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Abstract

This paper introduces a self-configuring architecture for
scaling the database tier of dynamic content web servers.
We use a unified approach to load and fault manage-
ment based on dynamic data replication and feedback-
based scheduling. While replication provides scaling and
high availability, feedback scheduling dynamically allo-
cates tasks to commodity databases across workloads in re-
sponse to peak loads or failure conditions thus providing
quality of service. By augmenting the feedback loop with
state awareness, we avoid oscillations in resource alloca-
tion.

We investigate our transparent provisioning mechanisms
in the database tier using the TPC-W e-commerce and the
on-line auction Rubis benchmarks. We demonstrate that our
techniques provide quality of service under load bursts and
failure scenarios.

1 Key Contributions

This paper introduces a novel scheduling technique for
on-demand resource allocation across multiple dynamic-
content workloads that use a cluster-based database back-
end. Dynamic content servers commonly use a three-tier
architecture that consists of a front-end web server tier, an
application server tier that implements the business logic,
and a back-end database tier that stores the dynamic con-
tent of the site. Our dynamic-content cluster architecture is
shown in Figure 1. It consists of a set of schedulers, one
per workload, that distribute incoming requests to a clus-
ter of database replicas and deliver the responses back to
the application server. The application server interacts di-
rectly only with the scheduler in charge of the correspond-
ing workload run by the application server. In addition, a
controller arbitrates resource allocations between the differ-
ent workloads.

We define quality of service as maintaining the average
query latency for a particular workload under a predefined
Service Level Agreement (SLA). Our dynamic database

DB

DB

Proxy A

Proxy B

Proxy A

Proxy B

Apache
&

PHP

Scheduler A

Scheduler B

Controller
Sequencer

Figure 1. Dynamic Content Cluster Architec-
ture

provisioning algorithm, called feedback-based scheduling
(FBS) [2] triggers adaptations in response to impending
SLA violations. Furthermore, our algorithm removes re-
sources from a workload’s allocation when in underload.
Due to the state-full nature of databases, the allocation of a
new database to a workload requires the transfer of data to
bring that replica up to date. We use an adaptation scheme
called warm migration where: i) All databases in the work-
load’s main partition are kept up-to-date and ii) We main-
tain a set of additional replicas within a staleness bound.
These replicas constitute an overflow pool used for rapid
adaptation to temporary load spikes. Write-type queries
are batched and sent periodically to update overlap replicas
whenever they violate the staleness bound.

To meet the SLA, FBS uses two key components: (1)
per-workload performance monitoring, and (2) system-state
awareness through a state machine approach. Average la-
tency sampling is used to trigger adaptations in response to
impending SLA violations. At the same time, the controller
uses a state machine approach to track the system state dur-
ing and in-between adaptations in order to trigger any sub-
sequent adaptations only after the changes of all previous
adaptations have become visible. Latency sampling is thus
suppressed while an adaptation is in progress (e.g., during
data migration to bring a new replica up to date) because
effects on latency cannot be reliably observed. This closes
the feedback loop and avoids unnecessary overreaction and
oscillation in the system.

Our experimental evaluation uses the TPC-W industry-
standard e-commerce benchmark [3] modeling an on-line
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Figure 2. Dynamic versus Static Partitioning and Static Read-one-Write-all Resource Allocation
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Figure 3. Adaptation to Load and Failures

book-store and Rubis, an on-line auction site modeled after
e-Bay [1]. Our results show that our feedback-based ap-
proach can handle rapid variations in an application’s re-
source requirements while maintaining quality of service
across applications. In addition, by monitoring system state,
we avoid oscillations in resource allocation. Finally, we
show that the same approach can be used to handle failure
scenarios.

2 Evaluation

We use a Linux cluster of AMD Athlons connected by
Fast Ethernet. We run TPC-W and Rubis using a SLA of
600 ms for the database query latency which is conserva-
tively chosen in order to keep the client latency below 1
second for each workload. Our state-aware protocol allows
us to avoid careful tuning of the sampling interval and any
other system parameters. We can thus use a sampling inter-
val of 10 seconds with its implied high potential reactivity
to load changes.

2.1 Adaptation to Increasing Load

Figure 2 shows our adaptations to load in comparison
with two static algorithms: a static partitioning algorithm
and a read-any-write-all algorithm. Figure 2(a) shows TPC-
W with a seven-fold variation in load, while Rubis is kept
constant at level 1. The client workload shown in Fig-
ure 2(a) is normalized to the number of clients needed to

saturate one database. Figure 2(b) shows that our system
performs well as a result of its flexible machine allocation
scheme (shown in Figure 2(c)). In particular, our results
shows that there are SLA violations are very infrequent and
short. Static partitioning violates the SLA due to insuffi-
cient resources and the poor performance of the read-any-
write-all algorithm is explained by the interference of the
read sets of the two workloads in the buffer cache of the
database. We also see that our machine allocation closely
follows the load pattern, with on-demand machine alloca-
tion during load as well as deallocation when the system is
in underload. Further, the allocation shows no oscillations.

2.2 Adaptation to Failures

We use the same load function from the previous section
(Figure 2(a)) but inject a fault after 20 minutes into the ex-
periment. As the load for TPC-W increases, the number of
machines allocated to handle the load also increases. After
20 minutes, we induce a fault in the one of the databases
used by TPC-W. Due to the database fault, the latency of
TPC-W steadily increases from 300 ms until it violates the
SLA as shown in Figure 3. At this point, the controller adds
a new database and the latency drops to pre-fault levels.
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