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Abstract
Fast remote procedure call (RPC) is a major concern

for distributed systems. Many studies aimed at efficient
RPC consist of either new implementations of the RPC
paradigm or manual optimization of critical sections of
the code. This paper presents an experiment that achieves
automatic optimization of an existing, commercial RPC
implementation, namely the Sun RPC. The optimized Sun
RPC is obtained by using an automatic program special-
izer. It runs up to 1.5 times faster than the original Sun
RPC. Close examination of the specialized code does not
reveal further optimization opportunities which would lead
to significant improvements without major manual restruc-
turing.

The contributions of this work are: (1) the optimized
code is safely produced by an automatic tool and thus does
not entail any additional maintenance; (2) to the best of
our knowledge this is the first successful specialization of
mature, commercial, representative system code; and (3)
the optimized Sun RPC runs significantly faster than the
original code.

Keyword: partial evaluation, RPC protocol, Sun RPC,
distributed systems, automatic optimization.

1 Introduction
Specialization is a well-known technique for improving

the performance of operating systems [3, 11, 20]. How-
ever, only recently have programming tools begun to be
used to help system programmers perform specialization.
To the best of our knowledge, this paper reports the first
successful specialization of a significant OS component
(the Sun RPC) using a partial evaluator. This work is sig-
nificant for a combination of three main reasons: (1) auto-
matic optimization of existing system code using a partial
evaluator preserves the original source code (2) specializa-
tion applies to mature, commercial, representative system
code, and (3) the specialized Sun RPC exhibits significant
performance gains. We elaborate each reason in turn.

First, partial-evaluation-based specialization is qualita-
tively different from manual specialization done in the past

�This work has been partly supported by FRANCE TELECOM CTI-
CNET 951W009.

[3, 11, 20]. Manual specialization requires the system pro-
grammer to identify every occurrence of the invariants to
be exploited and to write the specialized code exploiting
these invariants. Although this approach may lead to sig-
nificant performance gains, the manual specialization pro-
cess is error-prone and results in code that is expensive
to maintain. In contrast, a partial evaluator preserves the
source code, and generates automatically the specialized
code guided by the declarations of invariants specified by
system programmers. Since we are specializing mature
commercial code, the preservation of original code and se-
mantics also preserves safety and maintainability. In our
view, tools such as partial evaluators may help the industry
to address the operating system code complexity concerns.

Second, we specialize mature, commercial code (Sun
RPC) that we believe to be representative of production
quality code. Sun RPC is one layer in the communica-
tion stack, and RPC itself is divided into micro-layers, each
concerned with a reasonably small task, e.g., managing the
underlying transport protocol such as TCP or UDP. The
RPC code has been ported to a variety of software and
hardware foundations, while preserving its layered struc-
ture.

Third, we obtain significant performance gains using
partial-evaluation-based specialization. In our experiment,
the optimized Sun RPC runs up to 1.5 times faster than the
original Sun RPC. In addition, the specialized marshaling
process runs up to 3.75 times faster than the original one.
Close examination of the specialized code does not reveal
further optimization opportunities which would lead to sig-
nificant improvements without major manual restructuring.

Our partial-evaluation-based specialization experiment
shows the promise of direct industrial relevance to com-
mercial systems code.

The rest of the paper is organized as follows. Section 2
presents Sun RPC protocol and optimization issues. Sec-
tion 3 examines opportunities for specialization in the Sun
RPC. Section 4 gives an overview of the partial evalua-
tor Tempo and shows its relevance for Sun RPC special-
ization. Section 5 describes the performance experiments.
Section 6 discusses our experience with partial-evaluation
based specialization of Sun RPC. Section 7 summarizes re-
lated work and Section 8 concludes the paper.



2 The Sun RPC and Optimization Issues
The Sun RPC (Remote Procedure Call) protocol was

introduced in 1984 to support the implementation of dis-
tributed services. This protocol has become ade facto
standard in distributed service design and implementation,
e.g., NFS [18] and NIS [22]. Since large networks are of-
ten heterogeneous, support for communicating machine-
independent data involves encoding and decoding. Such
environments (e.g., PVM [13] for a message passing model
and Stardust [4] for a Distributed Shared Memory model)
often rely on Sun XDR. The two main functionalities of
the Sun RPC are:

1. A stub generator (rpcgen ) that produces the client
and server stub functions. The stub functions
translate procedure call parameters into a machine-
independent message format called XDR, and XDR
messages back into procedure parameters. The trans-
lation of parameters into messages is known asmar-
shaling.

2. The management of message exchange through the
network.

In concrete terms, the Sun RPC code consists of a set of
micro-layers, each one devoted to a small task. For exam-
ple, there are micro-layers to write data during marshaling,
to read data during unmarshaling and to manage specific
transport protocols such as TCP or UDP. Each micro-layer
has a generic function, but it may have several implemen-
tations. As such, the micro-layer organization of RPC code
is fairly representative of modular production system soft-
ware.

A Simple Example

We consider a simple example to illustrate the micro-layer
organization of Sun RPC code: a functionrmin that sends
two integers to a remote server, which returns their mini-
mum.

The client usesrpcgen (the RPC stub compiler) to
compile a procedure interface specification forrmin into
an assortment of source files. These files implement both
the call on the client’s side and the dispatch of proce-
dures on the server’s side. To emphasize the actual code
executed, instead of including all the files generated by
rpcgen , Figure 1 shows an abstract execution trace of a
call to rmin .1

Performance of RPC

Communication using the RPC paradigm is at the root
of many distributed systems. As such, the performance
of this component is critical. As a result, a lot of re-
search has been carried out on the optimization of this
paradigm [5, 8, 14, 19, 25, 29]. Many studies have been

1For clarity, we omit some clutter in code listings: declarations, “un-
interesting” arguments and statements, error handling, casts, and a level
of function call.

carried out, but they often result in using new protocols
that are incompatible with an existing standard such as the
Sun RPC. The problem in reimplementing a protocol that
is specified only by its implementation is that features (and
even bugs) may be lost, resulting in incompatible imple-
mentation.

Optimizing the Existing Code

An alternative to reimplementing a system component for
performance reasons is to directly derive an optimized ver-
sion from the existing code. An advantage of starting with
existing code is that the derived version remains compati-
ble with existing standards. Another advantage is that the
systematic derivation process can be repeated for different
machines and systems.

The question that naturally arises at this point is: are
there important opportunities for deriving significantly op-
timized versions of existing system components?

In fact, many existing system components are known to
be generic and structured in layers and modules. This re-
sults in various forms of interpretation which are important
sources of overhead as shown, for example, in the HP-UX
file systems [20]. In case of the Sun RPC, this genericity
takes the form of several layers of functions which inter-
pret descriptors (i.e., data structures) to determine the pa-
rameters of the communication process: choice of protocol
(TCP or UDP), whether to encode or decode, buffer man-
agement, . . .

Importantly, most of these parameters are known for
any given remote procedure call. This information can be
exploited to generate specialized code where these inter-
pretations are eliminated. The resulting code is tailored for
specific situations.

Let us now examine forms of these interpretations in the
Sun RPC code and how they can be optimized via special-
ization.

3 Opportunities for Specialization in the
Sun RPC

The Sun RPC relies on various data structures (such
asCLIENT or XDR). Some fields of those data structures
have values that can be available before execution actually
takes place; they do not depend on the run-time arguments
of the RPC. The values of those fields are either repeat-
edly interpreted or propagated throughout the layers of the
encoding/decoding process. Because these values can be
available before execution, they may be the source of op-
timizations: the computations depending only on known
(a.k.astatic) values can be performed during a specializa-
tion phase. The specialized program only consists of the
computations depending on the unknown (a.k.adynamic)
values.

We now describe typical specialization opportunities in
the Sun RPC. We illustrate these opportunities with actual
code excerpts, annotated to show static and dynamic com-
putations. In the following figures, dynamic computations



arg.int1 = ... // Set first argument
arg.int2 = ... // Set second argument
rmin(&arg) // RPC User interface generated byrpcgen

clnt_call(argsp) // Generic procedure call (macro)
clntupd_call(argsp) // UDP generic procedure call

// Write procedure identifier
XDR_PUTLONG(&proc) // Generic marshaling to memory, stream... (macro)

xdrmem_putlong(lp) // Write in output buffer and check overflow
htonl(*lp) // Choice between big and little endian (macro)

xdr_pair(argsp) // Stub function generated byrpcgen
// Write first argument

xdr_int(&argsp->int1) // Machine dependent switch on integer size
xdr_long(intp) // Generic encoding or decoding

XDR_PUTLONG(lp) // Generic marshaling to memory, stream... (macro)
xdrmem_putlong(lp) // Write in output buffer and check overflow

htonl(*lp) // Choice between big and little endian (macro)
// Write second argument

xdr_int(&argsp->int2) // Machine dependent switch on integer size
xdr_long(intp) // Generic encoding or decoding

XDR_PUTLONG(lp) // Generic marshaling to memory, stream... (macro)
xdrmem_putlong(lp) // Write in output buffer and check overflow

htonl(*lp) // Choice between big and little endian (macro)

Figure 1: Abstract trace of the encoding part of a remote call tormin

correspond to code fragments printed in bold face; static
computations are printed in Roman.

3.1 Eliminating Encoding/Decoding Dispatch
We examine an opportunity for specialization that il-

lustrates a first form of interpretation. The function
xdr_long (see Figure 2) is capable of both encoding and
decoding long integers. It selects the appropriate opera-
tion to perform based on the fieldx_op of its argument
xdrs . This form of interpretation is used in other similar
functions for other data types.

In practice, the fieldx_op is known from the execu-
tion context (i.e., encoding or decoding process). This in-
formation, contained in thexdrs structure, can be propa-
gated interprocedurally down to the functionxdr_long .
As a result, the dispatch onxdrs->x_op always yields
a known result and can totally be eliminated; the special-
ized version of this function is reduced to only one of the
branch, i.e., a return constructs. In this case, the special-
izedxdr_long() , being small enough, disappears after
inlining.

3.2 Eliminating Buffer Overflow Checking
Another form of interpretation appears when buffers are

checked for overflow. This situation applies to function
xdrmem_putlong displayed in Figure 3. More specif-
ically, as parameter marshaling proceeds, the remaining
space in the buffer is maintained in the fieldx_handy .
Similar to the first example,xdrs->x_handy is first ini-
tialized (i.e., given a static value), and then decremented
by static values and tested several times (for each call to
xdrmem_putlong and related functions). Since the en-
tire process involves static values, the whole buffer over-
flow checking can be performed during a specialization

phase, before actually running the program. Only the
buffer copy remains in the specialized version (unless a
buffer overflow is discovered at specialization time).

This second example is important not only because
of the immediate performance gain, but also because
in contrast with a manual, unwarranted deletion of the
buffer overflow checking, the elimination described here
is strictly and systematically derived from the original pro-
gram.

3.3 Propagating Exit Status
The third example relies on the previous examples. The

return value of the procedurexdr_pair (shown in Fig-
ure 4) depends on the return value ofxdr_int , which in
turn depends on the return value ofxdr_putlong . We
have seen thatxdr_int andxdr_putlong have a static
return value. Thus the return value ofxdr_pair is static
as well. If we specialize the caller ofxdr_pair (i.e.,
clntudp_call ) as well to this return value,xdr_pair
no longer needs to return a value: the type of the function
can be turned invoid . The specialized procedure, with
the specialized calls toxdr_int andxdr_putlong in-
lined, is shown in Figure 5. The actual result value, which
is alwaysTRUE independently of dynamicobjp argu-
ment (writing the two integers never overflows the buffer),
is used to reduce an extra test inclntudp_call (not
shown).

3.4 Assessment
The purpose of encoding is to copy a network-

independent representation of the arguments into an out-
put buffer. The minimal code that we can expect using
the approach of a separate output buffer is basically what
is shown in Figure 5. The same situation applies for de-



bool_t xdr_long(xdrs,lp) // Encode or decode a long integer
XDR *xdrs; // XDR operation handle
long *lp; // pointer to data to be read or written

{
if( xdrs->x_op == XDR_ENCODE ) // If in encoding mode

return XDR_PUTLONG(xdrs,lp); // Write a long int into buffer
if( xdrs->x_op == XDR_DECODE ) // If in decoding mode

return XDR_GETLONG(xdrs,lp); // Read a long int from buffer
if( xdrs->x_op == XDR_FREE ) // If in “free memory” mode

return TRUE; // Nothing to be done for long int
return FALSE; // Return failure if nothing matched

}

Figure 2: Reading or writing of a long integer:xdr long()

bool_t xdrmem_putlong(xdrs,lp) // Copy long int into output buffer
XDR *xdrs; // XDR operation handle
long *lp; // pointer to data to be written

{
if((xdrs->x_handy -= sizeof(long)) < 0) // Decrement space left in buffer

return FALSE; // Return failure on overflow
*(xdrs->x_private) = htonl(*lp); // Copy to buffer
xdrs->x_private += sizeof(long); // Point to next copy location in buffer
return TRUE; // Return success

}

Figure 3: Writing a long integer:xdrmem putlong()

bool_t xdr_pair(xdrs, objp) { // Encode arguments ofrmin
if (! xdr_int(xdrs, &objp->int1) ) // Encode first argument

return (FALSE); // Possibly propagate failure
if (! xdr_int(xdrs, &objp->int2) ) // Encode second argument

return (FALSE); // Possibly propagate failure
return (TRUE); // Return success status

}

Figure 4: Encoding routinexdr pair() used inrmin()

void xdr_pair(xdrs,objp) { // Encode arguments ofrmin
// Overflow checking eliminated

*(xdrs->x_private) = objp->int1; // Inlined specialized call
xdrs->x_private += 4u; // for writing the first argument
*(xdrs->x_private) = objp->int2; // Inlined specialized call
xdrs->x_private += 4u; // for writing the second argument

// Return code eliminated
}

Figure 5: Specialized encoding routinexdr pair()



coding, except that additional dynamic tests must be per-
formed to ensure the soundness and authenticity of the
server reply.

We have seen that a systematic approach to specializing
system code can achieve significant code simplifications.
However, it is not feasible to manually specialize RPC for
each remote function, as the process is long, tedious, and
error-prone. Since the process is systematic, it can be au-
tomated. In fact, it could be as automatic asrpcgen . We
now discuss how specialization of the previous examples is
automated using a partial evaluator for C programs, named
Tempo.

4 Automatic Specialization Using the Tempo
Partial Evaluator

Partial evaluation[6] is a program transformation ap-
proach aimed at specializing programs. We have devel-
opped a partial evaluator for C programs, named Tempo. It
takes a source programPgeneric written in C together with
a known subset of its inputs, and produces a specialized
C source programPspecial, simplified with respect to the
known inputs.

Binding time
analysis

Specializer

Optimized stub

RPC
Specialization

context

RPC
Specialization

values

Stub generated
by Rpcgen

Generic RPC
library

Tempo

Figure 6: Compile-time specialization with Tempo

The heart of an off-line partial evaluator such as Tempo
is theBinding Time Analysis(i.e., BTA). The BTA propa-
gates a specialization context describing which inputs are
static and which inputs are dynamic throughout the whole
program (see Figure 6). After the BTA,Pgeneric is di-
vided into static and dynamicparts. The static part of
Pgeneric is evaluated using concrete specialization values
for each known input, while the dynamic part isresidu-
alized (copied) into the output specialized program. The
resultPspecial is typically simpler thanPgeneric since the
static part has been pre-computed and only the dynamic
part will be executed at runtime.

In the RPC experiment (see Figure 6),Pgeneric is
formed from the stub generated by Rpcgen and Sun’s
generic library. The specialization context is written by a
Tempo user, theexpert, who has an intimate knoweldge of
the software. Once the context is written, Tempo is used in
a fully transparent manner by ordinary RPC programmers.

Issues about writing the specialization context are detailed
in Section 6.1.

Accuracy of Specialization. The more precise the BTA,
the more it exhibits static constructions (that will be elim-
inated during specialization). We have more specifically
targeted Tempo towards system software. The main refine-
ments introduced in Tempo for this purpose include:

� partially-static structures: Figure 3 shows that some
fields of thexdrs structure are static while others
are dynamic. Effective specialization requires that
we be able to access the static fields at specialization
time. Without such a functionality the whole struc-
ture must conservatively be considered dynamic and
the repeated buffer overflow checking cannot be elim-
inated.

� flow sensitivity:Possible runtime errors occurring in
the decoding of input buffer introduces dynamic con-
ditions after which static information is lost; however
each branch of corresponding conditionals can still
exploit static information. To this end, binding time of
variables (i.e., static or dynamic) must not be a global
property; it must depend on the program point consid-
ered.

� static returns:As seen in the example in section 3.3,
the computation at specialization time of exit status
tests relies on the ability to statically know the re-
turn value of a function call even though its arguments
and its actions on input/output buffers are dynamic.
More generally, the return value of a function may be
static even though its arguments and side-effects are
dynamic. Thus we can use the return value of a func-
tion call even when the call must be residualized.

Tempo also relies on several other analyses, such as alias
(pointer) and dependency analysis. It goes much beyond
conventional constant propagation and folding, in the sense
that it is not limited to exploitingscalar values intra-
procedurally. It propagates aliases and partially-static data
structuresinter-procedurally. These features are critical
when tackling system code. In concrete terms, Tempo is
able to achieve all the specializations described in Sec-
tion 3.

5 Performance Experiments
Having explained the forms of specialization that

Tempo performs on the RPC code, we now turn to the as-
sessment of the resulting optimized RPC.

The test program. We have specialized both the client
and the server code of the 1984 copyrighted version of
Sun RPC. The unspecialized RPC code is about 1500 lines
long (without comments) on the client side and 1700 on the
server side. The test program, which utilizes remote proce-
dure calls, emulates the behavior of parallel programs that



exchange large chunks of structured data. This is a bench-
mark representative of applications that use a network of
workstations as large scale multiprocessors.

Platforms for measurements. Measurements have been
made on two kinds of platforms:

� Two Sun IPX 4/50 workstations running SunOS 4.1.4
with 32 MB of memory connected with a 100 Mbits/s
ATM link. The cache is write-through with a size
of 64KB. ATM cards are model ESA-200 from Fore
Systems. This platform is several years old and quite
inefficient compared to up to date products, both in
term of CPU, network latency and bandwidth. With
faster, more recent ATM cards (i.e., 155 Mbit/s -
622 Mbit/s), we may expect better results due to
higher throughput.

� Two 166 MHz Pentium PC machines running Linux
with 96 MB of memory and a 100 Mbits/s Fast-
Ethernet network connection. The cache size is
512KB. There were no other machines on this net-
work during experiments.

Our specialization is tested on different environments in
order to check that the results we obtain are not specific to
a particular platform. All programs have been compiled
usinggcc version 2.7.2, with the option-O2 .

Benchmarks. To evaluate the efficiency of specializa-
tion, we have made two kinds of measurements: (i) a
micro-benchmark of the client marshaling process, and
(ii) an application level benchmark which measures the
elapsed total time of a complete RPC call (round-trip). The
client test program loops on a simple RPC which sends
and receives an array of integers. The intent of this sec-
ond experiment is to take into account architectural fea-
tures such as cache, memory and network bandwidth that
affect global performance significantly. Performance com-
parisons for the two platforms and the two experiments are
shown Figure 7. The marshaling and round-trip benchmark
numbers result from the mean of 10000 iterations.

Not surprisingly, the PC/Linux platform is always faster
than the IPX/SunOs’s one. This is partly due to a faster
CPU, but also to the fact that the Fast-Ethernet cards have
a higher bandwidth and a smaller latency than our ATM
cards. A consequence of instruction elimination by the
specialization process is that the gap between platforms is
lowered on the specialized code (see marshaling compar-
isons in Figure 7-1 and 7-2).

Marshaling. The specialized client stub code runs up to
3.75 faster than the non-specialized one on the IPX/SunOS,
and 3.3 on the PC/Linux. Since the number of instruc-
tions eliminated by specialization is linear with array size
and the cost header marshaling is fixed, one would expect
the speedup to increase with the array size up to a con-
stant asymptote. However, on the Sun IPX the speedup

Client code Array size
20 100 500 1000 2000

generic 20004
specialized 24340 27540 33540 63540 111348

Table 1: Size of the SunOS binaries (in bytes)

decreases with the size of the array of integers (see Fig-
ure 7-5). The explanation is that program execution time
is dominated by memory accesses. When the array size
grows, most of the marshaling time is spent in copying the
integer array argument into the output buffer. Even though
specialization decreases the number of instructions used to
encode an integer, the number of memory moves remains
constant between the specialized and non-specialized code.
Therefore, the instruction savings becomes comparatively
smaller as the array size grows. On the PC, which has a
512KB cache this behavior does not appear; as expected
the speedup curve reaches a constant asymptote.

Round-trip RPC. The application level benchmark re-
sults are presented in Figure 7-3,7-4, and 7-6. The special-
ized code runs up to 1.55 faster than the non-specialized
one on the IPX/SunOS, and 1.35 on the PC/Linux. On both
platforms, the speedup curve reaches an asymptote. On
the IPX/SunOS, this is due to memory behavior explained
previously. On the PC/Linux, the reason of the asymptote
is due to the fact that several Ethernet packets have to be
sent that increases the network latency. In addition to these
memory accesses, the Sun RPC includes a call tobzero
to initialize the input buffer on both the client and server
sides. These initializations further increase memory access
overhead as the data size grows.

Code size. As shown in Table 1, the specialized code
is always larger than the original one. The reason is
that the default specialized code unrolls the array encod-
ing/decoding loops completely. It should be noticed that
the specialized code is also larger for small array size. This
is due to the fact that the specialized code also contains
some unspecialized generic functions because of runtime
error handling.

While loop unrolling increases code sizes, it also affects
cache locality. An additional experiment was conducted on
the PC to measure this effect. Since completely unrolling
large loops may exceed the instruction cache capacity, we
only partially unrolled the loop to adjust its body to the
cache size. As shown in Table 2, the resulting code ex-
hibits a lower deterioration of performance as the number
of elements grows. Also, this transformation allows code
explosion to be limited to the 250 array size case. Cur-
rently, this transformation is done manually. However, in
the future, we plan to introduce this strategy in Tempo so
as to better control loop unrolling and code explosion.
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Array PC/Linux
Size Original Spec. Speedup 250-unrolled Speedup
500 0.29 0.11 2.65 0.108 2.70
1000 0.51 0.17 3.00 0.15 3.40
2000 0.97 0.29 3.35 0.25 3.90

Table 2: Specialization with loops of 250-unrolled integers
(times in ms)

6 Discussion
In this section we discuss our experience in using

Tempo for specialization, the lessons learned from work-
ing with existing commercial code, and the relevance of
this kind of specialization for general system code.
6.1 Experience with Tempo

In order to treat large programs, Tempo allows the soft-
ware expert (who writes the specialization context) to visu-
alize the results of the analysis before specialization. Dif-
ferent colors are used to display the static and dynamic
parts of a program, thus helping the expert to follow the
propagation of the inputs declared as known and assess the
degree of specialization to be obtained. After specializa-
tion, the expert can compare the original program with the
specialized program, and decide whether appropriate re-
duction and residualization have been carried out.
6.2 Working with Existing Code

An important lesson learned in this experiment is that
existing code is a challenge for an optimization technique
such as partial evaluation. Indeed, like any other opti-
mization technique, partial evaluation is sensitive to var-
ious program features such as program structure and data
organization. As a result, specializing an existing program
requires an intimate knowledge of its structure and algo-
rithms. It also requires the programmer to estimate what
parts of the program should be evaluated away. This is in
contrast with a situation where the same programmer both
writes and specializes some code: he can structure it with
specialization in mind.

Careful inspection of the resulting specialized code
shows few opportunities for further optimization without
major restructuring of the RPC code. However, Tempo
is not a panacea and we (in the expert role) occasionally
had to slightly modify the original source code in order
to obtain suitable specializations (in practice, to make val-
ues available for specialization). Still, the modifications of
the original code are performed only once by the software
expert. They are fully transparent to the final RPC user.
Therefore, this does not contradict our claim of automati-
cally treating existing system code.
6.3 General Applicability

We consider the Sun RPC to be representative of exist-
ing system code, not only because it is mature, commercial,
and standard code, but also because its structure reflects
production quality concerns as well as unrestrained use of
the C programming language.

The examples that we highlighted in Section 3 (i.e., dis-
patching, buffer overflow checking, handling of exit status)

are typical instances of general constructions found in sys-
tem code and protocols such as TCP/UDP/IP. The fact that
Tempo is able to automatically specialize them reinforces
our conviction that automatic optimization tools like partial
evaluators are relevant for system code production.

Finally, it should be said that analysing an existing soft-
ware and optimizing it with Tempo takes the software ex-
pert only few days; this has to be compared to the several
weeks or months required to develop an optimizing com-
piler.

7 Related Work
The specialization techniques presented in this paper re-

late to many studies in various research domains such as
specific RPC optimizations, kernel level optimizations, op-
erating system structuring, and automatic program trans-
formation. Let us outline the salient aspects of these re-
search directions.

General RPC optimizations. A considerable amount of
work has been dedicated to optimizing RPC (see [14, 25,
29]). In most of these studies, a fast path in the RPC
is identified, corresponding to a performance-critical, fre-
quently used case. The fast path is then optimized using a
wide range of techniques. The optimizations address dif-
ferent layers of the protocol stack, and are performed either
manually (by rewriting a layer), or by a domain-specific
optimizer.

Marshaling layer optimizations. Clark and Tennen-
house [5] were the first to identify the presentation layer
as an important bottleneck in protocol software. They at-
tribute to it up to 97% of the total protocol stack overhead,
in some practical applications. Rather than optimizing an
existing implementation, they propose some design princi-
ples to build new efficient implementations.

O’Malley et al. [19] present a universal stub compiler,
called USC. As opposed to XDR, which converts between
a fixed host format and another fixed external representa-
tion, USC converts data between two user-specified for-
mats. USC integrates several domain-specific optimiza-
tions, resulting in much faster code than the one produced
by XDR. However, in order to perform these aggressive op-
timizations, USC imposes some restrictions over the mar-
shaled data types: types such as floating point numbers or
pointers are not allowed. In fact, USC is not designed for
general argument marshaling, but rather for header conver-
sions and interfacing to memory-mapped devices.

Flick [8] is a flexible optimizing IDL (Interface Descrip-
tion Language) compiler recently designed by Eideet al..
Flick supports several IDL such as Sun, CORBA and MIG
IDLs. It can be used either in traditionnal distributed ap-
plications or for interfacing operating system layers [12].
Due to its flexible internal architecture, flick can match the
characteristics of the target machines and implement ag-
gressive optimizations that goes beyond the scope of par-
tial evaluation.



All these studies require one to build a special-purpose
code generator, with a complexity ranging from an ad-hoc
template assembler to a full, domain-specific, optimizing
compiler. In contrast, we take the stubs generated by an ex-
isting stub compiler, and derive the specialized stubs with
Tempo, a general program specialization tool.

Kernel-level optimizations. It is well recognized that
physical memory copy is an important cause of overhead
in protocol implementation. Finding solutions to avoid or
optimize copies is a constant concern of operating system
designers. For instance, copy-on-write was the technique
which made message passing efficient enough to allow op-
erating systems to be designed based on a micro-kernel
architecture [23, 24]. Buffers are needed when different
modules or layers written independently for modularity
reasons have to cooperate together at run time. This cause
of overhead has been clearly demonstrated by Thekkath
and Levy in their performance analysis of RPC implemen-
tations [29]. Recent proposals in the networking area ex-
plore solutions to improve network throughput and to re-
duce latency. Maeda and Bershad propose to restructure
network layers and to move some functions into user space
[16].

Manual specialization. In a first step, operating systems
specialization has been performed manually in experi-
ments such as Synthesis [17, 21], and Synthetix [20]. Man-
ual specialization, however, tends to compromise other
system properties such as maintainability and portability.
Furthermore, manual specialization is typically uniquely
tailored to each situation and therefore requires a high de-
gree of programmer skill and system knowledge. While
tool-based specialization may not fit the traditional kernel
development process, we see it as a natural next step for
operating system development the same way compilers be-
came useful programming technology decades ago.

Recently, a semi-automatic approach to program trans-
formation has been developed; it extends the C language to
include syntactic constructs aimed at building code at run
time[9]. It has been used for a realistic system application,
namely the packet filter [10]. This work demonstrates that
exploiting invariants can produce significant speedups for
demultiplexing messages. This result has been obtained at
the cost of manually rewriting a new algorithm that adapts
to the specific usage context.

Automatic program transformation. Program transfor-
mation has been used successfully for specializing pro-
grams in domains such as computer graphics [15]. The
key point of program transformation is that it preserves the
semantics of the program. Therefore, if the transformation
process can be automated, the final code has the same level
of safety than the initial program. Tempo relies on partial
evaluation [6], a form of program transformation which is
now reaching a level of maturity that makes it possible to

develop specializers for real-sized languages like C [1, 7]
and apply these specializers to real-sized problems.

C-Mix is the only other partial evaluator for C reported
in the literature. Unfortunately, the accuracy of its analyses
does not allow it to deal with partially-static structures and
pointers to these objects interprocedurally [2].

8 Conclusion
We have described the specialization of Sun RPC us-

ing the Tempo partial evaluator. This is the first success-
ful partial-evaluation-based specialization of a significant
OS component. The experiment consists of declaring the
known inputs of the Sun RPC code and allowing Tempo to
automatically evaluate the static parts of code at special-
ization time. Examples of known information include the
number and type of RPC parameters.

There are three reasons why partial-evaluation based
specialization is a significant innovation, in comparison to
manual specialization [11, 20]. First, Tempo preserves the
source code at the programming level, thus preserving the
safety and maintainability of a mature commercial code.
Second, Tempo achieves speedup up to 3.75 in micro-
benchmarks, and 1.5 in test programs. Close inspection
of the specialized Sun RPC did not reveal obvious oppor-
tunities for further significant improvements without major
code restructuring. Third, the successful specialization of
commercial code is automatic and shows the promise of
industrial application of Tempo.

We carried out experiments on two very different plat-
forms, namely Sun 4/50 workstations running SunOS con-
nected with a 100 Mbits/s ATM link, and 166 MHz Pen-
tium machines running Linux, connected to a 100 Mbits/s
Ethernet network. The differences of these platforms and
the consistency of performance gains show a robust appli-
cability of Tempo as a tool for partial-evaluation based spe-
cialization of layered operating systems code such as Sun
RPC.
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References
[1] L.O. Andersen. Self-applicable C program special-

ization. InPartial Evaluation and Semantics-Based
Program Manipulation, pages 54–61, San Francisco,
CA, USA, June 1992. Yale University, New Haven,
CT, USA. Technical Report YALEU/DCS/RR-909.

[2] L.O. Andersen. Program Analysis and Specializa-
tion for the C Programming Language. PhD thesis,
Computer Science Department, University of Copen-
hagen, May 1994. DIKU Technical Report 94/19.

[3] B.N. Bershad, S. Savage, P. Pardyak, E. G¨un Sirer,
M.E. Fiuczynski, D. Becker, C. Chambers, and S. Eg-
gers. Extensibility, safety and performance in the
SPIN operating system. In SOSP95 [28], pages 267–
283.



[4] G. Cabillic and I. Puaut. Stardust: an environment for
parallel programming on networks of heterogeneous
workstations. Journal of Parallel and Distributed
Computing, 40:65–80, February 1997.

[5] D.D. Clark and D.L. Tennenhouse. Architectural con-
siderations for a new generation of protocols. In
SIGCOMM Symposium on Communications Archi-
tectures and Protocols, pages 200–208, Philadelphia,
PA, September 1990. ACM Press.

[6] C. Consel and O. Danvy. Tutorial notes on par-
tial evaluation. InConference Record of the Twen-
tieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles Of Programming Languages, pages 493–
501, Charleston, SC, USA, January 1993. ACM
Press.

[7] C. Consel, L. Hornof, F. No¨el, J. Noyé, and E.N.
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