
Hailstorm: Disaggregated Compute and Storage for
Distributed LSM-based Databases

Laurent Bindschaedler
EPFL

laurent.bindschaedler@epfl.ch

Ashvin Goel
University of Toronto

ashvin@eecg.toronto.edu

Willy Zwaenepoel
University of Sydney

willy.zwaenepoel@sydney.edu.au

Abstract
Distributed LSM-based databases face throughput and la-
tency issues due to load imbalance across instances and inter-
ference from background tasks such as flushing, compaction,
and data migration. Hailstorm addresses these problems by
deploying the database storage engines over a distributed
filesystem that disaggregates storage from processing, en-
abling storage pooling and compaction offloading. Hailstorm
pools storage devices within a rack, allowing each storage
engine to fully utilize the aggregate rack storage capacity
and bandwidth. Storage pooling successfully handles load im-
balance without the need for resharding. Hailstorm offloads
compaction tasks to remote nodes, distributing their impact,
and improving overall system throughput and response time.
We show that Hailstorm achieves load balance in many Mon-
goDB deployments with skewed workloads, improving the
average throughput by 60%, while decreasing tail latency by
as much as 5×. In workloads with range queries, Hailstorm
provides up to 22× throughput improvements. Hailstorm
also enables cost savings of 47-56% in OLTP workloads.
CCS Concepts • Information systems → Distributed
storage; Key-value stores; Relational parallel and dis-
tributedDBMSs;Physical datamodels; •Computer sys-
tems organization→ Secondary storage organization.
Keywords Hailstorm, disaggregation, compute, storage, dis-
tributed, database, key-value store, skew, compaction offload-
ing, RocksDB, MongoDB, TiKV, TiDB, YCSB, TPC-C, TPC-E
ACM Reference Format:
Laurent Bindschaedler, Ashvin Goel, and Willy Zwaenepoel. 2020.
Hailstorm: Disaggregated Compute and Storage for Distributed
LSM-based Databases. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3373376.3378504

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378504

1 Introduction
Distributed databases such as MongoDB [1], Couchbase
Server [32], or Apache Cassandra [2] have become the new
standard for data storage in cloud applications. Internet com-
panies use them to power large-scale services such as search
engines [34, 39], social networks [2, 3, 23, 24, 31, 69], online
shopping [1, 41], media services [4], messaging [28], financial
services [5, 33], graph analytics [6], and blockchain [7, 45, 56].
As distributed databases become the de facto storage systems
for distributed applications, ensuring their fast and reliable
operation becomes critically important.

Distributed databases shard data across multiple machines
and manage the data on each machine using embedded stor-
age engines such as RocksDB [31], a Log-Structured Merge-
tree [60] (LSM) key-value (KV) store. These databases can
suffer from unpredictable performance and low utilization
for two reasons. First, skew occurs naturally in many work-
loads and causes CPU and I/O imbalance, which degrades
overall throughput and response time [47, 52, 55, 71]. Current
LSM-based databases address skew by resharding data across
machines [1, 2, 8–10] but this operation is expensive because
it involves bulk migration of data, which affects foreground
operations. Second, background operations such as flushing
and compaction can cause significant I/O and CPU bursts,
leading to severe latency spikes, especially for queries span-
ning multiple nodes such as range queries [20, 22, 39, 42, 51].
These problems are hard to address in existing systems be-
cause the storage engines operate independently of each
other and thus are unaware of resource usage and back-
ground operations on other machines. As a result, these
databases experience significant imbalance in terms of CPU
and I/O load, and storage capacity.
This paper presents Hailstorm, a lightweight distributed

filesystem specifically designed to improve load balance
and utilization of LSM-based distributed databases. Figure 1
shows the high-level architecture of a generic distributed
database running with Hailstorm. Hailstorm is deployed un-
der the storage engines running on each machine.

The key idea in Hailstorm is to disaggregate compute and
storage, allowing each to be load balanced and scaled inde-
pendently, thus improving overall resource utilization.
Hailstorm improves storage scaling by pooling storage

within a rack at a fine granularity so that each database
storage engine can seamlessly access the aggregate rack stor-
age bandwidth. The data for each database shard is spread

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

301

https://doi.org/10.1145/3373376.3378504
https://doi.org/10.1145/3373376.3378504
https://doi.org/10.1145/3373376.3378504

Database
Instance 0

. . .Storage
Engine

Distributed Database

Database
Instance 1

Database
Instance N-1

Storage
device 0

Storage
device 1

Storage
device N-1

. . .

Storage
Engine

Storage
Engine

Hailstorm

Figure 1. High-level architecture of a distributed database with
Hailstorm. Storage engines access storage devices through the Hail-
storm filesystem which pools all storage devices within a rack.

uniformly across all the storage devices in a rack in small
blocks (1 MB). This approach effectively provides a second,
storage-level sharding layer that guarantees high storage uti-
lization even in the presence of skew, removes per-node disk
space constraints, and eliminates the need for database-level
resharding within the rack. Together storage pooling and
fine-granularity data spreading allow Hailstorm to improve
I/O and storage capacity balance.

Hailstorm improves CPU scaling by offloading expensive
background compaction tasks to other less utilized nodes,
leveraging uniform, fine-grained storage pooling. Our ap-
proach reduces the CPU impact of compactions on over-
loaded nodes, frees up CPU cycles for user requests and
lowers the memory footprint, thereby improving through-
put and query response time.
We evaluate the performance of Hailstorm with Mon-

goDB [1], a widely-used distributed database with a key-
value store interface, running over Mongo-Rocks [8], an
adapter for the popular RocksDB [31] storage engine. For
our benchmarks, we use the reference Yahoo Cloud Serving
Benchmark (YCSB) workloads [38] as well as two production
workloads from Nutanix. We also experiment with TiDB [9],
a state-of-the-art distributed database that supports SQL
ACID transactions and bundles RocksDB as its storage en-
gine. With TiDB, we evaluate the benefits of Hailstorm on
industry-standard TPC-C [62] and TPC-E [35] benchmarks.

Hailstorm provides throughput improvements for skewed
YCSB workloads running on MongoDB of 60% on average
and up to 22× for scan workloads. It also reduces tail latency
by 4-5× in skewed write workloads. On the production traces
with skew, Hailstorm achieves 3× higher and stable through-
put. With TiDB, Hailstorm improves throughput by 56% on
TPC-C and 47% on TPC-E.

We make the following contributions in this paper:

• Wepresent Hailstorm, a system that disaggregates storage
and compute for distributed LSM-based databases (§3).

• We demonstrate how the specialized, distributed Hail-
storm filesystem for LSM storage engines (§3.2) uses

pooled storage and fine-grained spreading of data across
machines to scale storage within a rack (§3.3).

• We leverage our filesystem design to provide amechanism
to scale CPU resources by seamlessly offloading expensive
background tasks to less utilized nodes (§3.4).

• We show that Hailstorm’s approach is the proper way to
mitigate skew in various workloads and databases, and
that the system successfully achieves load balance in both
storage and compute (§5).

The rest of the paper describes our approach. Section 2
provides background information and discusses challenges
in current systems. Section 3 presents the design of Hail-
storm. Section 4 covers implementation. Section 5 evaluates
the performance of Hailstorm. Section 6 discusses and com-
pares Hailstorm to related work, and Section 7 provides our
conclusions.

2 Background & Challenges
We discuss the issues and challenges involved in dealing
with skew and I/O bursts in distributed databases and LSM
stores, which we support with empirical evidence.

2.1 Skew in Distributed Databases
Distributed databases [1, 2, 4, 5, 10, 23, 34, 39, 41, 69] store
data on many nodes, and are designed for large-scale data
storage and low-latency data access. Although different dis-
tributed databases offer query abilities ranging from simple
key-value semantics to SQL transactions, they all require
sharding, i.e., partitioning data across multiple database in-
stances, in order to store large datasets. Data is usually parti-
tioned by collection or table using range-based or hash-based
key partitioning.

The database engine translates user queries into individual
queries that are routed to one or multiple database instances
for execution. The set of database instances accessed by a
query can vary significantly from one query to another and
depends on the sharding policy. For example, while many
reads and writes typically access a single instance, range
queries and transactions may involve many instances.

Skew occurs naturally in many distributed workloads [47,
52, 55, 71], because some keys are more popular than others.
As a result, sharding inevitably leads to data imbalance across
the nodes that make up a distributed database. This uneven
key distribution can cause capacity problems if a node has
too much data to store locally. More importantly, uneven
key distribution results in uneven accesses that cause load
imbalance as some nodes perform more operations.

2.2 Compaction in LSM KV Stores
Log-Structured Merge-tree (LSM) KV stores [11, 31, 45, 63]
are a popular way to provide persistent storage in single-
node production environments, especially for write-heavy

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

302

workloads. They provide key-value semantics using an in-
memory buffer that is periodically flushed to disk when it
becomes full. In case of failure, LSM KV stores recover the
data in the in-memory buffer using a write-ahead log.

LSM KV stores organize data on disk in files sorted by key,
called Sorted String Tables (sstables). The sstables are main-
tained in a tree-like data structure, with higher levels of the
tree containing larger sstables. The key ranges of different
sstables in a given level Li do not overlap, except for the first
level, L0 which corresponds to flushed in-memory buffers.
LSM KV stores preserve the tree structure using background
operations called compactions that merge sstables in Li with
overlapping sstables in Li+1, while discarding duplicates.

Compactions run in separate background threads as they
are typically expensive operations in terms of both CPU
and I/O. Executing a compaction at Li requires reading all
overlapping sstables in Li+1 to perform an external merge
sort before writing back the new sstables. Since sstables are
larger as we go to higher levels, this results in high write
amplification, where a single, small sstable causes multiple
larger sstables in the higher level to be read and written. The
larger the sstables involved are, the longer the compaction
and the more resources are required. For example, if the
highest LSM level contains hundreds of gigabytes, a single
compaction involving that level can take minutes to hours.

Figure 2 shows the throughput fluctuation over a one-hour
time period for RocksDB [31], running YCSB A, a workload
consisting of 50% reads and 50% writes. The throughput re-
mains generally between 18 KOps/s and 32 KOps/s with an
average of 22.4 KOps/s, but repeatedly drops to ∼2.7 KOps/s.
The performance degradation is due to compaction threads
competing for CPU and I/O resources with the threads ser-
vicing client requests. Profiling this particular experiment
reveals that storage is saturated as I/O bandwidth remains
almost constantly close to 320 MB/s, the maximum write
bandwidth for our SSD. We also observe peaks of CPU uti-
lization when compaction tasks run. As more data is stored,
compactions becomemore expensive, throughput drops to as
low as ∼0.6 KOps/s around 01:00, and compaction duration
quadruples to 9 seconds.

 0
 5

 10
 15
 20
 25
 30
 35
 40

00:00 00:15 00:30 00:45 01:00T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

Figure 2. Embedded RocksDB throughput over time (HH:mm) on
a node equipped with an Intel S3500 Series SSD using the YCSB
A [38] workload (50% reads and 50% writes).

Table 1 shows the average and tail latencies in the same
experiment. Latency spikes coincide with the execution of

compaction tasks. Compaction tasks not only limit the avail-
able CPU and I/O bandwidth for read operations and writes
to the write-ahead log, but also slow down flushing of the
in-memory buffer when it becomes full, preventing the sys-
tem from accepting more writes. Upon profiling, we find that
writer threads are stalled 48.4% of the time due to flushing.

Mean P50 P99 P99.9 P99.99 Max
1.6ms 0.7ms 35.1ms 72.1ms 181.3ms 69.5s

Table 1. RocksDB latency profile. YCSB A, 50% reads - 50% writes.

Several solutions have been proposed to reduce the impact
of background operations in LSMs on individual nodes, but
they do not take advantage of spare resources and capacity
on other database nodes [11, 26, 63].

2.3 Distributed Databases with LSM Storage Engines
Many distributed databases rely on embedded LSMKV stores
for local storage on each of their database instances in order
to benefit from their high performance [2, 8–10, 69].
This two-layer architecture can, however, lead to situa-

tions where both layers interfere with each other, combin-
ing the undesired effects of skew (§2.1) and expensive back-
ground operations (§2.2) and causing severe performance
degradation for database users. Skew causes some nodes to
experience higher load from user requests, causing overload,
and background operations become more intensive since
these nodes manage more data. If the requests served by
the database have dependencies or high fan-out, these over-
loaded nodes become stragglers, and performance across the
whole database collapses.

MongoDB, likemany other distributed databases addresses
skew by resharding, i.e., sharding again, to remove hotspots
and improve load balance. Resharding operations, performed
manually or automatically at the database layer, include
adding a new shard, splitting one shard into multiple shards,
or merging multiple shards into one. Resharding involves mi-
grating existing data from one shard to another, often located
on a different database instance. Resharding is expensive be-
cause it introduces background operations that compete for
resources with regular operations. Unlike resharding in B-
tree-based databases, which is usually performed by splitting
B-tree nodes [21, 68], resharding in LSM-based databases is
more complex because data is stored in files with overlapping
key ranges. As database instances strive to maintain their
LSM data structure in the presence of additions and dele-
tions due to migrations, additional flushing and compaction
tasks are required. These compactions cause significant am-
plification of I/O and CPU usage. Furthermore, resharding
decisions are usually taken by the distributed database based
on its own load metrics, without regard to I/O load on indi-
vidual instances and their current background operations.

Figure 3 compares the throughput fluctuation over time
for 8 MongoDB instances using RocksDB for storage. We run

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

303

YCSB A, a write-intensive workload, YCSB C, a read-only
workload, both with single-key queries, as well as YCSB E, a
read-write workload with range queries, with both uniform
and skewed (Zipfian) distributions.

 0
 20
 40
 60
 80

 100
 120
 140
 160

00:00 00:15 00:30 00:45 01:00T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

) uniform zipfian

YCSB A

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

00:00 00:05 00:10T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB C

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB E

Figure 3. MongoDB aggregate throughput on 8 instances over
time (HH:mm) for the YCSB workloads A, C, and E with uniform
and Zipfian key distribution. The database is first populated with
100 GB of data before executing each workload with an additional
100 GB. EachMongoDB instance is configured to use the LSM-based
RocksDB [31] storage engine.

In all three cases, the throughput is degraded with Zip-
fian request distribution whereas the uniform throughput
is higher and more constant. Skewed workloads therefore
take longer to finish: YCSB A, C, and E respectively run 3.3×,
1.4×, and 8.5× slower due to skew.

In YCSB A with Zipfian distribution, the per-instance
throughput is much higher on one node than it is on the
others. That node serves ∼75% of requests and experiences
high CPU usage and I/O load. This highlights the problem
when skew in the workload and background operations are
combined. During the entire execution, MongoDB attempts
to recover from this hotspot by rebalancing shards and re-
distributing a total of 25.4 GB of data across other database
instances, thus reducing data skew from 9× to 5×. However,
this data migration causes more expensive flushes and com-
pactions as the offloaded keys are deleted from one instance
and written to another, and results in additional performance
degradation and longer throughput drops, e.g., at 00:37.
In YCSB C, the per-instance throughput in the skewed

scenario also suffers from significant imbalance, with one

node serving almost 3× more requests than the others. Mon-
goDB’s shard rebalancer runs constantly during this work-
load and migrates data from the node experiencing high
load to the others, leading to an increase in throughput from
∼140 KOps/s to ∼150 KOps/s in 15 minutes. We observe
flushes and compaction tasks on each database instance as
a result of data migration, causing occasional sharp drops
in throughput, e.g., at 00:04. These results demonstrate that
even read-only workloads can suffer throughput degradation
and exhibit similar characteristics as write-heavy workloads
due to resharding.
In YCSB E, the throughput in the Zipfian case is signif-

icantly degraded and frequently drops close to 0 as range
queries are stalled by compactions competing for I/O band-
width and CPU resources on overloaded nodes. We profile
system resource usage and find that the most overloaded
node oscillates between 100% CPU and 100% I/O usage for
2 hours. While the uniform workload completes after 3.5
hours, the skewed workload completes in 30 hours, with
1/8th the throughput and 99-percentile latency 5 orders of
magnitude higher. After 2.5 hours of execution, the combi-
nation of resharding overhead and increasingly expensive
compactions cause near zero throughput for over an hour.
Overall, the MongoDB shard rebalancer is unable to ad-

dress imbalance in the face of skew and high request rate.
Resharding often comes too late and is too slow to be re-
ally effective. In addition, data migrations trigger additional
background operations on database instances which impact
the foreground tasks and make the overload worse.

2.4 Summary
We have shown that skew has significant impact on appli-
cation performance, and storage engines suffer from I/O
bursts due to background operations such as flushing and
compaction.When skew and I/O bursts are combined, perfor-
mance can collapse. In addition, resharding rarely improves
performance, especially when run during peak loads and in
the presence of hotspots. By rebalancing shards, distributed
databases attempt to solve three orthogonal problems: CPU,
I/O load, and I/O capacity imbalance. These challenges moti-
vate a more synergistic approach, taken in Hailstorm, where
we disaggregate resources to address load balancing at the
database and the storage layers independently.

3 The Hailstorm Design
Figure 4 expands on Figure 1 to show the detailed Hailstorm
architecture corresponding to a typical deployment. Each
datacenter node runs the high-performance, distributed Hail-
storm filesystem, consisting of a client that provides a filesys-
tem interface to storage engines, a server that stores data,
and a Hailstorm agent that schedules and outsources com-
paction tasks on behalf of the local storage engine. Clients
and servers are provisioned independently and can run on

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

304

separate, possibly dedicated nodes. In the rest of this pa-
per, we make the assumption that clients and servers are
co-located. Database instances use the Hailstorm filesystem
instead of local storage for data persistence. Hailstorm pools
all storage devices within the same rack together to provide
its storage service.

Local Storage

Database Instance 0

Local Storage Local Storage

. . .Storage Engine

Distributed Database

Application 1

Database Client

Application 2

Database Client

Datacenter Node

Database Instance 1

Storage Engine

Datacenter Node

Database Instance N-1

Storage Engine

Datacenter Node

Storage Blocks

Hailstorm
FS Client

Hailstorm
Agent

Hailstorm
FS Server

Hailstorm
FS Client

Hailstorm
Agent

Hailstorm
FS Server

Hailstorm
FS Client

Hailstorm
Agent

Hailstorm
FS Server

High-speed Network

Figure 4. Distributed database deployed on a Hailstorm archi-
tecture. Hailstorm spreads data uniformly for each storage engine
across all pooled storage devices within the rack.

The distributed database operates the same way as in
traditional deployments as it is oblivious to the fact that
storage engines are using Hailstorm. User queries are served
as usual, but individual storage engines now perform storage
operations across the network using the Hailstorm pooled
storage service.
In the remainder of this section, we present an overview

of the Hailstorm design. We first discuss and motivate the
filesystem architecture. We then describe the storage archi-
tecture, including some optimizations and handling of fault
tolerance. Finally, we demonstrate how our approach sup-
ports efficient compaction offloading.

3.1 Hailstorm Design Principles
Hailstorm is built on the following design principles:

1. Resource disaggregation. Disaggregating resources
is a proven way to scale them independently and pro-
vide better utilization. In Hailstorm, we disaggregate
compute from storage, enabling each resource to be
scaled and load balanced independently.

2. Storage pooling. By introducing below the LSM stor-
age engines a filesystem layer that pools together all
storage devices within a rack, we gain the ability to
mitigate storage hotspots and relieve nodes with taxed
storage resources by spreading the I/O load.

3. Fine-grained spreading of data. By splitting data
into small blocks and spreading them uniformly across
all storage devices, we remove I/O hotspots and single-
disk capacity issues altogether. The introduction of
this new layer of indirection can be thought of as a
storage-level sharding layer that guarantees uniform
data placement and fine-grained storage load balance.

4. Compaction offloading. Compaction tasks are nec-
essary to maintain the LSM structure and to provide
good read performance, but use significant resources
which causes interference on nodes with a high load.
Pooled storage allows Hailstorm to efficiently move
compactions to nodes with spare CPU and memory.

3.2 Filesystem Architecture
Hailstorm exposes a subset of the standard POSIX filesys-
tem interface as required by storage engines. This filesystem
interface serves as a drop-in replacement for the local filesys-
tem used by storage engines for data persistence. The Hail-
storm filesystem uses a traditional client-server architecture,
where each client can access and store data on all servers
within the same rack, thereby allowing the shards of one
storage engine to span multiple physical storage devices.

Why a Filesystem? We choose to expose a filesystem inter-
face, instead of providing a block-level interface, because it
provides the desired visibility into the operations of storage
engines. In particular, we require knowledge of the sstable
files used by the LSM store to perform compaction offloading.
In addition, the filesystem interface provides support for op-
erations such as mmap() that are commonly used by storage
engines. File-level visibility also allows us to perform more
informed prefetching. Another significant benefit of using
a standard POSIX file interface is that it requires minimal
modifications to the storage engine code.

What About Using Existing Filesystems? Unlike existing
distributed filesystems [12, 40, 46, 67, 70], Hailstorm is spe-
cialized for LSM KV stores. This specialization obviates the
need for Hailstorm to implement many complex features
found in traditional distributed and cluster filesystems. Since
sstable files are not modified in place and only shared across
storage engines for compaction offloading, Hailstorm does
not require any support for fine-grained file sharing. There-
fore, Hailstorm keeps most file metadata locally, avoiding the
need for centralized metadata management. We use smaller
block sizes (e.g., 1 MB) than most distributed filesystems to
keep I/O latency low. Since LSM KV stores already use jour-
naling, Hailstorm does not need to implement journaling to
ensure filesystem consistency.
Hailstorm can leverage its specialization to optimize for

efficient data access, in particular fast sequential operations
on sstables, which is necessary for good compaction perfor-
mance. We perform aggressive prefetching on behalf of the
compaction tasks, and provide remote, in-memory caching

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

305

for large data sets using the page cache-backed nature of our
implementation. Optionally, we allow write-ahead logs to
remain on fast, local storage, facilitating failure recovery.

3.3 Storage Architecture
The first step to provide compute-storage disaggregation
is to enable storage to scale within a rack. Hailstorm pools
storage from all machines within a rack using a client-server
filesystem approach.

Pooling Storage Hailstorm decouples logical from physical
storage and splits the data into small blocks. Each Hailstorm
client exposes a filesystem interface to its co-located storage
engine and stores the data at block granularity on all storage
devices, thereby spreading the load and enabling fast data
access from any client.
This makes it possible to absorb storage load in the pres-

ence of peaks on database instances by spreading I/O opera-
tions to all Hailstorm servers within the rack. LSM storage
engines running on Hailstorm can therefore sustain reads
and writes during compactions, and avoid flush stalls [27].
It also enables efficient compaction offloading since the ssta-
bles for a particular storage engine can be accessed from any
client and thus storage does not become a bottleneck. Pool-
ing storage also has an important consequence for capacity:
small and large shards can cohabit within a rack without
requiring additional provisioning or expensive rebalancing.
Since we are operating at rack-level, we need not worry

about locality considerations: as long as the top-of-rack
switch provides full bisection bandwidth and the network
is fast enough, accessing remote storage incurs virtually no
penalty (barring a negligible increase in latency of a few
microseconds). Hailstorm clients access data blocks using an
efficient and low-latency decentralized scheme, thus avoid-
ing the need for a separate namespace server. We ensure
high storage utilization by prefetching data using a batch
sampling strategy, as described in more detail below.

Data Placement and Access A Hailstorm client splits all
files into small blocks (typically 1 MB) and spreads blocks
uniformly in a pseudorandom cyclic order across servers.
This scheme makes it easy to locate any block of data within
a file. Given a file F , block size B, number of servers N , and
a pseudorandom mapping function MF : {0...N − 1} →

{0...N − 1}, the byte at offset I in F is on server MF (⌊
I
B ⌋

mod N) in block number ⌊ I
BN ⌋. When files are accessed

sequentially, e.g., when reading sstables for compaction, the
client automatically prefetches several blocks on behalf of
the storage engine.

Since data placement is deterministic, there is no need for
coordination between clients to access data, which reduces
latency. Furthermore, each client can read from and write to
its files independently.

Metadata Hailstorm identifies files by a universally unique
identifier (uuid) and stores them in a flat namespace across
servers. As mentioned earlier, Hailstorm divides files in
blocks. Each server stores its blocks for the file sequentially
in a file, identified by the uuid, on local storage. Each Hail-
storm client keeps the mapping between file path and uuid
locally, ensuring clients can only see and modify their files,
and not the files created by others. Clients also keep all other
metadata (file path, size, timestamps, permission, etc.) locally,
since the file is typically only accessed by a single database
instance. When file sharing across clients is necessary, such
as with compaction, sharing uuids and metadata is sufficient
to provide access.

Storage Load Balancing Clients can independently re-
quest any block in a file from any server, and they can add
or replace blocks at any server. This decentralized approach
reduces latency as it avoids the need for a centralized data
directory, but can lead to load imbalance.

In the absence of any coordination between clients access-
ing different servers, we minimize the chances of causing
load imbalance across servers in two ways. First, the pseudo-
random mappingM is a function of the file path (as denoted
previously byMF), which ensures that different clients work-
ing on different files do not operate in lockstep. Second, we
use batch sampling to ensure high storage utilization by en-
suring there are always multiple pending operations. This is
inspired by recent work [29, 54, 59, 64]. We assume there are
as many clients as servers. Each client concurrently reads
and writes from K distinct servers. Given N servers, there
will always be KN pending operations within the rack. This
ensures that the probability that all servers receive at least
one request is at worst 1 − (1 − 1

N)KN [29]. For a value of
K = 3, this probability is 95% and for K = 5, we get over 99%.

In order to ensure that each server always has K outstand-
ing requests ready to service and not in transit, we amplify
the request window size at clients by a factor Φ, so that
each client always has ΦK pending requests. Φ is necessary
to account for network delays and message processing (se-
rialization, etc.). It can be estimated as Φ = 1 + dnetwork

dstoraдe
where dnetwork is the application-level round-trip time on
the network and dstoraдe is the time for storage to service
one request [64].

Read Optimizations LSM KV stores must often access
multiple sstables to find the value for a key. If reads across
the network were to use the same block granularity as writes,
this may cause long delays. Hailstorm optimizes for this
scenario by having reads from foreground threads execute
at smaller block granularity, thereby reducing block access
latency. Flushing and compaction use the default block gran-
ularity to maximize I/O performance. In order to guarantee
high storage utilization with smaller granularity requests,
we use a larger amplification factor Φ value for reads.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

306

Asynchronous I/O Hailstorm performs most I/O opera-
tions asynchronously with the exception of fsync(). Stor-
age engines rely on fsync() to guarantee that storage is in
sync with the in-core state, so we use a blocking implemen-
tation to ensure correct fsync() semantics.

Fault Tolerance Distributed databases rely on replication
to provide fault tolerance. They replicate data across replica
sets that are located on different machines, different racks,
different availability zones within a datacenter, and possibly
across datacenters. LSM storage engines ensure durability
by using a write-ahead log (WAL).

In the event of a crash, Hailstorm primarily relies upon the
failure recovery mechanisms implemented by LSM storage
engines and distributed databases. Replication is a concern
for the distributed database layer, and is better implemented
there than at the filesystem level where there is insufficient
visibility into the entire database. Hailstorm allows databases
to perform replication transparently, but requires that repli-
cas be placed in different racks, so they do not all become
unavailable at the same time due to failures in a storage pool.

When deploying distributed databases on top of Hailstorm,
a single disk failure or machine crash may cause all shards
within the rack to become unavailable since data for each
shard is spread uniformly. Hailstorm mitigates single disk
failures using standard techniques to ensure redundancy,
e.g., RAID [61]. In addition, the system supports optional
primary-backup replication at the block level to further pro-
tect data durability and filesystem availability. File metadata
is persisted locally and replicated. All other state inHailstorm
is soft state and can be lost without affecting correctness.

3.4 Compaction Offloading
The second step to provide compute-storage disaggregation
is to enable compute tasks to scale out to other nodes within
the rack. Hailstorm improves response time on overloaded
nodes by outsourcing compaction tasks to other machines.
Compaction offloading therefore helps alleviate CPU load,
while storage pooling helps alleviate pressure on storage.

Compaction Mechanism Hailstorm runs a lightweight
agent alongside each client and database instance to monitor
resource usage. Agents intercept all automatically triggered
compaction jobs on their co-located LSM storage engine. If
the agent believes that the local machine is overloaded, it
pauses the compaction threads and attempts to offload the
compaction to another node in the rack with lower load.
Otherwise, it allows the compaction job to proceed locally.
If the agent decides to offload the compaction job, it extracts
the relevant parameters (e.g., which sstable files should be
compacted), and contacts a peer on another node to run the
compaction on its behalf. The agent informs its peer of the
details of the compaction job and transfers the associated
file metadata. The remote agent spawns a new LSM storage
engine process on its node with the sole purpose of running

an manual compaction job equivalent to the one that was
offloaded. Since compaction does not modify the files in
place, no additional synchronization between the two agents
is necessary. When compaction completes, the remote agent
notifies the agent on the original node with the list of newly
created sstable files and their associated file metadata, and
wakes up the paused compaction threads. This allows the
original LSM storage engine to take ownership of the new
sstables and install the compaction locally.

Overload Detection If a database instance is already expe-
riencing significant load, the additional execution of back-
ground tasks using significant resources such as compaction
can lead to request queuing and stall flushing of the in-
memory buffer, thereby causing longer tail latencies and
degradation in throughput. Since our design pools secondary
storage and the network is fast at the rack level (as is the
case in many deployments), compaction tasks primarily lead
to CPU and/or memory bottlenecks in Hailstorm.

Compaction Policy Database operators can implement
various compaction policies based on their service-level ob-
jectives (SLOs), such as running dedicated compaction nodes.
By default, Hailstorm uses a simple heuristic to deter-

mine whether to try and offload a local compaction task.
Each Hailstorm agent measures CPU utilization periodically
and maintains an exponential moving average (EMA) with
weight α that is shared with other agents on the same rack.
Whenever an agent intercepts a local compaction task, it
offloads compaction to the node with the lowest EMA value,
provided that the difference between its EMA value and the
target node’s is larger than a customizable threshold θ . This
scheme balances CPU load within a rack over time.

In practice, we find that values of α = 0.5 (with 1-second
CPU sampling period) andθ = 0.2work fairly well. Disabling
compaction offloading can be achieved by setting θ ≥ 1.

4 Implementation
Hailstorm is implemented in about 1,000 lines of C++ code.
We use FUSE [13] to provide a filesystem interface to storage
engines and use about 2,000 lines of Scala code to implement
distribution, client-server communication, and Hailstorm
agents. We choose FUSE to simplify development, but alter-
native approaches such as Parallel NFS [14] are also possible.
We interface Scala with our C++ FUSE module using the
Java Abstracted Foreign Function Layer [15] for high perfor-
mance and low overhead. We use the Akka toolkit [16] for
high performance concurrency and distribution. For simplic-
ity, we use the local ext4 [53] filesystem to store blocks on
servers. We find that the overhead of using a filesystem on
the server side is negligible with our block sizes.

Supported databases Hailstorm does not require anymod-
ifications to storage engines or databases when used for stor-
age pooling. We have successfully tested Hailstorm with

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

307

RocksDB [31], as well as API-compatible variants of Lev-
elDB [45], including PebblesDB [63] and HyperLevelDB [11].
Hailstorm has been tested for deployment under Mon-

goDB [1] using MongoRocks [8] as its storage engine, as
well as TiDB [9], whose KV store, TiKV [9], uses an embed-
ded RocksDB engine. It should in principle be possible to
deploy Hailstorm in any distributed database environment
which uses compatible LSM-based storage.

Compaction Offloading For compaction offloading, we
intercept compaction tasks and invoke Hailstorm agents
in order to execute these compactions remotely, and there-
fore need to make small changes to RocksDB (∼70 lines of
code). In addition, to perform remote compaction, we spawn
a RocksDB process modified to remove some checks that
would otherwise prevent compaction to run (6 lines of code
commented out).

I/O Granularity and Batch Sampling Hailstorm uses a
block size of 1 MB. Our sensitivity analysis indicates that
block sizes ranging from 100 KB to 4 MB provide similar
performance. 1 MB provides a good balance between per-
formance and remote access latency, incurs minimal impact
from random accesses to disk, and helps us minimize FUSE
overhead by reducing the number of transitions to kernel
mode. We pick a block size of 64 KB for client reads, which
provides a good balance between latency and overhead from
I/O accesses and FUSE. Each Hailstorm client concurrently
has ΦK = 10 pending requests for 1 MB blocks and ΦK = 100
for 64 KB blocks (see Section 3.3), which we have empirically
determined to work best in our cluster environment.

5 Evaluation
5.1 Goals
We evaluate Hailstorm using synthetic and production work-
loads on popular storage engines and distributed databases.
Our evaluation sets out to answer the following questions:

1. How do distributed databases perform when deployed
on Hailstorm in terms of throughput and latency, es-
pecially in the presence of skew? (§5.3)

2. Does resharding help in traditional deployments? How
does it compare with Hailstorm? (§5.3)

3. Can databases supporting distributed SQL transactions
benefit from using Hailstorm? (§5.4)

4. What is the impact of different features of Hailstorm
on performance and how does it compare with other
distributed filesystems such as HDFS? (§5.5) Do con-
figuration values affect performance? (§5.6) Can Hail-
storm improve throughput for B-trees? (§5.7)

5.2 Experimental Environment
Hardware We run this evaluation on up to 18 dedicated 16-
core machines (2 CPU sockets with Xeon E5-2630v3). Each
machine has 128 GB of DDR3 ECC main memory and an

SSD providing a read bandwidth of 420 MB/s and a write
bandwidth of 320MB/s, as reported by fio [17]. The machines
are connected to a 40GigE top-of-rack switch that provides
full bisection bandwidth.

LSM KV stores We evaluate the performance of Hailstorm
using RocksDB [31] (version 6.1), a popular LSM-based single-
node KV store.

Distributed databases We use two distributed databases
with different designs and characteristics:

• MongoDB [1] (version 3.6), a popular and widely used
database with a key-value store interface. MongoDB
offers a powerful JSON-based document model and
query language, many configuration options, and sup-
ports a multitude of storage engines. In this evaluation,
we run MongoDB with Mongo-Rocks integration [8]
(version 3.6), a RocksDB-based storage engine devel-
oped by Facebook and Percona.

• TiDB [9] (version 3.0), a distributed database support-
ing SQL ACID transactions built on top of TiKV [10],
a scalable distributed KV store whose design is in-
spired by Google Spanner [39] and HBase [69]. TiKV
instances embed RocksDB for storage. TiDB requires
the use of separate placement drivers responsible for
metadata, load balancing, and scheduling.

Deployment Unless otherwise specified, we always run 8
database instances with embedded storage engines (Mon-
goDB shard servers or TiKV instances and placement dri-
vers) on 8 dedicated machines. When using Hailstorm, we
co-locate Hailstorm clients and servers on the samemachines
as the 8 database instances. Different deployments, such as
using separate nodes to run Hailstorm servers are possible
and supported.
When evaluating MongoDB, we deploy 2 configuration

servers co-located with 2 routing nodes (mongos) on 2 ad-
ditional machines. When running with Hailstorm, we turn
off MongoDB’s shard balancer for the entire experiment.
We run 8 YCSB load generators on 8 separate, dedicated
machines, which we have empirically determined to be suf-
ficient to saturate MongoDB. For TiDB, we deploy 8 TiDB
servers (responsible for receiving and processing requests)
on 8 additional machines. We run the TPC-C and TPC-E
load generators on a separate, dedicated machine, which we
confirmed was sufficient to saturate TiDB. We do not enable
data replication, and clear the buffer cache as well as the
database caches before each experiment.

System configuration We limit the total physical memory
available to 32 GB of main memory on MongoDB shard
servers and TiKV instances to ensure that all workloads are
served from both main memory and secondary storage. We
allocate up to 8 GB of main memory out of the available
32 GB for Hailstorm, and use default block sizes.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

308

We refer to deployments of RocksDB, MongoDB or TiDB
using local storage only as Baseline (BL). When deployments
rely on Hailstorm to pool storage, but not on compaction
offloading, we refer to them as Storage Pooling (HS-SP), and
we call them Hailstorm (HS) when they rely on both.

5.3 Distributed Database: MongoDB
We evaluate Hailstorm in a distributed database setting with
MongoDB [1] using synthetic and production workloads,
and show how our approach benefits such deployments.

Workloads We use the Yahoo! Cloud Serving Benchmark
(YCSB) [38] workloads as well as two production workloads
from Nutanix. A summary of workloads used in this section
is shown in Table 2, including their profiles (write:read:scan
ratio) and the item sizes. YCSB provides 6 synthetic bench-
marks covering a wide range of workload characteristics.
For completeness, we consider an additional YCSB bench-
mark consisting of 100% inserts which we refer to as YCSB I,
and which corresponds to the load execution mode in YCSB.
This write-only workload is added to provide a more com-
plete spectrum. To evaluate the impact of skew, we consider
uniform and Zipfian key distributions for YCSB workloads.
Zipfian key distributions are skewed, simulating the effect of
popular keys. Nutanix’s workloads are write-intensive work-
loads from production clusters. Nutanix 1 is more uniform
than Nutanix 2, which has some skew.

Workload Description Profile (W:R:S) Item size
YCSB A write-intensive 50:50:0 1 KB
YCSB B read-intensive 5:95:0 1 KB
YCSB C read-only 0:100:0 1 KB
YCSB D read-latest 5:95:0 1 KB
YCSB E scan-intensive 5:0:95 1 KB
YCSB F read-modify-write 25:75:0 1 KB
YCSB I write-only 100:0:0 1 KB
Nutanix 1 write-intensive 57:41:2 250B-1 KB
Nutanix 2 write-intensive 57:41:2 250B-1 KB
Table 2. MongoDB workloads description and characteristics.

We first populate the database with 100 GB of data (100
million keys) from each workload before executing the work-
load with an additional 100 GB of data (100 million keys).
We execute Nutanix’s workloads with a pre-populated data-
base containing 256 GB of data, and execute each workload
with an additional dataset size of 256 GB (approximately 700
million keys).

5.3.1 Synthetic Benchmark (YCSB)
Throughput Figure 5 compares the average throughput
achieved by MongoDB for Baseline and Hailstorm for all
YCSB workloads using uniform and Zipfian distributions.

Deploying MongoDB over Hailstorm allows the database
to maintain good throughput even in the presence of high

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

Baseline Hailstorm

YCSB A
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB B

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB C
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB D

 0

 2

 4

 6

 8

 10

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB E

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB F

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Uniform Zipfian

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

YCSB I

Figure 5. MongoDB average throughput for Baseline and Hail-
storm for YCSB workloads with uniform and Zipfian key distribu-
tions. Hailstorm maintains high throughput on all workloads.

skew. Throughput is better with Hailstorm than with Base-
line for write workloads (YCSB A, F, and I) thanks to stor-
age pooling and compaction offloading. In particular, the
throughput for YCSB A and I improves by ∼2.2× and ∼2.3×.
Read-intensive workloads (YCSB B, C, and D) mostly take
advantage of storage pooling and their throughput improves
by 46%, 15%, and 5% respectively. Scan-intensive workloads
(YCSB E) improve by over 22× with Hailstorm when there is
skew in the workload. These benefits stem from offloading
compactions which lowers the load on the overloaded node.
Range queries almost always involve all MongoDB instances,
and the presence of a single overloaded instance is sufficient
to degrade performance dramatically. Range queries are com-
monplace in real deployments, and so Hailstorm will have
significant benefits in these environments.
Some workloads take a small throughput penalty in the

uniform case when running on top of Hailstorm, due to FUSE
and network overheads. However, these overheads are more
than compensated if the workload has skew.

Throughput over time Figure 6 shows the throughput
over time on all YCSB workloads with Zipfian key distribu-
tion for Baseline and Hailstorm.

These results demonstrate the ability of Hailstorm tomain-
tain high and relatively constant throughput in the presence
of skew. In particular, the throughput for write-intensive
workloads (YCSB A and I) is lower for Baseline compared to
Hailstorm as a result of skew, since one MongoDB instance
is absorbing most of the load and can only do so using its
local storage. Even with a smaller proportion of writes in
YCSB B and F, the Baseline throughput is lower. In addition,

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

309

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

) Baseline Hailstorm

YCSB A

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB B

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB C

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB D

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB E

 0
 20
 40
 60
 80

 100
 120

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB F

 0
 20
 40
 60
 80

 100
 120
 140

 0 100 200 300 400 500 600T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

YCSB I

Figure 6.MongoDB per second throughput timelines for Baseline
and Hailstorm with YCSB workloads. Hailstorm manages to keep
the throughput relatively constant throughout the execution.

the throughput for the Baseline falls repeatedly by ∼3× for
YCSB A and ∼4× for YCSB I, and to 0 in YCSB E as a result
of a series of particularly costly compaction tasks. Through-
put for YCSB C and D (100% reads) remains similar in both
cases, as the database is not large enough to cause significant
amounts of local I/O in the Baseline case.

Latency Figure 7 presents the mean and tail client response
times for the MongoDB Baseline and Hailstorm for both
request distributions using 3 representative workloads: YCSB
A, C, and I. Hailstorm significantly improves response times
under skew, especially for write workloads. For example, it
reduces the mean response time by 37%, 18%, and 29%, as
well as tail latencies by ∼4×, ∼30%, and ∼5× for YCSB A, C,
and I respectively. In addition, Hailstorm does not adversely
affect the mean response times in the uniform case.

5.3.2 Production Traces
Figure 8 compares the average throughput achieved by Mon-
goDB for Baseline and Hailstorm and for both production
workloads from Nutanix.

Hailstorm provides consistent throughput for both Nu-
tanix 1 (uniform) and Nutanix 2 (skewed), whereas the Mon-
goDB Baseline suffers from a 3× performance degradation
on Nutanix 2 resulting from a hotspot on one of the data-
base instances. Hailstorm therefore does not add significant
overhead on uniform workloads and successfully maintains
performance close to uniform when the workload is skewed.

5.3.3 Large Database
Until now we have shown the significant benefits of Hail-
storm when workloads have skew. In this experiment, we
show that Hailstorm benefits uniform workloads as well.
Figure 9 shows the throughput over time for Baseline and

 0

 20

 40

 60

 80

 100

Uniform BL Uniform HS Zipfian BL Zipfian HS

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) Mean P99 P99.9 P99.99

YCSB A

 0

 5

 10

 15

 20

Uniform BL Uniform HS Zipfian BL Zipfian HS

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) Mean P99 P99.9 P99.99

YCSB C

 0

 50

 100

 150

 200

 250

 300

Uniform BL Uniform HS Zipfian BL Zipfian HS

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) Mean P99 P99.9 P99.99

YCSB I

Figure 7. MongoDB mean and tail response times for Baseline
(BL) and Hailstorm (HS) for YCSB A, C, and I with uniform and
Zipfian requests distributions.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Nutanix 1 Nutanix 2A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(K
O

p
s
/s

)

Baseline Hailstorm

Figure 8. MongoDB average throughput for Baseline and Hail-
storm and for Nutanix’s workloads. Hailstorm improves throughput
in both cases, especially for workload Nutanix 2.

Hailstorm with YCSB A on a uniform distribution starting
with a large 1 TB database. Baseline performance suffers
from sudden drops that increase over time as a result of
larger compactions taking place, while Hailstorm has con-
sistent performance over time. This experiment shows that
even with uniform workloads, I/O bursts due to background
operations causes skew across storage engines.

 0
 20
 40
 60
 80

 100
 120
 140
 160

00:00 00:30 01:00 01:30 02:00T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

) Baseline Hailstorm

Figure 9.MongoDB per-second throughput for Baseline and Hail-
storm on a large 1 TB database with YCSB A and uniform distribu-
tion. Baseline experiences drops over time as larger compactions
occur, causing load imbalance across storage engines.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

310

5.3.4 Resharding Costs
Table 3 shows the average throughput in MongoDB for Base-
line and Hailstorm for YCSB A with Zipfian distribution and
with resharding enabled or disabled.

Resharding=OFF Resharding=ON
Baseline 42.9 KOps/s 58.9 KOps/s
Hailstorm 130.2 KOps/s 113.0 KOps/s

Table 3.MongoDB average throughput for Baseline andHailstorm
for YCSBAZipfian distributionwith resharding enabled or disabled.

This table presents several interesting results. First, turn-
ing resharding off for MongoDB causes throughput to drop
by 27%. Clearly, resharding in MongoDB is beneficial in
skewed workloads. Second, Hailstorm performs better than
Baseline with or without resharding, indicating that stor-
age pooling and compaction offloading are more effective
than resharding. Indeed, proper skew mitigation requires
synergistic approaches at both the distributed database and
storage layers. Finally, resharding causes a 15% throughput
drop for Hailstorm due to increased I/O operations. This
justifies our decision to disable MongoDB’s balancer for ex-
periments with Hailstorm.

5.4 Distributed SQL Transactions: TiDB
We now consider distributed SQL transactions in TiDB [9],
a popular horizontally-scalable database compatible with
MySQL [44]. TiDB is built on top of TiKV [10], a distributed
database with a key-value interface.

Workloads We use both the industry-standard TPC-C [62]
benchmark and the more recent TPC-E [35] benchmark.
TPC-C models a number of warehouses with orders, entries,
payments, monitoring of stock, etc. Multiple transactions
execute simultaneously, and the performance metric is the
number of new-order transactions per minute (tpmC). TPC-E
models a broker whose customers generate trades, account
balance checks, market analysis, etc., and the performance
metric is the number of trade-result (executed trades) transac-
tions per second (tpsE). Both benchmarks also include a price
per performance metric based on the total cost of ownership
of the cluster used for a period of 3 years.

Bench Model Tables Txs R:W RW:RO Sec Idx
TPC-C Warehouses 9 5 65:35 92:8 2
TPC-E Brokerage 33 12 91:9 23:76 10
Table 4. TiDB benchmarks description and characteristics.

The main characteristics of each benchmark are shown
in Table 4, including the type of business modeled by the
benchmark, the number of tables, the number of distinct
transactions, the I/O read to write ratio (R:W), the read-write
to read-only transaction ratio (RW:RO), and the number of
transactions using a secondary index. [36] contains more
details and comparisons about these benchmarks.

Benchmark Results Table 5 summarizes the benchmark
results for both TPC benchmarks, with Baseline and Hail-
storm. We show performance and price per unit of perfor-
mance (price-performance) metrics for our cluster. We con-
clude that Hailstorm provides significant performance im-
provements and cost reduction for distributed databases.

TPC-C TPC-E
Configuration tpmC $ / tpmC tpsE $ / tpsE
Baseline 32,184 3.10 277.3 360.60
Hailstorm 50,178 2.00 408.1 245.05

Table 5. TiDB TPC-C and TPC-E results for Baseline and Hail-
storm. Estimated total system cost for our cluster is USD 100,000.
Hailstorm improves throughput by 1.56× and 1.47× respectively.

Figure 10 compares the throughput (measured in transac-
tions per second) over a period of time of 1 hour for both
scenarios and both benchmarks.

 0

 500

 1000

 1500

 2000

 2500

00:00 00:15 00:30 00:45 01:00

T
h
ro

u
g
h
p
u
t
(T

x
s
/s

)

Baseline Hailstorm

TPC-C

 0

 200

 400

 600

 800

 1000

00:00 00:15 00:30 00:45 01:00

T
h
ro

u
g
h
p
u
t
(T

x
s
/s

)

TPC-E

Figure 10. TiDB per 10-second throughput timelines (HH:mm)
for Baseline and Hailstorm with TPC-C and TPC-E.

Baseline suffers from unstable throughput and frequent,
drastic drops in throughput in both benchmarks. These drops
are caused by compactions running on TiKV instances and
resharding operations executed by placement drivers trying
to remove hotspots. We notice significant amount of data
migration due to TiDB’s resharding policies. Short bursts of
data migration consume as much as 90% of the I/O bandwith
for a single TiKV instance and are responsible for prolonged
drops at approximately 00:30 and 00:40 for TPC-C. Although
TPC-C’s request distribution is uniform and TPC-E is only
mildly skewed, there is significant imbalance across TiKV
instances due to compaction and uneven data placement.
Hailstorm offers more stable and overall higher through-

put than Baseline. Compaction offloading helps limit pres-
sure on overloaded instances, and storage pooling removes
many I/O bottlenecks.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

311

5.5 Comparison with HDFS
In this section, we compare Hailstorm with HDFS [67], an ex-
isting production distributed file system. We perform experi-
ments directly on standalone RocksDB [31], thus avoiding
any interference or overheads of using a distributed database.
To this end, we design a microbenchmark that uses YCSB
and its driver for embedded RocksDB.

Workloads We consider three custom YCSB workloads: a
read-only workload, a write-only workload, and a mixed
workload consisting of 50% writes and 50% reads. Keys are
selected uniformly at random, and values are 1 KB each.

Configurations We run each workload on 8 nodes in par-
allel using separate RocksDB databases in 4 configurations
i:8 for i values of 8, 4, 2, and 1. An i:8 configuration represents
a scenario where 8 nodes are running a RocksDB database,
but only i of them are executing the workload with the other
nodes remaining idle. 8:8 corresponds to uniform, 4:8 to mild
skew, 2:8 to intermediate skew, and 1:8 to high skew.

We execute each of the above 4 configurations 4 times: first
with RocksDB using the local ext4 [53] filesystem, thereby
establishing a Baseline (BL), then with RocksDB using HDFS
with a replication factor of 1 to maximize performance, then
with RocksDB using Hailstorm for storage pooling (HS-SP),
and finally with RocksDB running on top of Hailstorm with
both storage pooling and compaction offloading (HS).

We run this experiment with two workload sizes: 100 GB
(storage workload, dataset does not fit in memory), and
20 GB (in-memory workload, dataset fits in memory). The
in-memory workload shows Hailstorm performance when
the workload is CPU bound. We first discuss the results for
the storage workload and then the in-memory workload.

Storage Workload Results Figure 11a shows the aggre-
gate throughput (over all 8 nodes) for each of the 3 workloads
in each of the 4 configurations for the 100 GB workload.
Hailstorm in the 8:8 configuration (uniform case) fares

comparably with vanilla RocksDB. However, in the pres-
ence of skew, as expected from previous experiments, Hail-
storm’s throughput is much higher than the corresponding
vanilla RocksDB (Baseline) throughput. Storage pooling and
compaction offloading together enable Hailstorm to keep
throughput close to the 8:8 configuration. Hailstorm perfor-
mance decreases mildly with increasing skew due to remote
reads and writes and increased compaction offloading.
In contrast, the throughput of RocksDB over HDFS is

lower than the corresponding Baseline case, even though
it uses distributed storage. We profile this experiment and
find that the low performance stems from synchronous calls
to the namenode before accessing data, performing I/O one
block at a time, and writing blocks preferentially to the local
disk. This shows the need for a specialized filesystem de-
signed to maximize storage bandwidth. As an aside, we also
experimented with running RocksDB on two full-featured,

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

8:8 4:8 2:8 1:8 8:8 4:8 2:8 1:8 8:8 4:8 2:8 1:8

T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

Workload, Configuration
Read+WriteWriteRead

BL HSHDFS HS-SP

100 GB

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

8:8 4:8 2:8 1:8 8:8 4:8 2:8 1:8 8:8 4:8 2:8 1:8

T
h
ro

u
g
h
p
u
t
(K

O
p
s
/s

)

Workload, Configuration
Read+WriteWriteRead

20 GB

(b)
Figure 11. RocksDB aggregate throughput comparison between
Baseline (BL), RocksDB over HDFS (HDFS), Hailstorm with storage
pooling (HS-SP), and full Hailstorm (HS) on 8machines. 3 workloads
are considered in 4 different configurations with increasing skew,
and data sizes of 100 GB and 20 GB.

distributed filesystems (Ceph [70] and GlusterFS [40]), and
unfortunately both filesystems would invariably crash after
some time, and RockDB would hang, for unclear reasons.

In-memory Workload Results Figure 11b shows the ag-
gregate throughput results for the 20 GB CPU-bound work-
load. The read workload results show that Hailstorm im-
proves performance compared to the baseline by roughly
a factor of 2 under skew. This benefit results from storage
pooling, which allows the initial dataset to be loaded faster
from disk. To understand why Hailstorm read performance
goes downwith increasing skew, we measured the maximum
achievable RocksDB random read throughput on a single
node using a RAM disk and found that the system becomes
CPU-bound at 200 KOps/s. RocksDB spends significant times
on binary search to find a random key, decompression, and
checksums, which limits Hailstorm performance.
Write and read+write numbers are qualitatively similar

for both workload sizes. When comparing with the 100 GB
workload, the 20 GB write and read+write throughputs are
almost double since the data can be cached in memory. How-
ever, unlike the read-only workloads, the throughput cannot
go over 2× due to write-ahead logging. In addition, HS-SP
throughput suffers from a steep drop from 4:8 to 2:8 because
the bottleneck switches from storage to CPU. This is not the
case for HS due to compaction offloading.

5.6 Sensitivity Analysis
We perform a sensitivity analysis for the compaction offload-
ing threshold θ using two machines: node1, which receives

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

312

full load, and node 2, which receives 10%, 50%, or 80% of the
full load. We use the same workloads and configurations as
in the previous section (§5.5). For each scenario, we consider
three θ values: 0.1, 0.2, and 0.5. Figure 12 reports the average
throughput with the read+write workload for each instance
in each scenario.

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

Load, Threshold

node1 node2

80% load50% load10% load

Figure 12. RocksDB average throughput for the read+write work-
load with different compaction offloading thresholds θ using two
RocksDB instances where one node receives 10%, 50%, or 80% load.

Overall, different θ values have little impact. Large values
(e.g., θ = 0.5) make compaction offloading less frequent, and
thus lead to slightly lower throughput on overloaded nodes.

5.7 Using Hailstorm with B-trees
Although Hailstorm is primarily intended for use with LSM-
based storage engines, we expect storage pooling to still
provide benefits when storage engines are based on B-trees,
e.g., Aerospike [5], Couchbase Server [32], KVell [49], and
WiredTiger [18]. B-trees exhibit different access patterns
and storage behavior than LSMs, and do not require com-
paction [37].
Figure 13 compares the average throughput achieved by

MongoDB with the B-tree-based WiredTiger [18] storage
engine for Baseline and Hailstorm for all YCSB workloads
in Table 2 using both uniform and Zipfian distributions on
8 machines. We only use Hailstorm for storage pooling and
disable compaction offloading.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

YCSB A YCSB B YCSB C YCSB D YCSB F YCSB I

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(K
O

p
s
/s

)

Baseline Hailstorm

Uniform

 0

 1

 2

 3

 4

 5

 6

YCSB E

 0
 10
 20
 30
 40
 50
 60
 70
 80

YCSB A YCSB B YCSB C YCSB D YCSB F YCSB IA
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

(K
O

p
s
/s

) Zipfian

 0

 1

 2

 3

 4

 5

 6

YCSB E

Figure 13. MongoDB with WiredTiger [18] storage engine aver-
age throughput for Baseline and Hailstorm for YCSB workloads
with uniform and Zipfian key distributions.

Unlike with LSM stores, Hailstorm does not improve per-
formance for reads in the presence of skew because the CPU,
not the I/O, is the bottleneck. Hailstorm’s storage pooling pro-
vides ∼2× throughput improvements in the Zipfian case for
write workloads YCSB A, F, and I. Hailstorm also improves
performance for range-based queries in YCSB E as it par-
tially relieves the overloaded node that becomes a straggler.
We expect that offloading B-tree background tasks such as
garbage collection in a similar way as we offload compaction
tasks in LSMs would further improve write performance.

6 Related Work
Skew in distributed databases Skew is often intrinsic to
the application and cannot easily be removed. It is often mit-
igated manually or automatically using resharding [19, 39].
This is achieved by identifying hotspots in the workload and
migrating data to less utilized database instances [24, 50].
However, resharding requires in-depth knowledge of the
shape of the data managed [25]. Furthermore, rebalancing
data between shards is costly as it triggers additional com-
paction, flushing, and garbage collection tasks, and is per-
formed too late to be effective. Hailstorm automatically re-
shards data uniformly across all storage devices, whichworks
in all cases without requiring knowledge of the shape of data.

Distributed databases Distributed databases distribute
data across many nodes, often on a global scale. Many recent
databases rely on distributed KV stores and store data on
local storage [1, 5, 9, 10]. Other databases such as Apache
HBase [69] or Google Spanner [39] rely on a distributed
filesystem to store data, which they leverage mainly for data
replication. Hailstorm is primarily intended for databases
using local storage, effectively providing storage-layer re-
sharding to remove I/O hotspots by spreading block data
uniformly across storage devices.

LSM KV stores Many systems attempt to solve the write
amplification problem in LSMs. HyperLevelDB increases par-
allelism and modifies the compaction algorithm to reduce
compaction costs [11]. PebblesDB combines LSM with skip-
lists to fragment data in smaller chunks, thereby avoiding
complete rewrites of sstables within a level [63]. TRIAD de-
lays compactions until there is sufficient overlap and pins
hot key entries in memory to avoid creating many copies on
storage [26]. Silk attempts to opportunistically execute com-
pactions during low load and preempt them at high load [27].
While these approaches provide temporary relief, they of-
ten lead to higher costs in the long run as uncompacted or
fragmented LSMs suffer from increased read latency, and
delayed compactions inevitably trickle down the LSM lev-
els. Furthermore, all these solutions apply to a single node
configuration and do not take advantage of distributed stor-
age. Nevertheless, these optimizations are orthogonal to our
approach and could be combined with it.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

313

Distributed filesystems Distributed parallel filesystems
such as HDFS [67], GFS [46], GlusterFS [40], or Ceph [70] are
used in large scale intra-/inter- datacenter deployments [12].
These systems often focus on providing high availability and
scalability by spreading blocks of data and replicating them
across servers. Hailstorm is designed with a different goal
in mind: enabling database instances within a rack to pool
their storage resources. By targeting rack-scale deployment
and specializing our filesystem, we can provide high storage
utilization, provide optimizations such as prefetching ssta-
bles blocks and accessing files at different block granularities.
Our use cases also exclude concurrent parallel accesses to
the same file, greatly simplifying metadata and consistency.

Disaggregated storage Many systems performing storage
disaggregation were proposed recently. Flash storage disag-
gregation aims to improve storage capacity and IOPS utiliza-
tion by accessing remote flash devices [48]. Hailstorm per-
forms file-level disaggregation as opposed to block-level, al-
lowing us to support high-level operations such compaction
offloading. Each file in Hailstorm is sharded at block-level to
ensure uniform distribution of data across all storage devices
in a rack. Storage disaggregation is a feature of LegoOS [66],
an operating system designed specifically for hardware re-
source disaggregation, but storage is not the main focus of
this work and, unlike Hailstorm, LegoOS’s approach is not
meant to maximize storage utilization. Finally, disaggregated
storage has also been successfully used in blob stores [57]
and analytics [29, 64]. To the best of our knowledge, Hail-
storm is the first disaggregated storage system targeting
distributed databases with LSM storage engines.

Distributed in-memory storage Several distributed in-
memory storage systems have been proposed recently [30,
43, 58]). These systems are about pooling main memory, not
secondary storage. Although Hailstorm leverages the buffer
cache when pooling storage devices, its main focus remains
on pooling secondary storage.

Two-level sharding Social Hash [65] is a framework run-
ning in production at Facebook that aims to optimize query
response time and load balance in large social graphs by us-
ing two-level sharding. In this scheme, data objects are first
partitioned using a graph partitioning algorithm before being
dynamically assigned in groups. By dynamically assigning
data objects to groups, the system can react to changes in
the workload and achieve better load balance. Hailstorm
similarly leverages the increased flexibility offered by using
a two-step data assignment scheme, but targets LSM-based
databases and relies on a filesystem solution to uniformly
redistribute data blocks across storage devices.

B-tree load balancing Yesquel’s approach to splitting B+
tree nodes improves load balance and reduces contention,
but does not achieve uniform distribution across all database
instances [21]. Furthermore, this approach may lead to many

unnecessary splits if load intensity varies across keys over
time. Although Hailstorm provides improvements mainly for
write-intensive workloads, our block-level sharding would
still improve storage load balance in Yesquel. In addition,
although we have not explored this, it should be possible
for Yesquel or other similar systems to use Hailstorm for
split offloading. MoSQL relies on a B-tree design and keeps
all data in main memory for fast access [68]. This reduces
contention and load imbalance, but places a hard cap on the
total size of the database. Hailstorm has no such limitation
since we use secondary storage.

Compaction offloading Using a dedicated remote com-
paction server for a replicated store has been previously
proposed in the context of HBase [22]. In this scheme, the
system offloads large compactions to a dedicated remote
compaction server relying on replication to provide fast data
access. Hailstorm takes a different approach by exploiting
rack-locality to create a storage management layer under-
neath storage engines that allows fast access to data without
depending on replication. We offload compaction tasks in a
peer-to-peer manner which does not require complex cen-
tralized decision making. Finally, our solution works for any
distributed database using LSM storage engines.

7 Conclusions
As the scale of distributed databases grows and their perfor-
mance requirements become more stringent, solutions that
can address challenging issues such as the presence of skew
at scale become necessary. We have made the case for de-
ploying distributed databases over Hailstorm, a system that
disaggregates compute and storage in order to scale both
independently and improve load balance. Hailstorm consists
of a storage layer that pools storage across the nodes of a
rack, allowing each storage engine to utilize rack storage
bandwidth. This effectively provides storage-level sharding,
which helps mitigate the impact of skew, addresses per-node
capacity limitations, and absorbs I/O spikes. Hailstorm lever-
ages its storage layer to perform compaction offloading and
reduce CPU pressure on overloaded machines.
In this paper, we focused on deployments of Hailstorm

to improve utilization within a single rack. We leave for
future work the design of extensions to increase performance
across racks, such as a Hailstorm-supported cross-rack data
migration mechanism to replace resharding.

8 Acknowledgments
We would like to thank our anonymous reviewers, Michael
Stumm,Michael Cahill, Calin Iorgulescu, and Baptiste Lepers,
for their feedback that improved this work. We also thank
Oana Balmau for providing us with the Nutanix production
traces. This workwas supported in part by the Swiss National
Science Foundation NRP 75 Grant No. 167157.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

314

References
[1] 2019. https://www.mongodb.com/.
[2] 2019. http://cassandra.apache.org/.
[3] 2019. https://myrocks.io/.
[4] 2019. https://github.com/Netflix/dynomite.
[5] 2019. https://www.aerospike.com/.
[6] 2019. https://dgraph.io/.
[7] 2019. https://en.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_2):_Data_

Storage.
[8] 2019. https://github.com/mongodb-partners/mongo-rocks/.
[9] 2019. https://pingcap.com/.
[10] 2019. https://tikv.org/.
[11] 2019. https://github.com/rescrv/HyperLevelDB.
[12] 2019. https://en.wikipedia.org/wiki/List_of_file_systems.
[13] 2019. https://github.com/libfuse/libfuse/.
[14] 2019. http://www.pnfs.com/.
[15] 2019. https://github.com/jnr/jnr-ffi.
[16] 2019. http://akka.io/.
[17] 2019. http://freecode.com/projects/fio.
[18] 2019. http://www.wiredtiger.com/.
[19] 2019. https://github.com/mongodb/mongo/wiki/Sharding-Internals.
[20] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. 2014. Eval-

uating cassandra scalability with YCSB. In International Conference on
Database and Expert Systems Applications. Springer, 199–207.

[21] Marcos K Aguilera, Joshua B Leners, and Michael Walfish. 2015.
Yesquel: scalable sql storage for web applications. In Proceedings of the
25th Symposium on Operating Systems Principles. ACM, 245–262.

[22] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction
management in distributed key-value datastores. Proceedings of the
VLDB Endowment 8, 8 (2015), 850–861.

[23] J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The
Definitive Guide: Time to Relax. " O’Reilly Media, Inc.".

[24] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,
Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael
Stumm. 2018. Sharding the shards: managing datastore locality at
scale with Akkio. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 445–460.

[25] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store.
In ACM SIGMETRICS Performance Evaluation Review, Vol. 40. ACM,
53–64.

[26] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel,
Huapeng Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017.
TRIAD: Creating synergies between memory, disk and log in log struc-
tured key-value stores. Proc. of ATC (2017).

[27] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-
hankar Chandhiramoorthi, and Diego Didona. 2019. SILK: Preventing
Latency Spikes in Log-Structured Merge Key-Value Stores. In 2019
USENIX Annual Technical Conference (USENIX ATC 19). USENIX Asso-
ciation, Renton, WA, 753–766. https://www.usenix.org/conference/
atc19/presentation/balmau

[28] Cristina Băsescu, Christian Cachin, Ittay Eyal, Robert Haas, Alessan-
dro Sorniotti, Marko Vukolić, and Ido Zachevsky. 2012. Robust data
sharing with key-value stores. In IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012). IEEE, 1–12.

[29] Laurent Bindschaedler, Jasmina Malicevic, Nicolas Schiper, Ashvin
Goel, and Willy Zwaenepoel. 2018. Rock you like a hurricane: taming
skew in large scale analytics. In Proceedings of the Thirteenth EuroSys
Conference. ACM, 20.

[30] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan
Zamanian. 2016. The end of slow networks: it’s time for a redesign.
Proceedings of the VLDB Endowment 9, 7 (2016), 528–539.

[31] Dhruba Borthakur. 2013. Under the Hood: Building and open-sourcing
RocksDB. Facebook Engineering Notes (2013).

[32] Martin C Brown. 2012. Getting Started with Couchbase Server: Extreme
Scalability at Your Fingertips. " O’Reilly Media, Inc.".

[33] Josiah L Carlson. 2013. Redis in action. Manning Shelter Island.
[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-

rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. 2008. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26, 2
(2008), 4.

[35] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.
TPC-E vs. TPC-C: characterizing the new TPC-E benchmark via an
I/O comparison study. ACM SIGMOD Record 39, 3 (2011), 5–10.

[36] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.
TPC-E vs. TPC-C: characterizing the new TPC-E benchmark via an
I/O comparison study. ACM SIGMOD Record 39, 3 (2011), 5–10.

[37] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2
(June 1979), 121–137. https://doi.org/10.1145/356770.356776

[38] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[39] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

[40] Alex Davies and Alessandro Orsaria. 2013. Scale out with GlusterFS.
Linux Journal 2013, 235 (2013), 1.

[41] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM SIGOPS operating systems
review, Vol. 41. ACM, 205–220.

[42] Thibault Dory, Boris Mejías, Peter Van Roy, and Nam Luc Tran.
2011. Comparative elasticity and scalability measurements of cloud
databases. In Proc of the 2nd ACM symposium on cloud computing
(SoCC), Vol. 11. Citeseer.

[43] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. 2014. FaRM: Fast remote memory. In 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
14). 401–414.

[44] Paul DuBois and Michael Foreword By-Widenius. 1999. MySQL. New
riders publishing.

[45] Sanjay Ghemawat and Jeff Dean. 2011. LevelDB. URL: https://github.
com/google/leveldb,% 20http://leveldb. org (2011).

[46] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google file system. Vol. 37. ACM.

[47] Kien A Hua and Chiang Lee. 1991. Handling Data Skew in Multipro-
cessor Database Computers Using Partition Tuning.. In VLDB. Citeseer,
525–535.

[48] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and San-
jeev Kumar. 2016. Flash storage disaggregation. In Proceedings of the
Eleventh European Conference on Computer Systems. ACM, 29.

[49] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
2019. KVell: the design and implementation of a fast persistent key-
value store. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 447–461.

[50] Justin Li and Florian Weingarten. 2019. Zero-Downtime Rebalanc-
ing and Data Migration of a Mature Multi-Shard Platform. USENIX
Association, Dublin.

[51] Martin Maas, Tim Harris, Krste Asanovic, and John Kubiatowicz. 2015.
Trash Day: Coordinating Garbage Collection in Distributed Systems..
In HotOS.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

315

https://www.mongodb.com/
http://cassandra.apache.org/
https://myrocks.io/
https://github.com/Netflix/dynomite
https://www.aerospike.com/
https://dgraph.io/
https://en.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_2):_Data_Storage
https://en.bitcoin.it/wiki/Bitcoin_Core_0.11_(ch_2):_Data_Storage
https://github.com/mongodb-partners/mongo-rocks/
https://pingcap.com/
https://tikv.org/
https://github.com/rescrv/HyperLevelDB
https://en.wikipedia.org/wiki/List_of_file_systems
https://github.com/libfuse/libfuse/
http://www.pnfs.com/
https://github.com/jnr/jnr-ffi
http://akka.io/
http://freecode.com/projects/fio
http://www.wiredtiger.com/
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://doi.org/10.1145/356770.356776

[52] Holger Märtens. 2001. A Classification of Skew Effects in Parallel Data-
base Systems. In European Conference on Parallel Processing. Springer,
291–300.

[53] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux symposium,
Vol. 2. 21–33.

[54] Michael Mitzenmacher. 2001. The Power of Two Choices in Random-
ized Load Balancing. Trans. Parallel Distrib. Syst. 12, 10 (2001).

[55] Jaeseok Myung, Junho Shim, Jongheum Yeon, and Sang-goo Lee. 2016.
Handling data skew in join algorithms using MapReduce. Expert
Systems with Applications 51 (2016), 286–299.

[56] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash
system. (2008).

[57] Edmund B Nightingale, Jeremy Elson, Jinliang Fan, Owen S Hofmann,
Jon Howell, and Yutaka Suzue. 2012. Flat Datacenter Storage.. In OSDI.
1–15.

[58] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2016. The case for RackOut: Scalable data serving using
rack-scale systems. In Proceedings of the Seventh ACM Symposium on
Cloud Computing. ACM, 182–195.

[59] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, Low Latency Scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
69–84.

[60] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[61] David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for
redundant arrays of inexpensive disks (RAID). Vol. 17. ACM.

[62] Meikel Poess and Chris Floyd. 2000. New TPC benchmarks for decision
support and web commerce. ACM Sigmod Record 29, 4 (2000), 64–71.

[63] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. 2017. Pebblesdb: Building key-value stores using fragmented
log-structured merge trees. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 497–514.

[64] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy
Zwaenepoel. 2015. Chaos: Scale-out graph processing from secondary
storage. In Proceedings of the 25th Symposium on Operating Systems
Principles. ACM, 410–424.

[65] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro
Presta, Aaron Adcock, Herald Kllapi, and Michael Stumm. 2016. Social
hash: an assignment framework for optimizing distributed systems
operations on social networks. In 13th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI} 16). 455–468.

[66] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
Legoos: A disseminated, distributed {OS} for hardware resource disag-
gregation. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18). 69–87.

[67] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The hadoop distributed file system. In Mass stor-
age systems and technologies (MSST), 2010 IEEE 26th symposium on.
Ieee, 1–10.

[68] Alexander Tomic, Daniele Sciascia, and Fernando Pedone. 2013.
MoSQL: An elastic storage engine for MySQL. In Proceedings of the
28th Annual ACM Symposium on Applied Computing. ACM, 455–462.

[69] Mehul Nalin Vora. 2011. Hadoop-HBase for large-scale data. In Com-
puter science and network technology (ICCSNT), 2011 international con-
ference on, Vol. 1. IEEE, 601–605.

[70] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. 2006. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Operating systems
design and implementation. USENIX Association, 307–320.

[71] Zhen Ye and Shanping Li. 2011. A request skew aware heterogeneous
distributed storage system based on Cassandra. In Computer and Man-
agement (CAMAN), 2011 International Conference on. IEEE, 1–5.

Session 4A: Huge memories and
distributed databases — Now I remember!

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

316

	Abstract
	1 Introduction
	2 Background & Challenges
	2.1 Skew in Distributed Databases
	2.2 Compaction in LSM KV Stores
	2.3 Distributed Databases with LSM Storage Engines
	2.4 Summary

	3 The Hailstorm Design
	3.1 Hailstorm Design Principles
	3.2 Filesystem Architecture
	3.3 Storage Architecture
	3.4 Compaction Offloading

	4 Implementation
	5 Evaluation
	5.1 Goals
	5.2 Experimental Environment
	5.3 Distributed Database: MongoDB
	5.4 Distributed SQL Transactions: TiDB
	5.5 Comparison with HDFS
	5.6 Sensitivity Analysis
	5.7 Using Hailstorm with B-trees

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

