
Breaking Apart the VFS for Managing File Systems

Kuei Sun, Matthew Lakier, Angela Demke Brown and Ashvin Goel
University of Toronto

Abstract
File system management applications, such as data
scrubbers, defragmentation tools, resizing tools, and par-
tition editors, are essential for maintaining, optimizing,
and administering storage systems. These applications
require fine-grained control over file-system metadata
and data, such as the ability to migrate a data block
to another physical location. Such control is not avail-
able with the VFS API, and so these applications by-
pass the VFS and access and modify file-system meta-
data directly. As a result, these applications do not work
across file systems, and must be developed from scratch
for each file system, which involves significant engineer-
ing effort and impedes adoption of new file systems.

Our goal is to design an interface that allows these
management applications to be written once and be us-
able for all file systems that support the interface. Our
key insight is that these applications operate on common
file system abstractions, such as file system objects (e.g.,
blocks, inodes, and directory entries), and the mappings
from logical blocks of a file to their physical locations.
We propose the Extended Virtual File System (eVFS) in-
terface that provides fine-grained access to these abstrac-
tions, allowing the development of generic file system
management applications. We demonstrate the benefits
of our approach by building a file-system agnostic con-
version tool that performs in-place conversion of a source
file system to a completely different destination file sys-
tem, showing that arbitrary modifications to the file sys-
tem format can be handled by the interface.

1 Introduction
File system management applications help with main-
taining, optimizing, and administering file systems. Ex-
amples of such applications include file system upgrade
tools, defragmentation tools, and file system resizing
tools. Unlike typical applications that are file-system ag-
nostic because they use the virtual file-system interface
(VFS) to access their data, the management applications
perform low-level allocation, mapping, and placement of
physical blocks in a file system. These operations are
not exposed by the VFS API, and thus these applications
must bypass the VFS, and access the file system meta-
data directly.

As a result, file system developers and experts must
write these applications from scratch for each file system,

because they are tightly coupled with the format of the
file system. For example, a defragmentation tool for Ext4
cannot be reused for Btrfs, not even in parts, because the
two file systems use different formats for block alloca-
tion and free space management. The effort required for
building these applications is significant, and thus newer
file systems such as F2FS [7] and BetrFS [6] lack a rich
set of management tools, which stymies their adoption
and hinders innovation in file system technology.

The goal of our work is to simplify the development of
file system management applications. The VFS interface
has been highly successful because it abstracts the key
objects (e.g., files and directories) and operations (e.g.,
create, delete, read, write) that are provided by any file
system. Our approach is to provide a new abstraction,
similar to VFS, that enables file system management ap-
plications to be written in a generic, file-system agnos-
tic manner. Ideally, the applications are developed once
using this interface and they work for file systems that
implement this interface. This relieves file system devel-
opers from the onus of building these essential (but often
neglected) applications, and instead they can focus their
effort on improving the file system itself.

We introduce the Extended Virtual File System
(eVFS) interface, which provides a fine-grained abstrac-
tion for manipulating the file system. The key insight
of eVFS is that the management applications operate on
common abstractions that are shared across file systems,
such as the allocation of file system objects (e.g., blocks
or extents, inodes, and directory entries) and the map-
pings from logical blocks of a file to physical blocks.
By exposing these abstractions, the eVFS API enables
building applications that work across file systems. For
example, a defragmentation tool needs to find the frag-
mented blocks of a file and relocate them to a contiguous
extent. It can do so by invoking generic eVFS operations
for allocating physical extents and mapping them to log-
ical extents.

The eVFS API does not change the file system’s trust
model. Management applications are already trusted to
operate directly on metadata without the VFS, and bugs
in them may cause file system inconsistency or corrup-
tion [2, 5]. Hence, exposing these operations through
eVFS may improve the robustness of management appli-
cations, since the file-system specific implementation of
the interface can be provided once by file system experts.



Function Prototype Description
struct evfs * fs_open(struct evfs_mount * mnt) open the file system with parameters specified by mnt

struct evfs_txn * txn_begin(struct evfs * evfs) start a new transaction and return the associated handle
int txn_commit(struct evfs_txn * txn) commit the transaction txn
int txn_abort(struct evfs_txn * txn) abort the transaction txn

int super_make(struct evfs_super * sup) make new a file system with parameters specified by sup

s64 extent_alloc(u64 addr, u64 len) allocate the extent defined by {addr, len}
long extent_free(long addr, long len) free the extent defined by {addr, len}
s64 extent_reverse(u64 addr, u64 len,
struct evfs_reverse * rv)

fills rv with the inode number and logical offset of
all inodes that map to the extent defined by {addr, len}

int extent_active(u64 addr, u64 len) return 1 if extent defined by {addr, len} is active, else 0
s64 extent_iterate(s64 ino_nr, void * priv,
s64 (* cb)(u64 log_blk_nr, u64 phy_blk_nr,

u64 len, void * priv))

iterate through all extents mapped to inode ino_nr in
the form of {log_blk_nr, len} → {phy_blk_nr, len}
and process them via callback function cb

s64 freesp_iterate(void * priv, s64 (* cb)(
u64 addr, u64 len, void * priv))

iterate through all free space extents in the file system
and process them via callback function cb

s64 inode_alloc(s64 ino_nr, struct evfs_inode * i) allocate the inode ino_nr with the inode structure i
long inode_free(long ino_nr) free the inode ino_nr
s64 inode_read(s64 ino_nr, s64 ofs, char * data,

u64 len)
read len byte of data to data from the inode ino_nr
at logical offset ofs

int inode_map(u64 ino_nr, u64 log_blk_nr,
u64 phy_blk_nr, u64 len)

map physical extent {phy_blk_nr, len} to the logical
extent {log_blk_nr, len} for inode ino_nr

s64 inode_iterate(void * priv, s64 (* cb)(
s64 ino_nr, struct evfs_inode * i, void * priv))

iterate through all active inodes in the file system and
process them via callback function cb

int dirent_add(s64 dir_nr, struct evfs_dirent * d) add a new entry d to directory inode dir_nr
s64 dirent_iterate(s64 dir_nr, void * priv,
s64 (* cb)(struct evfs_dirent * d, void * priv))

iterate through all directory entries for inode dir_nr
and process them via callback function cb

Table 1: eVFS API. All functions after the first four take an additional struct evfs_txn parameter which is not
shown.

Eventually, our aim is to expose these operations for
online use without affecting existing file system applica-
tions that are unaware of management applications or the
eVFS API. To do so, the eVFS API provides a transac-
tional interface for eVFS operations. Currently, however,
we have only explored offline use, where the transac-
tional support provides crash consistency, which is often
missing in management applications [4].

As a proof of concept, we have built an offline file sys-
tem conversion tool using the eVFS interface. This tool
performs crash-consistent, in-place conversion of one file
system to another entirely different file system. It can
thus also be used to modify the file-system specific op-
tions of the file system, such as the file system size, or
upgrade a file system. The application is generic, and
thus supporting additional file systems should require no
modifications to the application. This experience sug-
gests that the eVFS API will allow building a variety of
generic, file system management applications.

2 Approach
The goal of designing the eVFS interface is to enable file-
system agnostic management applications. As such, the
interface must be generic while providing fine-grained
control over the allocation of file system objects, and

mappings from one object to another (e.g. directory en-
tries to files, files to blocks). Therefore, we must define
the various objects that are generic across file systems.

At a high level, file systems manage four types of ob-
jects: files or directories, blocks or extents, directory en-
tries, and file-system wide settings (such as the block
size, file system size, or label). Thus, we provide an in-
terface for managing each of the objects, and any map-
pings between them. In this section, we motivate the
eVFS design by describing use cases for accessing and
manipulating these objects, including the need for trans-
actional support.

Inodes In the eVFS interface, similar to VFS, every
file system object, such as a file or directory, is uniquely
identified by an inode number and structure. File system
management applications frequently need to read, create
or update inode structures and their mappings to physi-
cal blocks. For example, a defragmentation tool needs
to scatter-gather fragmented blocks of a file into a new
contiguous extent, which involves updating the logical
to physical block mappings of an inode. The eVFS in-
terface thus provides support for allocating and updating
an inode. The inode allocation interface is finer-grained
than VFS file creation, since it does not allocate a di-



rectory entry or file blocks. The eVFS interface also al-
lows mapping and unmapping logical offsets of a file to
specific physical blocks, providing precise control over
these mappings.
Blocks and Extents Many management applications
require fine-grained control over the physical layout of a
file on disk. For example, an in-place file system conver-
sion tool needs to recreate files on the destination file sys-
tem that directly map to existing data blocks belonging
to the same files on the source file system, while avoid-
ing copying blocks as much as possible (see Section 3.1
for more detail). Thus, the interface allows allocation of
blocks and extents at specific physical addresses.

To allocate blocks and extents, applications need to
know the locations and sizes of free spaces. Mainte-
nance applications also require knowledge of the remain-
ing free space in the file system to determine whether
to start garbage collection. This information must be
obtained by processing block allocation metadata and
is thus a file-system specific operation. However, with
eVFS, we abstract away the file-system specific details
and provide a function that enables applications to iter-
ate through all free space extents in a file system, without
needing to know the format of the file system. The API
also allows applications to find the nearest available free
extent, or to check whether an extent is currently in use.

For file systems that support copy-on-write semantics
and snapshots, management applications can make in-
formed decisions based on whether an extent is private
to a file or shared by multiple files. For example, it is
easier to relocate private extents during garbage collec-
tion. To enable such logic, the interface supports retriev-
ing a reverse mapping that lists the inodes and their logi-
cal offsets that map to a particular extent. A defragmen-
tation tool can utilize this information to move an extent
by remapping all inodes that reference the extent to its
new location.
Directory Entries File systems use directory entries
to support mapping name(s) to an inode. Consider our
in-place file system conversion tool that needs to recre-
ate directories. It must iterate through the entries in the
source file system while making copies to the destination
file system. Therefore, the interface supports adding, up-
dating, or removing individual directory entries, as well
as iterating through the entries of a directory inode.
File-System Wide Settings A file system stores var-
ious parameters and options that describe the file sys-
tem format and the features that are supported. Some of
these parameters are common across different file sys-
tems, such as the total size of the file system, block size,
etc. Therefore, they can be exposed to support manage-
ment applications that modify the layout or format of the
file system (e.g., updating file system to a newer version,
changing the block size of an existing file system).

The eVFS interface provides generic support for man-
aging file-system wide settings in two ways. First, it
allows updating simple settings such as labels or file
system feature flags that do not require restructuring
the file system, similar to the functionality provided by
tune2fs [13] for the Ext3/Ext4 file systems. Second, to
support generic restructuring, the interface provides sup-
port for creating an empty file system, that performs the
same task as mkfs. As described later in more detail,
this interface allows our in-place file system conversion
tool to reformat the device to the destination file system
while keeping the file contents of the existing file sys-
tem intact. Similarly, a file system can be resized us-
ing this approach, although less efficiently than a custom
file-system specific resizing tool.
Transactions Since many of the operations supported
by the interface make the file system temporarily in-
consistent, the interface also provides transactional sup-
port to ensure atomicity so that other applications do
not see partial updates made by management applica-
tions. Transactional support is also necessary for provid-
ing crash consistency, which is often missing in manage-
ment applications [4]. Thus, eVFS also enables build-
ing robust management applications that are resilient to
power failures.

3 Implementation
In this section, we present our prototype of the eVFS API
and discuss our implementation of the API. Next, we de-
scribe the in-place file system conversion tool that we
have built using the eVFS interface.

Table 1 shows a partial set of functions in the eVFS
API. These functions provide fine-grained control by al-
lowing extents, inodes, and directory entries, to be indi-
vidually manipulated. We chose to use extent-based rep-
resentation for storage space since it generally requires
less metadata than the corresponding block-based repre-
sentation, and is thus preferred by modern file systems.
An application is expected to start a transaction before
issuing most eVFS operations.

We have implemented a subset of the eVFS API for
two file systems, the extent-based Ext4 file system, and
the log-structured F2FS file system, which enables con-
verting an Ext4 file system to an F2FS file system. Our
current implementation only works for offline use, i.e.,
the application has exclusive access to the unmounted
file system. The file-system specific implementation of
the API uses the Spiffy framework [12] that provides
robust parsing and serialization libraries, helping avoid
bugs while handling file system metadata.

We are currently working on supporting other de-
ployed VFS-based file systems, such as Btrfs and XFS.
Since our API is generic, we believe it should be possible
to extend it for non-VFS file systems as well.



3.1 File System Conversion Tool
Converting an existing file system to a different file sys-
tem is a tedious and time-consuming process that nor-
mally involves copying the full content of a file system
to another disk, reformatting the disk, and then copying
everything back to the new file system. In contrast, an
in-place file system conversion only updates file system
metadata, and does not move any regular file data unless
its location must be used by statically allocated metadata
of the destination file system. This technique can speed
up the conversion dramatically. While some such con-
version tools exist, they are hard to implement correctly1

and not generally available.
We have designed and implemented a crash-

consistent, in-place file system conversion tool using the
eVFS interface. The conversion tool uses user-level,
block-based redo journaling for ensuring crash consis-
tency. Unlike typical journals that have a fixed size (e.g.,
the Ext4 journal), the journal is dynamically allocated
from blocks that are currently free in both the source
and the destination file systems, which ensures that both
abort and redo recovery are possible since these blocks
are not in use by either file system. The free space infor-
mation is obtained by using the eVFS API. The dynamic
allocation of blocks also allows converting heavily frag-
mented file systems, and maximizing utilization of the
free space for the journal.

As an optimization, when a destination file system
block is written to free space in the source file system,
the block is written directly without being journaled. By
journaling the rest of the blocks that will overwrite the
source file system, we ensure crash consistency.

A complication occurs when a block that is currently
in use by the journal is allocated to the destination file
system. Allocating this block would cause the journal
to be overwritten during checkpointing. In this case, the
conflicting journal block is remapped to a different free
block, and then this freed block can be updated directly.

If the journaling layer runs out of free space, the con-
version process is aborted. We guarantee that this error
occurs before the transaction commits, so no data is lost
on a conversion failure.

An additional benefit of journaling is that the conver-
sion tool can handle large file systems since the source
file system metadata can be read while the destination
file system metadata is being written. In contrast, without
journaling, all source file system metadata would need to
be read into memory before starting conversion, or else
the source metadata could be overwritten.

The conversion tool starts a new transaction and then
creates an empty destination file system on the device

1E.g. the convertfs utility [14] requires sparse file support on the
source file system and performs full data copying

Spiffy Converter eVFS Converter
Application Application

Generic 504 Generic 224
Ext4 218 Ext4 -
F2FS 1780 F2FS -

Libraries Libraries
Generic 2250 Generic 2625
Journaling - Journaling 1350
Ext4 - Ext4 666
F2FS - F2FS 2152

Table 2: Lines of code for the Spiffy and the eVFS file-
system conversion tools.

storing the source file system. Next, it iterates through
the inodes of the source file system and creates the cor-
responding inodes in the destination file system. For reg-
ular files, it iterates through each extent in the source in-
ode, allocating the corresponding extent in the destina-
tion file system, and then copying over the mappings to
the destination inode. For each extent, we check whether
it overlaps with block(s) that are allocated in the desti-
nation file system. If so, we relocate the extent to free
space in the destination file system, and update the in-
ode that maps to this extent. For directories, we iterate
through the entries to recreate them in the destination file
system. Finally, we commit the transaction and allow
checkpointing to create the destination file system. The
commit information needs to be placed in a well-known
location that is not in use by either file system. Currently,
we use the boot record to store this information.

Some source file systems may inline data inside meta-
data (e.g., Ext4’s fast symlink) or perform subblock al-
location (e.g., ReiserFS’s tail packing). In these cases,
the conversion tool will need to copy the data using the
eVFS read/write interface since the data is not mapped
to an extent. When converting to a file system that lacks
the feature of the source file system, some information
may be lost. For example, converting a file system with
immutable snapshots to Ext4 will result in a copy of
the snapshots being created, since Ext4 does not support
snapshots.

4 Evaluation
In this section, we evaluate the programming effort
needed to build the in-place file system conversion tool,
and the performance cost of adding journaling to the con-
version tool. Evaluation comparing copy-based conver-
sion versus the in-place conversion tool can be found in
our previous work [12].

Programming Effort Table 2 shows the programming
effort for building the file-system conversion tool us-
ing the Spiffy framework [12] (Spiffy converter) and the
eVFS interface (eVFS converter). Both the converters
use the same logic, but the Spiffy converter’s applica-



tion code uses 2502 lines, which includes almost 2000
lines of file-system specific code, and it can only convert
from Ext4 to F2FS. The eVFS converter uses 224 lines of
generic file-system conversion code, less than 10% of the
Spiffy converter, and could be used to convert between
any pair of file systems that implement the eVFS API.
The libraries used by both applications provide generic
code (e.g., bitmaps, hash tables, etc.) for supporting
management applications. The file-system specific code
used by the eVFS converter is part of the eVFS library
and can be used by other management applications. Un-
like the Spiffy converter, the eVFS converter is crash-
consistent, requiring 1350 lines of journaling code.

Journaling Performance We compare the time it
takes to run the conversion tool with and without jour-
naling. We created a 128GB Ext4 partition with 20000
files that use a total of 64GB. On average, it took 13.68
seconds to complete the conversion with journaling, and
11.41 seconds without journaling. We believe a 20%
overhead is an acceptable trade-off for crash consistency.

5 Related Work
We had previously built a file system conversion tool us-
ing the Spiffy framework [12]. Spiffy uses an annotation
language to enable complete specification of the file sys-
tem format and then generates a robust library for parsing
and serializing the file system data structures. However,
Spiffy only helps identify the types of these structures,
and not their semantics, and thus still requires significant
file-system specific code. In contrast, the eVFS interface
is generic across file systems. In this work, we use Spiffy
for the file-system specific implementation of the eVFS
API, thus ensuring a robust implementation.

There are several libraries for accessing and ma-
nipulating file systems, such as libext2fs [13] and
libfsntfs that comes with ntfsprogs [8]. While
most of the functions provided by these libraries are file-
system specific, some are generic across file systems,
such as iterating through all inodes in the file system,
which we have adapted for the eVFS interface.

The DeviceIoControl function in the Win32 API
supports control codes that enable fine-grained changes
to the file system and its resources. For example,
FSCTL_MOVE_FILE allows for atomic remapping of a
file’s blocks [3]. The Win32 file and volume manage-
ment API ensures that each operation results in a consis-
tent file system state. In contrast, eVFS operations can
cause resource leaks or inconsistency when used incor-
rectly. However, eVFS enables more powerful manage-
ment applications, such as the conversion tool.

Many existing works extended storage interfaces to
simplify writing file systems, while improving their
reliability [10], security, functionality [9], or perfor-
mance [15, 1]. Our work is similar in spirit to these

works in that we have extended the file system interface
to reduce the effort of building file system management
applications. However, instead of pushing the decision
making down to the lower layer, we instead expose previ-
ously internal operations in the file system, thus enabling
applications that require more fine-grained control over
the file system.

6 Limitations and Future Work
While our approach helps with building generic manage-
ment applications, these applications will need to specifi-
cally handle file systems that support subsets of the eVFS
API. For example, in-place update file systems, such as
Ext4, generally do not track the reverse mapping from
extents to inodes, and so cannot implement this API call
efficiently. As a result, certain applications will either
not be able to support these file systems, or will require
different logic for such file systems.

Our API is designed to provide control over extents,
but these extents may be mapped to a non-linear phys-
ical address space. For example, modern file systems
such as Btrfs and ZFS incorporate volume management
and RAID-style redundancy within the file system, and
thus the extents may map to physically discontiguous
chunks of physical storage. Since some management ap-
plications may need control over these physical chunks
as well, we plan to explore the feasibility of generically
exposing this address space.

Our current eVFS implementation is designed for of-
fline applications, and provides crash consistency sup-
port. For online applications, we plan to provide trans-
actional support for eVFS operations without making
major changes to existing file systems (i.e., we do not
wish to convert them into transactional file systems,
which would add significant complexity to the entire ker-
nel [11]). Currently, we are exploring methods that reuse
the file system’s locking protocols to ensure that eVFS
operations can be committed atomically while ensuring
that existing applications cannot observe inconsistent file
system states.

7 Conclusion
The eVFS interface exposes a new, low-level file sys-
tem abstraction that enables control over allocation and
modification of file system objects and the mappings be-
tween them. These operations are necessary for building
generic file system management applications that make
fine-grained updates to file system metadata. We showed
the feasibility of our approach by building a file system
conversion tool. The application requires no changes to
support a file system that implements the eVFS interface.
We believe eVFS will enable exciting new applications
and reduce the programming effort for building them.



References
[1] ANAND, A., SEN, S., KRIOUKOV, A., POPOVICI, F., AKELLA,

A., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R., AND
BANERJEE, S. Avoiding file system micromanagement with
range writes. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation (2008), USENIX
Association, pp. 161–176.

[2] CARREIRA, J. A. C. M., RODRIGUES, R., CANDEA, G., AND
MAJUMDAR, R. Scalable testing of file system checkers. In Pro-
ceedings of the 7th ACM European Conference on Computer Sys-
tems (New York, NY, USA, 2012), EuroSys ’12, ACM, pp. 239–
252.

[3] CENTER, W. D. Defragmenting files. https:
//msdn.microsoft.com/en-us/library/windows/
desktop/aa363911(v=vs.85).aspx, 2018.

[4] GATLA, O. R., HAMEED, M., ZHENG, M., DUBEYKO, V.,
MANZANARES, A., BLAGOJEVIĆ, F., GUYOT, C., AND MA-
TEESCU, R. Towards robust file system checkers. In Proc. of the
USENIX Conference on File and Storage Technologies (FAST)
(2018), pp. 105–122.

[5] GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. SQCK: A declarative file sys-
tem checker. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Dec. 2008).

[6] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA, A., ESMET,
J., JIAO, Y., MITTAL, A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., KUSZ-
MAUL, B. C., AND PORTER, D. E. Betrfs: Write-optimization
in a kernel file system. ACM Trans. Storage 11, 4 (Nov. 2015),
18:1–18:29.

[7] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs: A new file
system for flash storage. In 13th USENIX Conference on File and
Storage Technologies (FAST 15) (2015), pp. 273–286.

[8] MATHES, S. The interoperability power of linux-ntfs tools. Linux
Journal 154 (2007), 1.

[9] SHIN, J.-Y., BALAKRISHNAN, M., MARIAN, T., AND WEATH-
ERSPOON, H. Isotope: Transactional isolation for block storage.
In Proc. of the USENIX Conference on File and Storage Tech-
nologies (FAST) (2016), p. 23.

[10] SIVATHANU, G., SUNDARARAMAN, S., AND ZADOK, E. Type-
safe disks. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2006), pp. 15–28.

[11] SPILLANE, R. P., GAIKWAD, S., CHINNI, M., ZADOK, E.,
AND WRIGHT, C. P. Enabling transactional file access via
lightweight kernel extensions. In Proc. of the USENIX Confer-
ence on File and Storage Technologies (FAST) (2009), pp. 29–42.

[12] SUN, K., FRYER, D., CHU, J., LAKIER, M., BROWN, A. D.,
AND GOEL, A. Spiffy: enabling file-system aware storage appli-
cations. In Proc. of the USENIX Conference on File and Storage
Technologies (FAST) (2018), pp. 91–103.

[13] TS’O, T. E2fsprogs: Ext2/3/4 filesystem utilities. http://
e2fsprogs.sourceforge.net/, 2017.

[14] TZUKANOV, S. In-place file system conversion. http://
tzukanov.narod.ru/convertfs.

[15] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. De-indirection for flash-based ssds
with nameless writes. In Proc. of the USENIX Conference on
File and Storage Technologies (FAST) (2012).

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363911(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363911(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363911(v=vs.85).aspx
http://e2fsprogs.sourceforge.net/
http://e2fsprogs.sourceforge.net/
http://tzukanov.narod.ru/convertfs
http://tzukanov.narod.ru/convertfs

	Introduction
	Approach
	Implementation
	File System Conversion Tool

	Evaluation
	Related Work
	Limitations and Future Work
	Conclusion

