary instrumentation (DBI) has been used ex-
tensively at the user level to develop bug-finding and secu-
rity tools, such as Memcheck and Program Shepherding.
However, comprehensive DBI frameworks do not exist for
operating system kernels, thwarting the development of
dependability and security tools for kernels. In this paper,
we identify the key challenges in designing an in-kernel
DBI framework and propose a design that addresses them.

1 Introduction

Dynamic binary instrumentation (DBI) entails monitor-
ing and potentially manipulating every instruction in an
existing binary before its execution. Several popular
frameworks, such as DynamoRIO [4], Pin [12], and Val-
grind [14] make it easy to use DBI in user-level applica-
tions, helping improve application dependability greatly.
For example, DBI is used by Memcheck to detect mem-
ory errors [19], Program Shepherding to improve secu-
rity [11], and vx32 to enforce modularity [9].

Unfortunately, these powerful debugging and security
tools do not exist for operating system kernels. The rea-
son is that existing DBI techniques that target kernel code
(e.g., JIFL [15] and PinOS [6]) are not comprehensive,
i.e., they are limited with respect to the code that they
cover. JIFL provides an API for instrumenting system
calls. However, it does not cover interrupt handlers and
kernel threads. PinOS allows whole-system instrumen-
tation, providing an API for instrumenting kernel code,
including interrupt handlers, and user-space code. How-
ever, because PinOS relies on virtualization, it is only ca-
pable of instrumenting drivers for devices that the virtual
machine monitor emulates. Since it is infeasible to emu-
late complex and proprietary hardware, PinOS’s approach
precludes comprehensive instrumentation. A similar issue
arises with other virtual machine monitors [1] and emula-
tors [20] that use DBI.

This lack of coverage severely limits the utility of in-
kernel applications of DBI. Without comprehensive cov-
erage, debugging tools that track memory are inaccurate
and security tools can easily be thwarted. Without be-
ing compatible with most device drivers, most driver code
cannot be debugged or secured – an unfortunate limita-
tion because drivers often contain the most buggy code in
operating systems [8].

A comprehensive in-kernel DBI framework would en-
able many dependability-enhancing techniques. Such a

framework would make it much simpler to implement or
port some existing user-space techniques, such as Pro-
gram Shepherding and Memcheck [17], to the kernel.
Moreover, existing dependability techniques based on
static instrumentation (i.e., requiring source code recom-
pilation) could be made transparent with DBI. For exam-
ple, Byte Granularity Isolation [7], which isolates device
drivers that are generated with a special compiler, could
be adapted to use DBI on existing driver binaries.

This paper makes two contributions: 1) we identify the
challenges in comprehensively instrumenting operating
system kernels, and 2) we propose the design of a novel
DBI framework that addresses these challenges. Compre-
hensive in-kernel DBI raises five key challenges outlined
below.

Detecting Kernel Execution A specific DBI tool might
be interested in instrumenting a subset of kernel code,
such as driver code. However, ensuring comprehensive in-
strumentation requires monitoring several data structures
and registers that can be modified whenever the CPU is
running in supervisor mode. Thus it is necessary for the
framework to interpose on all code running in supervisor
mode, i.e., the entire kernel must be instrumented. The re-
sulting challenge lies in detecting all kernel entry and exit
points.

Interrupts and Exceptions Comprehensiveness re-
quires instrumenting exception and interrupt handlers.
Faithfully emulating native handling of an interrupt raised
during instrumentation poses several challenges, such as
providing a plausible exception stack frame.

Concurrency Instrumenting a multithreaded kernel re-
quires careful management of shared data structures. We
address the trade off between memory use, implemen-
tation complexity, and performance in designing a con-
currency strategy. Kernel preemption further complicates
concurrency management.

Reentrancy A region of code is non-reentrant when it
is unsafe to begin executing it before other executions
of the region have finished. Reentrancy is problematic
when the instrumentation code needs to use the instru-
mented code. The standard solution – reimplementing
non-reentrant code – is not viable in the kernel.

Code Cache Consistency Kernel code is copied before
instrumentation. If the kernel code changes, e.g, on a
module unload, then the instrumented copy needs to be
updated. Moreover, changes to code permissions need to



be identified and handled.
In the rest of the paper, we describe these issues and our

design for addressing them in detail. Currently, we are in
the process of implementing and evaluating this design.
Below, we first provide some background on DBI.

2 Background

DBI implementations copy basic blocks of source code
(binary x86 code residing in memory that the program
counter normally points to) into acode cacheprior to
their execution. A basic block is a straight-line sequence
of instructions that ends with a control transfer instruc-
tion (CTI), such ascall, ret, or jmp. The DBI im-
plementation ensures that only cached code is executed.
To ensure that source code never executes, the DBI im-
plementation manipulates the CTIs that terminate basic
blocks to return execution to thedispatcher. If the CTI’s
target has already been copied into the cache, the dis-
patcher transfers control to the target’s copy. Otherwise,
the dispatcher interprets the target’s code, which involves
finding the extent of the basic block starting at the target’s
address. The block found by interpretation is copied into
the code cache. Finally, the dispatcher transfers control to
the newly admitted block.

3 Analysis and Design

We present the design of our DBI framework in terms of
the challenges outlined in Section 1. We also describe
current approaches, their strengths, and their limitations.
Our design targets thelong modeof the 64-bit x86 archi-
tecture [2], which we assume the instrumented operating
system, once booted, runs in exclusively. This assumption
is valid in Linux, which we confirmed by manual inspec-
tion, and Windows [13].

3.1 Detecting Kernel Execution

Interposing on all kernel execution requires each kernel
entry point to be replaced with a call to the dispatcher
(see Figure 1). We define kernel entry points as any
instructions that run immediately after escalation of the
CPU’s current privilege level (CPL). In the 64-bit x86 ar-
chitecture, only interrupts, thesyscall instruction, the
sysenter instruction, certain farjmp instructions, and
certain farcall instructions can escalate the CPL [2]
(see [18] for a more concise explanation). In the case
of interrupts, far jumps, and far calls, the entry point is
stored in one of three descriptor tables. The address of
each of these tables is stored in one of three correspond-
ing descriptor table registers. In the case ofsyscall and
sysenter, the entry point is stored in a model-specific
register (MSR). To execute the dispatcher on kernel entry
points, instead of executing the entry points directly, we
shadowthe descriptor tables and the MSRs.

We maintain ashadow descriptor tablefor each de-
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Figure 1: The framework is activated by loading a kernel
module that redirects all kernel entry points to the dis-
patcher (solid black arrows). Once the framework is ac-
tive, all supervisor-mode execution takes place in the dis-
patcher and the code cache. Interrupts are queued and
their handlers are dispatched at safe points. Exception
handlers are dispatched immediately. The fat white ar-
row indicates that OS source code is copied into the code
cache.

scriptor table maintained by the kernel; we point the de-
scriptor table registers to these shadow tables. In the
shadow tables, each entry effectively calls dispatch on the
corresponding entry point stored in the original descriptor
table. To maintain transparency, we replace source code
instructions that read the descriptor table registers with
code cache instructions that load the original tables’ ad-
dresses, which are stored in memory. Our framework in-
tercepts changes to the original tables and propagates the
changes to the shadow tables. Furthermore, we replace
code that changes the table descriptor registers in the code
cache with instructions that update the shadow registers.
We shadow the MSRs used bysysenter andsyscall
in the same way as the descriptor table registers.

The kernel can be exited bysysexit, sysret,
iret, andret instructions. To resume native execu-
tion after exiting the kernel viasysexit andsysret,
we replace these instructions in the code cache with se-
quences that exit the code cache in a manner that informs
the dispatcher to natively executesysexit andsysret
respectively. Section 3.2 explains how we handleiret.
The dispatcher identifies kernel exits caused by farret
instructions.

3.2 Interrupts and Exceptions

The basic DBI technique rewrites CTIs to ensure that ex-
ecution stays in the code cache or is redirected to the dis-
patcher. However, this technique is not adequate for inter-



posing on control flow that does not arise from CTIs, such
as interrupts and exceptions.

When an interrupt or exception is delivered, control is
redirected to the installed handler. We defineinterrupts
to be asynchronous events, not caused by any particular
instruction, that redirect execution to their handlers. We
defineexceptionsto be synchronous events, triggered by
instruction execution, that immediately invoke their han-
dlers. The key distinction between the two is that inter-
rupts can technically be handled at any time whereas ex-
ceptions must be handled before the triggering instruction
can proceed. For example, an instruction that accesses
memory and triggers a page fault exception cannot com-
plete until the page fault is handled.

Interrupts and Exception Analysis To interpose on
handlers, DBI frameworks install their own handlers that
invoke the dispatcher on the original one (unless the inter-
rupt or exception was caused by the DBI framework).

Because handlers can inspect machine state at the mo-
ment before their invocation, DynamoRIO, Pin, PinOS,
and Valgrind take care to present plausible machine state
– i.e., machine state that could have been observed during
native execution. This precaution is essential for correct
execution. For example, Linux’s page fault handler in-
tentionally panics if a page fault exception arises in the
kernel unless the triggering instruction has a pre-allowed
address [3]. Under the control of a DBI framework, the
pre-allowed instruction never executes – only its copy in
the code cache. Hence, to avoid causing a kernel panic,
the interposing handler has to translate the code cache ad-
dress of the faulting instruction to the source instruction’s
address before invoking the kernel’s page fault handler.

Presenting plausible machine state is tricky, particularly
if an interrupt or exception arises during the execution of
instrumentation code or the dispatcher. In this case, the
interrupted instruction has no corresponding source code,
thus translation to the source code address is impossible.
To circumvent this problem, DBI frameworks queue in-
terrupts and deliver them at the next code cache exit.

Exceptions are handled differently since they cannot be
delayed. Exceptions triggered by instrumentation code
are handled by restoring native machine state – analogous
to how x86 hardware delivers precise exceptions [10] –
and invoking the instrumented copy of the original han-
dler. DynamoRIO requires framework users to implement
callback functions that translate machine state when ex-
ceptions arise during instrumentation code. These call-
back functions restore registers used by the instrumenta-
tion code and provide a source code address for the fault-
ing instruction. PinOS provides instrumentation APIs that
automatically perform the required rollback.

For the most part, DBI frameworks avoid triggering ex-
ceptions in their dispatchers. However, some exceptions
are unavoidable during interpretation. If, for example, an

instruction in a basic block being interpreted resides on a
non-executable page, then a page fault will be triggered.
DBI frameworks handle this situation by executing the
instructions preceding the faulting instruction. Once the
faulting instruction is reached, the instrumented copy of
the original handler is executed.

Interrupts and Exception Design We intercept inter-
rupts by replacing the operating system’s interrupt han-
dlers (see Section 3.1). If the interrupted machine state
was running in user mode, then we dispatch the kernel’s
interrupt handler immediately (in this case, the interrupted
state is native). Otherwise, our framework atomically
adds intercepted interrupts to a CPU-private queue by dis-
abling interrupts. Once queued, we enable interrupts and
return execution to the interrupted instruction. When ex-
ecution next exits the code cache, instead of dispatching
the next target, the dispatcher delivers queued interrupts
by dispatching on the kernel’s interrupt handlers. Once
the dispatcher empties the queue, it dispatches the next
target.

In the code cache, we replaceiret instructions with
exits to the dispatcher. Following a code cache exit caused
by aniret, if the interrupted machine state was running
in user mode, the dispatcher natively executesiret, oth-
erwise it continues delivering queued interrupts.

When dispatching on the kernel’s interrupt handlers, we
take care to emulate machine state that would have been
exposed to the interrupt handler during native execution.
Interrupt handlers can expect native machine state and an
interrupt stack [2]. However, translating interrupted ma-
chine state only requires translating the code cache ad-
dress; we do not need to translate other registers because
interrupts are only delivered at code cache exits (i.e., not
in the middle of instrumentation). Once the machine state
is translated, we create the interrupt stack.

Our framework handles exceptions triggered during
code cache execution immediately. Because machine
state might be modified by instrumentation code, we must
translate all machine state. Similar to DynamoRIO, we
require the instrumentation code to implement a transla-
tion callback function: given the triggering instruction,
the callback should restore any native state it changed up
to that point.

Like other DBI frameworks, we only expect exceptions
in the dispatcher while interpreting code. In this case, the
dispatcher admits a copy of the code up to the exceptional
instruction into the code cache and executes that copy be-
fore invoking the instrumented exception handler.

To prevent page fault exceptions while fetching dis-
patcher and code cache instructions, the dispatcher and
code cache are stored in page frames that are always
present in all processes’ page tables. We assume that the
operating system makes such page frames available, an
assumption which holds in Linux [3] and Windows [16].



3.3 Concurrency

To handle multithreaded code correctly, DBI frameworks
must ensure that the dispatcher and execution in the code
cache behave in a thread-safe manner. Concurrency prob-
lems arise in the dispatcher when it is used by multi-
ple threads. For example, updates to shared data struc-
tures, such as the map of source-code addresses to code-
cache addresses, cannot conflict. Concurrency problems
arise during code cache execution because the code in the
cache contains, in addition to instrumented source code,
accesses to data structures shared with the dispatcher.

Concurrency Analysis Valgrind simply serializes all
thread execution. In the other user-space frameworks, two
approaches are taken to managing concurrency: thread-
private data and locking. In the former approach, each
thread has its own private code cache and auxiliary data
structures. In the locking approach, data is shared be-
tween threads and locks are employed to ensure cor-
rect access. Thread-private data avoids locking over-
heads whereas locking avoids redundant interpretation
and copying. In practice, the thread-private data approach
is only suitable for programs with a small number of
threads or programs in which threads access disparate
code, such as desktop applications [5].

Kernel DBI frameworks have another concurrency
management technique at their disposal: CPU-private
data (without control over preemption points, user-space
frameworks cannot reliably use CPU-private data). Each
CPU has its own private code cache and auxiliary data
structures. This approach avoids locking while bounding
redundant interpretation and copying. JIFL, which uses
CPU-private data, does not work with preemptible vari-
ants of the Linux kernel, however.

Concurrency Design Because many threads run inside
the kernel (i.e., all user and kernel threads), using thread-
private data would have high memory and interpretation
overheads. On the other hand, good performance for a
lock-based approach is contingent on a sophisticated lock-
ing strategy [5]. Because of reentrancy problems, the ker-
nel’s locking facilities cannot be used, so all of the re-
quired locks would have to be implemented from scratch.
Instead, we have elected to use CPU-private data. Each
CPU has a private dispatcher and private code cache.

Unlike JIFL, our DBI framework works with pre-
emptible kernels. The CPU-private data approach is sen-
sitive to preemption if any CPU-private machine state is
saved when the preempted task context switches. In this
case, if the preempted task later resumes on another CPU,
then the task will use the wrong CPU’s private data. Two
problems cause CPU-private state to be saved: exposing a
register temporarily holding CPU-private data to the in-
terrupt handler or storing a code cache address on the
stack. Our design avoids the first problem by restoring

native machine state before delivering interrupts and ex-
ceptions. We avoid the second problem by always storing
source code addresses, and not code cache addresses, on
the stack: we emulatecall andret by pushing and pop-
ping source addresses and calling the dispatcher; as Sec-
tion 3.2 explains, we ensure that the interrupt stack con-
tains source addresses. JIFL’s incompatibility with pre-
emptible kernels arises from not interposing on interrupt
handlers: non-native register values may be exposed and
code cache addresses are saved on the stack.

3.4 Reentrancy

The problem of reentrancy arises for a DBI framework
when its own interpretation code uses library code that it is
in the middle of interpreting, for example, heap allocation
or I/O.

Reentrancy Analysis DBI frameworks avoid this prob-
lem by only using code that they do not interpret, i.e.,
their own code and the systems beneath them. Because
the user-space frameworks do not interpret kernel code,
they can safely make system calls. The VMM-based ap-
proaches can make use of the VMM itself and virtual ma-
chines other than the one being instrumented (e.g., PinOS
performs all I/O through Xen’s Domain 0 guest). Because
JIFL does not sit atop a VMM, it must be entirely self
sufficient; JIFL only relies on resources that it allocates
when it initializes (i.e., before interpretation begins).To
perform I/O, JIFL must first suspend instrumentation.

Reentrancy Design Our design avoids problems aris-
ing from non-reentrant functions by not calling any instru-
mented code from the dispatcher. To accomplish this, the
dispatcher is entirely self contained. Specifically, the dis-
patcher has its own memory allocator. To facilitate I/O,
we designed our framework to attach and detach from a
running system. To attach, we load a kernel module that
notifies each CPU to run an initialization routine that cre-
ates the CPU’s private data structures, shadows the de-
scriptor tables, and calls dispatch on the initialization rou-
tine’s next instruction. To detach, on each CPU, we re-
place shadowed registers with their native contents and
return execution to the next source code instruction.

3.5 Code Cache Consistency

To faithfully emulate the native execution of the code be-
ing instrumented, DBI frameworks must ensure that the
code cache is kept consistent with source code. If some
source code is modified after it has been copied into the
cache, then the cached code is no longer valid. Likewise,
if some source code becomes non-executable, then any
cached blocks derived from it are no longer valid. Reli-
ably detecting when source code and permissions change
is a complex matter. Consequently, the aforementioned
frameworks maintain code cache consistency to various
degrees (DynamoRIO, Valgrind, PinOS) or have no de-



tails published (JIFL, Pin, vx32).

Code Cache Consistency Analysis DBI frameworks
detect source code changes by tracking changes to virtual
address mappings and write-protecting executable pages.
When a basic block is copied into the cache, its source’s
page is recorded and marked read-only. When the source
page is unmapped or modified, the block is evicted from
the code cache. Unmapping of pages is detected by inter-
posing on system calls in user-space frameworks and as
a part of shadow page table maintenance in VMM frame-
works.

Code Cache Consistency Design Our framework de-
tects changes to source code and source code permissions
using per-CPU shadow page tables. The shadow page
table contains the same virtual-to-physical address map-
pings as the native page table but with more restrictive
permissions. When the interpreter copies a block into
the code cache, it marks the corresponding page as non-
writable in each CPU’s shadow page table. We ensure that
each CPU’scr3 register points to its shadow page table
instead of the native one. We shadow thecr3 register like
the descriptor table registers.

We maintain shadow page tables by emulating the op-
eration of a translation lookaside buffer (TLB) in soft-
ware [10]. Initially, and whenevercr3 is written to, we
clear the CPU’s shadow page table (analogous to a TLB
flush). Similarly, we emulate theinvlpg instruction in
the code cache by removing the corresponding mapping
from the shadow page table and evicting code in the cache
whose source has been made non-writable. If a page fault
occurs because of a write to a page containing source
code, then we notify all CPUs, using an interrupt, to in-
validate the corresponding code in their caches. We then
re-execute the write. Otherwise, if a page fault occurs on
an access that the native page table would have permitted,
then we copy the native mapping into the shadow page ta-
ble and re-execute the faulting instruction (analogous to a
TLB miss). We handle all other page faults by dispatching
on the kernel’s handler.

4 Concluding Remarks

Although we are presently targeting Linux, our design is
compatible with Windows as well. Our assumptions of
exclusive long mode execution and available non-faulting
page frames are valid in both Linux and Windows.

We have presented the design for a new DBI frame-
work capable of instrumenting all operating system code.
This DBI framework can be used to implement in-kernel
dependability-enhancing techniques already deployed in
user space. Currently, we are implementing our proposed
framework.
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