
Supporting Low Latency TCP-Based Media Streams

Ashvin Goel Charles Krasic Kang Li Jonathan Walpole
Oregon Graduate Institute, Portland

{ashvin,krasic,kangli,walpole }@cse.ogi.edu

Abstract—The dominance of the TCP protocol on the Internet
and its success in maintaining Internet stability has led to several
TCP-based stored media-streaming approaches. The success of
these approaches raises the question whether TCP can be used for
low-latency streaming. Low latency streaming allows responsive
control operations for media streaming and can make interactive
applications feasible. We examined adapting the TCP send buffer
size based on TCP’s congestion window to reduce application per-
ceived network latency. Our results show that this simple idea sig-
nificantly improves the number of packets that can be delivered
within 200 ms and 500 ms thresholds.

I. I NTRODUCTION

Traditionally, the multimedia community has considered
TCP unsuitable for streaming audio and video data. The main
issues raised against TCP-based streaming have been related to
congestion controlandpacket retransmissions. TCP congestion
control is designed to probe available bandwidth through delib-
erate manipulation of the transmission rate. This rate variation
can impede effective streaming because the streaming require-
ments are not necessarily matched with the transmission rate,
causing either data dropping or accumulation of buffered data
and thus delay. In addition, congestion control can lead to sus-
tained or long-term reduction in rate.

TCP uses packet retransmissions to provide in-order, lossless
packet delivery. Packet retransmissions can potentially intro-
duce unacceptable end-to-end latency and thus re-sending me-
dia data may not be appropriate because it would arrive too late
for display at the receiver.

Recently, several approaches have been proposed to over-
come these problems [4], [26], [14], [25], [18]. These TCP-
based stored media streaming approaches use a combination
of client-side bufferingand efficientQoS adaptationof the
streamed data. Client-side buffering essentially borrows some
current bandwidth to prefetch data to protect against future rate
reduction. Thus, with sufficient client-side buffering, short-
term rate variations introduced by TCP as well as the de-
lay introduced by packet retransmissions can both be handled.
QoS adaptation allows fine-grained adjustment of the rate-
distortion tradeoff, i.e., rate versus quality adjustment, during
the transmission process and thus allows handling long-term
rate changes by adjusting quality dynamically.

TCP-based streaming is desirable because TCP offers several
well known advantages. TCP provides congestion controlled
delivery which is largely responsible for the remarkable stabil-
ity of the Internet despite an explosive growth in traffic, topol-
ogy and applications [13]. TCP handles flow control and packet

This work was partially supported by DARPA/ITO under the Information
Technology Expeditions, Ubiquitous Computing, Quorum, and PCES programs
and by Intel.

losses, so applications do not have to worry about recovery from
packet losses. This issue is especially important because the ef-
fects of packet loss are non-uniform and can quickly become
severe. For instance, loss of the header bits of a picture typi-
cally renders the whole picture and possibly a large segment of
surrounding video data unviewable while loss of certain pixel
blocks may be virtually imperceptible. Thus media applications
over a lossy transport protocol have to implement complex re-
covery strategies such as FEC [27] that potentially have high
bandwidth and processing overhead. Finally, given the large
TCP user base, there is great interest in improving its perfor-
mance. Such improvements can also help media streaming.

In this paper, we study the feasibility of using TCP for low-
latency media streaming. We are concerned withprotocol la-
tency,which we define as the time difference from a write on the
sender side to a read on the receiver side, i.e., socket to socket
latency. Low latency streaming is desirable for several applica-
tions. For streaming media, control operations such as the se-
quence of start play, fast forward and restart play become more
responsive because the network and the end-points have low de-
lay in the data path. For video on demand servers, low latency
streaming offers faster channel surfing (starting and stopping of
different channels). Similarly, multimedia document browsing
becomes more responsive. Finally, with sufficiently low latency
streaming, interactive streaming applications become feasible.

Although there have been several studies that describe the
packet delays experienced by TCP flows [1], [23], [9] there has
been much less work describing the protocol latency observed
by applications streaming over TCP. This lack of study of pro-
tocol latency is partly because TCP has often been considered
impractical for streaming applications and thus few TCP-based
streaming applications have been developed. In addition, non-
QoS adaptive streaming applications require large buffering at
the ends to handle bandwidth variations, so protocol latency
can be a second order effect. Fortunately, with quality adaptive
streaming applications, the buffering needed at the end-points
can be tuned and made small and thus protocol latency becomes
more significant.

This paper examines TCP protocol latency by showing the
latency observed at the sender side, receiver side and the net-
work under various network conditions. Our results show that,
surprisingly, a significant portion of the protocol latency oc-
curs due to TCP’ssend bufferand this latency can be elimi-
nated by making some simple send-buffer modifications to the
sender side TCP stack without changing the TCP protocol in
any way. These modifications dynamically adapt (reduce) the
send buffer size and have similarity to the send-buffer tuning
work by Semke [29]. However, unlike their work which focuses
on improving TCP throughput, this work focuses on reducing



socket to socket latency.
Our experiments show that these modifications reduce the

average protocol latency to well within the interactive latency
limits of approximately 200 ms [12] when the underlying net-
work round-trip time is less than 100 ms (coast-to-coast round-
trip time in the US [9]).1 This reduction in latency comes at a
small expense in throughput.

At this point, it may seem that our send-buffer reduction ap-
proach would reduce latency from the TCP layer but would
re-introduce it at the application layer, and thus the net effect
on application-level end-to-end latency is unclear. Fortunately,
this issue is not a real problem because we assume that latency-
sensitive applications are 1) quality-adaptive and 2) they use
poll and non-blockingwrite calls on the sending side. The
benefit of low latency streaming is that the sending side can
wait longer before making its quality adaptation decisions, i.e.,
it has more control and flexibility over what data should be sent
and when it should be sent. For instance, if the low protocol-
latency network doesn’t allow the application to send data for
a long time, the sending side can drop low-priority data and
then send data, which will arrive at the receiver with low de-
lay (instead of committing the low-priority data to a large TCP
send-buffer early and then lose control over quality adaptation
when that data is delayed in the send buffer). The non-blocking
write calls ensure that the sending side is not blocked from do-
ing other work (such as media encoding) while the network is
busy. In addition, the application does not spend CPU cycles
polling for the socket-write ready condition since the kernel in-
forms the application when the socket is ready for writing.

The sender-side modifications reduce average protocol la-
tency significantly but are not sufficient for interactive stream-
ing applications since many packets can still observe latencies
much higher than 200 ms. These latency spikes occur due
to packet dropping and retransmissions and thus motivate the
need for mechanisms that reduce packet dropping in the net-
work. One such mechanism is explicit congestion notifica-
tion (ECN) [24]. With ECN, routers use active queue manage-
ment [5] and indirectly inform TCP of impending congestion
by setting an ECN bit on packets that would otherwise have
been dropped. TCP uses the ECN bit to pro-actively reduce its
sending rate, thus reducing network load and packet dropping in
the network. This paper explores how TCP enabled with ECN
effects protocol latency.

The next section presents our modifications to the TCP send-
ing side to reduce protocol latency. Section III describes our
experimental methodology for evaluating the latency behavior
of TCP. Section IV presents our results. Section V summarizes
related work in multimedia and low latency streaming, and TCP
congestion control. Section VI discusses future work in low-
latency TCP streaming, and finally, Section VII presents our
conclusions.

II. TCP SEND BUFFER

This section discusses our approach to reducing protocol la-
tency by dynamically adjusting the TCPsend buffersize. TCP

1We are focusing on protocol latency (or socket to socket latency) and ignore
the processing times at the application end points in this paper.

is a window-based protocol, where its window size is the maxi-
mum number of distinct (and unacknowledged) packets in flight
in the network at any time. TCP adapts the size of its window
based on congestion feedback and stores this size value in the
TCP variable CWND. TCP uses afixed sizesend buffer to store
application data before the data is transmitted. This buffer has
two functions. First, it handles rate mismatches between the ap-
plication sending rate and TCP’s transmission rate. Second, it is
used to keep copies of the packets in flight (its current window)
so they can be retransmitted when needed. Since CWND stores
the number of packets in flight, its value can never exceed the
send buffer size.

From a latency perspective, the fixed size send buffer can
introduce significant latency into the TCP stream. As a con-
crete example, the send buffer in most current Unix kernels is
at least 64KB. For a 300 Kbs video stream, a full send buffer
contributes 1700 ms of delay. By comparison, the round trip
delay may lie between 50-100 ms for coast-to-coast transmis-
sion within the United States. In addition, the buffering de-
lay increases for smaller bandwidth streams or with increasing
competition since the stream bandwidth goes down.

We believe that for latency sensitive streams, sender-side
buffering should be moved out of the TCP stack and applica-
tions should be allowed to handle buffering as much as possi-
ble. This approach is in keeping with the end-to-end principle
followed by TCP where the protocol processing complexity is
moved out of the network as much as possible to the stream end
points. We do not modify TCP receive-side buffering because
our applications aggressively remove data from the receive-side
buffer. Thus, receive-side delay is only as issue when packets
are retransmitted by TCP. This issue is discussed further in Sec-
tion IV-C.

A. Adapting Send Buffer Size

One method for reducing the latency caused by the send
buffer is to statically reduce the size of the send buffer. This
approach has a negative effect on the throughput of the flow if
the number of packets in flight (CWND) is limited by the send
buffer (and not by the network congestion signal). In this case,
the flow throughput is directly proportional to the send buffer
size and decreases with a smaller send buffer. We reject this
approach because although our main goal is to reduce proto-
col latency, we also aim to achieve throughput comparable to
standard TCP.

Now suppose that the send buffer was sufficiently large that
TCP could adjust the value of CWND based only on conges-
tion (and receiver buffer) feedback. It should be clear that for
this condition to hold, the size of the send buffer should be
at least CWND packets. A smaller value would limit CWND
to the send buffer size and reduce the throughput of the flow.
A larger value should not affect throughput significantly since
TCP would not send more than CWND packets anyway. How-
ever, a larger value increases protocol latency because only
CWND packets can be in flight at any time, and thus the rest
of the packets have to sit in the send buffer until acknowledg-
ments have been received for the previous packets.

This discussion shows that adjusting the send buffer size
to follow CWND can reduce protocol latency without signif-



icantly affecting flow throughput. We have implemented this
approach, as described in Section II-B. This approach impacts
throughput when TCP could have sent a packet but there are no
new packets in the send buffer. This condition can occur for
several reasons. First, with each acknowledgment arrival, stan-
dard TCP has a packet in the send buffer that it can send imme-
diately. If the send buffer size is limited to CWND, then TCP
must inform the application and the application must write the
next packet before TCP can send it. Thus, system timing and
scheduling behavior can affect TCP throughput. Second, back-
to-back acknowledgment arrivals exacerbate this problem. Fi-
nally, the same problem occurs when TCP increases CWND.
These adverse affects on throughput can be reduced by adjust-
ing the buffer size so that it is larger than CWND. To study
the impact on throughput, we experimented with three different
send buffer configurations as described in the next section.

B. Send Buffer Modifications

To reduce sender-side buffering, we have made a small send-
buffer modification to the TCP stack on the sender side in the
Linux 2.4 kernel. This modification can be enabled per socket
by using a new SOTCP MIN BUF option, which limits the
send buffer size toA∗CWND+MIN(B,CWND) packets at any
given time. The send buffer size is at least CWND becauseA
must be an integer greater than zero andB is zero or larger. We
assume, as explained in more detail later, that the size of each
application packet is MSS (maximum segment size). With the
send-buffer modification, an application is blocked from send-
ing when there areA ∗ CWND + MIN(B,CWND) packets in
the send buffer. In addition, the application is woken up when
at least one packet can be admitted in the send buffer. By de-
faultA is one andB is zero, but these values can be made larger
with the SOTCP MIN BUF option. From now on, we call a
TCP stream that has the SOTCP MIN BUF option turned on
with parametersA andB, a MIN BUF(A, B) stream.

With these modifications to TCP and assuming a
MIN BUF(1, 0) stream, the send buffer will have at most
CWND packets after an application writes a packet to the
socket. TCP can immediately transmit this packet since this
packet lies within TCP’s window. After this transmission, TCP
will again allow the application to write data. Thus as long
as CWND is non-decreasing, TCP will not add any buffering
delay to a stream. Delay is added only during congestion
when TCP decreases the value of CWND. Our experiments in
Section IV show that this delay is generally much smaller than
the standard TCP send-buffer delay.

The SOTCP MIN BUF option exposes the parameterA
andB, because they represents a tradeoff between latency and
throughput. Larger values ofA or B add latency but can im-
prove throughput as explained in the previous section. We
experimented with three MINBUF streams: MINBUF(1, 0),
MIN BUF(1, 3) and MIN BUF(2, 0). These streams should
have increasing latency and throughput. A MINBUF(1, 0)
stream is the default stream with the least protocol latency. We
expect a MINBUF(2, 0) stream to have the same throughput
as TCP because there are CWND extra packets in the send
buffer and even if acknowledgments for all packets in the pre-
vious window come simultaneously, the next window of pack-

ets can be sent without first getting packets from the appli-
cation. Thus a MINBUF(2, 0) stream should behave sim-
ilarly (in terms of throughput) to a TCP stream [16]. Fi-
nally, we chose a MINBUF(1, 3) stream to see how three ex-
tra packets affect latency and throughput. If no more than
three acknowledgments arrive back to back, then this stream
should behave similar to TCP in terms of bandwidth. Sec-
tion IV presents latency and throughput results for the three
streams. Briefly, our results show that 1) MINBUF(1, 0) and
MIN BUF(1, 3) flows has similar latencies and these latencies
are much smaller than MINBUF(2, 0) or TCP flows, and 2)
while a MIN BUF(1, 0) flow suffers 30 percent bandwidth loss,
the MIN BUF(1, 3) flow suffers less than 10 percent bandwidth
loss. Thus, the MINBUF(1, 3) flow represents a good latency-
bandwidth compromise.

1) Sack Correction:The previous discussion about the send
buffer limit applies for a non-SACK TCP implementation. For
TCP SACK [15], we make asack correctionby adding an ad-
ditional termsackedout to A ∗ CWND + MIN(B,CWND).
The sackedout term (or an equivalent term) is maintained by
a TCP SACK sender and is the number of selectively acknowl-
edged packets. With TCP SACK, when selective acknowledg-
ments arrive, the packets in flight are no longer contiguous but
lie within a CWND+sackedout packet window. We make the
sack correction to ensure that the send buffer limit includes this
window and is thus at least CWND+sackedout. Without this
correction, TCP SACK is unable to send new packets for a
MIN BUF flow and assumes that the flow is application lim-
ited. It can thus reduce the congestion window multiple times
after the arrival of selective acknowledgments.

2) Alternate Application-Level Implementation:It is con-
ceivable that the objectives of the send-buffer modifications can
be achieved at the application level. Essentially the application
would stop writing data when the socket buffer has a fill level
of A ∗CWND + MIN(B,CWND) packets or more. The prob-
lem with this approach is that the application has to poll the
socket fill level. Polling is potentially both expensive in terms
of CPU consumption and inaccurate since the application is not
informed immediately when the socket-fill level goes below the
threshold.

C. Application Model

In this paper, we are concerned with protocol latency. We
ignore the processing time at the application end points since
these times are application dependent. However, these times
must also be included when studying the feasibility of a low
latency application such as an interactive media streaming ap-
plication.

We assume that latency-sensitive applications use non-
blocking read and write socket calls. The protocol latency is
measured from when the packet write is initiated on the sender
side to when the same packet is completely read on the receiver
side. The use of non-blocking calls generally means that the
application is written using an event-driven architecture [22].

We also assume that applications explicitly align their data
with packets transmitted on the wire (application level fram-
ing) [2]. This alignment has two benefits: 1) it minimizes
any latency due to coalescing or fragmenting of packets below



the application layer, 2) it ensures that low-latency applications
are aware of the latency cost and throughput overhead of co-
alescing or fragmenting application data into network packets.
For alignment, an application writes MSS (maximum segment
size) sized packets on each write. TCP determines MSS dur-
ing stream startup but the MSS value can change due to various
network conditions such as routing changes [17]. A latency-
sensitive application should be informed when TCP determines
that the MSS has changed. Currently, we detect MSS changes
at the application level by querying TCP for the MSS before
each write. Another more efficient option would be to return a
write error on an MSS change for a MINBUF socket.

III. E XPERIMENTS

In this section, we describe the tests we performed to eval-
uate the latency and throughput behavior of standard TCP
and MIN BUF streams under various network conditions. All
streams use TCP SACK and MINBUF streams use the sack
correction described in Section II-B. We performed our exper-
iments on a Linux 2.4 test-bed that simulates WAN conditions
by introducing delay at an intermediate Linux router in the test-
bed.

A. Experimental Scenarios

The first set of tests considers the latency response of TCP
streams to a sudden increase in congestion. Increase in conges-
tion is triggered with three types of flows: 1) competing long-
lived TCP flows, 2) a flash crowd of many small TCP flows,
and 3) a competing constant bit rate (CBR) flow, such as a UDP
flow. The long-lived competing flows are designed to simulate
other streaming traffic. The flash crowd of short TCP flows
simulates web transfers. In our experiments, the small flows
have fixed packet sizes and they are run back to back so that
the number of active TCP connections is roughly constant [11].
The CBR flow simulates non-responsive UDP flows.

While these traffic scenarios do not necessarily accurately
model reality, they are intended to explore and benchmark the
latency behavior of TCP and MINBUF streams in a well char-
acterized environment. These tests are designed to emulate a
heavily loaded network environment.

The second set of tests measures the relative throughput share
of TCP and MINBUF streams. Here we are mainly concerned
with the bandwidth lost by MINBUF traffic. These experi-
ments are performed with the same types of competing flows
described above.

We are interested in several metrics of a latency-sensitive
TCP flow. We explore three metrics in this paper: 1) protocol
latency distribution, and specifically, the percentage of packets
that arrive at the receiver within adelay threshold, 2) average
packet latency, and 3) normalized throughput, the ratio of the
throughput of a MINBUF flow to a TCP flow. We choose
two delay thresholds, 200 ms, which is related to interactive
streaming performance, and 500 ms, which is somewhat arbi-
trary, but chosen to represent the requirements of responsive
media streaming control operations.

In addition to comparing the latency behavior of standard
TCP and MINBUF streams, we are also interested in under-
standing the effects on protocol latency of ECN enabled TCP.

Sender (S)

Dump (DU)

Receiver (R2)

Receiver (R1)

Router

Fig. 1. Network Topology

Our results describe how this “streaming friendly” mechanism
affects protocol latency.

B. Network Setup

All our experiments use a single-bottleneck “dumbbell”
topology and FIFO scheduling at the bottleneck. The network
topology is shown in Figure 1. Each box is a separate Linux
machine. The latency and throughput measurements are per-
formed for a single stream originating at the senderS and ter-
minating at receiverR1. This stream is generated by an applica-
tion that follows the application model described in Section II-
C. The sender generates cross traffic for both receiversR1and
R2. The router runsnistnet [20], a network emulation pro-
gram that allows the introduction of additional delay and band-
width constraints in the network path. The machine DU is used
to dump TCP traffic for further analysis. The protocol latency
is measured by recording the application write time for each
packet on the senderS and the application read time for each
packet on the receiverR1. All the machines are synchronized
to within one ms of each other using NTP.

We chose three round-trip times (RTT) for the experiments
and conducted separate experiments for each RTT. The RTTs
were 25 ms, 50 ms and 100 ms. These RTTs approximate some
commonly observed RTTs on the Internet. The cable modem
from our home to work has 25 ms delay. West-coast to west-
coast sites or East-coast to East-coast sites in the US observe
50 ms median delay and west-coast to east-coast sites in the US
observe 100 ms median delay [9].

We run our experiments over standard TCP and ECN enabled
TCP. For each RTT, two router queue lengths are chosen so that
bandwidth is limited to 12 Mbs and 30 Mbs. The TCP experi-
ments use tail dropping. For ECN, we use DRED active queue
management [7], which is supported inNistnet . DRED is
a RED variant that is implemented efficiently in software. The
drdmin, drdmaxanddrdcongestparameters of DRED were cho-
sen to be 1.0, 2.0 and 2.0 times the bandwidth-delay product,
respectively. DRED sends ECN messages for 10 percent of
packets when the queue length exceedsdrdmin, progressively
increasing the percentage until packets are dropped when the
queue length exceedsdrdcongest. Unlike RED, DRED does
not average queue lengths.

IV. RESULTS

In this section, we discuss the results of our experiments.
We start by showing the effects of using TCP and MINBUF
streams on protocol latency. Then we quantify the throughput
loss of these streams. We investigate the latencies observed at



0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Fig. 2. The bandwidth profile of the cross traffic (15 elephants, 80 mice
consuming about 30% bandwidth and 10% CBR traffic)

the sender, network and the receiver of TCP streams and the
causes of each latency. Finally, we explore using ECN enabled
TCP to improve protocol latencies.

A. Protocol Latency

Our first experiment shows the protocol latency of TCP and
MIN BUF streams in response to dynamically changing net-
work load. The experiment is run for about 80 seconds with
load being introduced at various different time points in the
experiment. The TCP or MINBUF long-lived stream being
measured is started at t = 0s. We refer to this flow as thela-
tencyflow. Then at t = 5s, 15 other long-lived (elephant) flows
are started, 7 going to receiver R1 and 8 going to receiver R2.
At t = 20s, each receiver initiates 40 simultaneous short-lived
(mouse) TCP flows. A mouse flow is a repeating short-lived
flow that starts the connection, transfers 20KB of data, ends
the connection and then repeats this process continuously [11].
The number of mouse flows was chosen so that the mouse flows
would get approximately 30 percent of the total bandwidth. At
t = 40s, CBR traffic that consumes 10 percent of the bandwidth
is started. At t = 60s, the elephants are stopped and then the
mice and the CBR traffic are stopped at t = 75s. Figure 2 shows
the cross traffic (elephants, mice and CBR traffic) for a 30 Mbs
bandwidth, 100 ms RTT experiment. Other experiments have a
similar bandwidth profile.

Figure 3 shows the results of a run with standard TCP and
MIN BUF(1, 0) streams when the bandwidth limit is 30Mbs
and the round trip time is 100 ms. Both these streams originate
at sender S and terminate at receiver R1. The figures shows the
protocol latency of the latency flow as a function of packet re-
ceive time. The two horizontal lines on they axis show the 200
ms and the 500 ms latency threshold.

Figure 4 shows the protocol latency of the three MINBUF
configurations. Note that in this figure, the maximum value
of the y axis is 500 ms. These figures show that the
MIN BUF streams have significantly lower protocol latency
than a standard TCP stream. They show that, as expected,
the MIN BUF(1, 0) flow has the lowest protocol latency while
the MIN BUF(2, 0) has the highest protocol latency among the
MIN BUF flows. Looking at the throughput profile of the laten-
cies flows (now shown here), we found that the protocol latency
of TCP and MINBUF(2, 0) is highest when the flow through-
put is lowest. However, the protocol latency of MINBUF(1, 0)
and MIN BUF(1, 3) flows is not affected as much by their
changing throughput. The reason is that the TCP send buffer
drains slowly when the bandwidth available to the latency
stream goes down. Since TCP and MINBUF(2, 0) flows allow

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP

(a) TCP

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(b) MIN BUF(1,0)

These figures show the protocol latency of packets plotted as a function
of packet receive time. The bandwidth limit for this experiment is 30
Mbs and the round trip time is 100 ms. The horizontal lines on the
figures show the 200 ms and 500 ms latency threshold.

Fig. 3. A comparison of the protocol latencies of TCP and MINBUF(1,0)
streams

the send buffer to fill up more than the other two flows, these
flows observe higher protocol latencies. The send buffer does
not significantly affect the protocol latency in MINBUF(1, 0)
and MIN BUF(1, 3) flows. The latency spikes seen in these
flows are chiefly a result of TCP congestion control and retrans-
mission as discussed in Section IV-C.

The protocol latency distribution for this experiment is
shown in Figure 5. The experiment was performed with 30Mbs
and 12Mbs bandwidth limit and with 100 ms, 50ms and 25
ms RTT. Each experiment was performed 8 times and the re-
sults presented show the numbers accumulated over all the runs.
The vertical lines show the 200 and 500 ms delay thresholds.
The figures show that in all cases a much larger percent of
TCP packets lie outside the delay thresholds as compared to
MIN BUF flows. Note that the x axis, which shows the proto-
col latency in milliseconds, is on a log scale. The figures show
that, as expected, the percent of packets with large delays in-
creases with increasing RTT and decreasing bandwidth. The
percent of packets delivered within the 200 and 500 ms delay
thresholds is summarized in Table I. This table also shows that
the packets delivered within the delay thresholds is very similar
for MIN BUF(1, 0) and MIN BUF(1, 3) flows.

The average (one way) protocol latency for each configura-
tion is shown in Table II. Each experiment was performed 8
times and these numbers are the mean of the 8 runs. The table



0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

TCP MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 3. Note that the maximum value of the y axis is 500 ms,
while it is 4500 ms in Figure 3.

Fig. 4. A comparison of the protocol latencies of 3 MINBUF configurations

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (30 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 100ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 50ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n

Time (milliseconds)

Latency Distribution (12 Mb/s total bandwidth, 25ms RTT)

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

The experiment was performed with a 30Mbs and 12Mbs bandwidth limit and with 100 ms, 50ms and 25 ms RTT. The vertical lines show the
200 and 500 ms delay thresholds. The x axis, which shows the protocol latency in milliseconds, is on a log scale.

Fig. 5. Protocol Latency Distribution of standard TCP, MINBUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) flows

shows that MINBUF flows have much lower average latency
and the deviation across runs is also much smaller.

B. Throughput Loss

We are interested in the throughput loss of MINBUF
streams. We measured the throughput of each of the flows as a
ratio of the total number of bytes received to the duration of the
experiment. Table III shows the normalized throughput of each
flow, which is the ratio of the throughput of the flow to the TCP
flow. Again, these numbers are the mean (and 95% confidence
interval) over 8 runs.

The table shows that the MINBUF(2, 0) flows receive
throughput close to standard TCP (within the confidence

range). MINBUF(2, 0) flows have CWND new packets that
can be sent after a packet transmission. So even if all current
CWND packets in flight are acknowledged almost simultane-
ously, TCP can send its entire next window of CWND packets
immediately. Thus we expect that MINBUF(2,0) flows should
behave similar to TCP flows.

The MIN BUF(1, 0) flows consistently receive the least
throughput, about 70 percent of TCP. This result is not surpris-
ing because TCP has no new packets in the send buffer that can
be sent after each packet is transmitted. TCP must ask the ap-
plication to write the next packet to the send buffer before it
can proceed with the next transmission. Thus, any scheduling
or other system delays would make the MINBUF(1, 0) flow
an application-limited flow. TCP assumes that such flows need



RTT = 100 ms RTT = 50 ms RTT = 25 ms
Mbs Type D200 D500 D200 D500 D200 D500
30 std 0.73 0.91 0.72 0.92 0.84 0.94
30 m10 0.99 1.00 0.99 1.00 1.00 1.00
30 m13 0.98 1.00 0.99 0.99 0.99 1.00
30 m20 0.91 0.99 0.97 0.99 0.99 1.00
12 std 0.53 0.80 0.62 0.88 0.60 0.86
12 m10 0.98 1.00 0.99 1.00 0.99 1.00
12 m13 0.95 0.99 0.99 1.00 0.98 1.00
12 m20 0.86 0.99 0.97 0.99 0.98 0.99

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The terms D200 and D500 refer to a delay threshold of 200 and 500
ms.

TABLE I
PERCENT OF PACKETS DELIVERED WITHIN200 AND 500 MS THRESHOLDS

FOR STANDARDTCP, MIN BUF(1, 0), MIN BUF(1, 3) AND

MIN BUF(2, 0) FLOWS

Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms
30 std 226.31±0.87 218.84±40.34 138.61±21.0
30 m10 62.91±0.96 37.09±0.80 19.71±0.89
30 m13 76.19±2.71 51.54±3.73 28.29±1.70
30 m20 152.14±9.13 89.74±5.32 48.21±2.19
12 std 369.22±50.32 260.27±23.15 296.25±47.49
12 m10 69.73±2.15 38.50±1.09 25.94±1.80
12 m13 91.42±6.81 49.17±2.03 39.08±3.39
12 m20 162.26±6.06 87.90±1.46 61.31±5.59

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
All average latency numbers (together with 95% confidence intervals)
are shown in milliseconds.

TABLE II
AVERAGE LATENCY OF STANDARDTCP, MIN BUF(1, 0),

MIN BUF(1, 3) AND MIN BUF(2, 0) FLOWS

less bandwidth and reduces the window and thus the transmis-
sion rate of such flows.

Interestingly, the MINBUF(1, 3) flows receive throughput
close to TCP, about 90 percent of TCP or more. Three
additional packets in the send buffer (in addition to the
CWND packets in flight) seem to reduce the throughput loss
due to the artificial application-flow limitation introduced by
MIN BUF(1, 0) flows.

For a latency sensitive, quality-adaptive application, one met-
ric for measuring the average flow quality could be the product
of the percent of packets that arrive within a delay threshold
and the normalized throughput of the flow. This relative metric
is related to the number of packets that arrive within the delay
threshold across different flows. Thus a larger value of this met-
ric could imply better perceived quality. From the numbers pre-
sented above, MINBUF(1,3) flows have the highest value for
this quality metric because both their delay threshold numbers
(shown in Table I) and normalized throughput numbers (shown
in Table III) are close to the best numbers of other flows.

Mbs Type RTT = 100 ms RTT = 50 ms RTT = 25 ms
30 std 1.00 1.00 1.00
30 m10 0.66±0.11 0.71±0.08 0.76±0.10
30 m13 0.96±0.12 0.87±0.08 0.92±0.12
30 m20 1.02±0.18 1.13± 0.36 0.91±0.10
12 std 1.00 1.00 1.00
12 m10 0.67±0.09 0.76±0.05 0.89±0.11
12 m13 0.92±0.15 1.06±0.09 1.08±0.22
12 m20 1.13±0.16 1.08±0.14 1.12±0.17

The terms std, m10, m13 and m20 refer to standard TCP,
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0) respectively.
The normalized throughput (NT) is the ratio of throughput of each
flow to the ratio of a standard TCP flow.

TABLE III
THE NORMALIZED THROUGHPUT OF A STANDARDTCP FLOW AND

MIN BUF FLOWS

C. Understanding Worst Case Behavior

Figure 4 shows that MINBUF(1, 0) and MIN BUF(1, 3)
flows occasionally show protocol latency spikes even though
they have small send buffers. To understand the cause of these
spikes, we measured the delays experienced by each packet on
the sender side, in the network and on the receiver side.

Figure 6 shows these delays for a small part of the experiment
when packets were lost and retransmitted. The sender latency
of each packet is the time from when an application writes to the
socket to TCP’s first transmission of the packet. The network
delay is the time from the first transmission of each packet to the
first arrival at the receiver. The receiver latency is the time from
the first arrival of each packet to an application read. Figure 6
shows that the latency spikes are primarily caused by packet
losses and retransmissions. In particular, the protocol (or total)
latency does not depend significantly on the flow throughput
(or the congestion window size). For instance, the congestion
window size at t=35.5 ms and t=36.5 ms is 15 and 4, but the
total latency at these times is roughly the same.

Packet retransmissions initially cause the network delay to
increase, followed by an increase in the receiver latency. The
receiver latency increases because TCP delivers packets in or-
der and a lost packet temporarily blocks further packets from
being released to the application. In addition, the sender la-
tency increases slightly because TCP reduces its congestion
window after a packet loss. Thus packets that were already ac-
cepted into the send buffer are delayed. Note that after a packet
loss, increases in latency at the network, receiver and the sender
are typically not additive (for any given packet) since they are
shifted in time. However, this time shifting implies that the total
latency stays high for several packets after a packet is dropped.
These findings motivated the need to explore mechanisms that
can reduce packet dropping. One such mechanism that has been
studied by the networking community is explicit congestion no-
tification (ECN) [24], [28].

D. Protocol Latency with ECN

ECN enabled routers inform TCP senders of impending con-
gestion by setting an ECN bit on certain packets. When an ECN
enabled TCP sender receives such a packet, it takes pro-active



0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y 

in
 m

s

Packet Transmission Time (seconds)

Total Latency
Network Delay

0

50

100

150

200

250

35.4 35.6 35.8 36 36.2 36.4 36.6

La
te

nc
y 

in
 m

s

Packet Transmission Time (seconds)

Sender Latency
Receiver Latency

0

1

R
et

ra
ns

m
is

si
on

s

Packet (Re)transmissions

0

4

8

12

16

20

35.4 35.6 35.8 36 36.2 36.4 36.6

T
C

P
 W

in
do

w
 S

iz
e

Packet Transmission Time (seconds)

Cwnd

This experiment was performed with a MINBUF(1, 0) flow. The
bandwidth limit is 30 Mbs and the RTT is 100 ms. All figures are
plotted as a function of the packet transmission time. These figures
show that the sender side latency is small for MINBUF(1, 0) flows
and that spikes in total latency occur primarily due to packet loss and
retransmissions.

Fig. 6. The packet delay on the sender side, the network and the receiver side

measures to reduce its sending rate to avoid packet dropping in
the router.

We ran the same set of experiments as described in Sec-
tion IV-A to measure and compare the protocol latency of ECN
flows and MINBUF (with ECN) flows. Figure 7 shows the
bandwidth profile of the competing traffic. Figures 8 and 9
show the comparative protocol latencies. These figures are gen-
erated from experiments that are similar to those shown in Fig-
ure 3 except we enabled ECN at the end points and used DRED
active queue management at the intermediate router.

These figures show that the protocol latency spikes are re-
duced in all cases when compared to Figure 4. A close look
at the raw data showed that ECN reduced packet dropping and
retransmissions and thus had fewer spikes. More experimen-
tal results for ECN can be found in an extended version of this
paper [8].

ECN in these experiments showed several interesting band-

0

10000

20000

30000

0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

K
b/

s)

Time (seconds)

Elephants
Mice
CBR

Fig. 7. The bandwidth profile of the cross traffic (15 elephants, 80 mice
consuming about 50% bandwidth and 10% CBR traffic)

0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN

(a) ECN

0

1000

2000

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(b) MIN BUF(1,0) with ECN

These figures show the protocol latency as a function of packet receive
time. The bandwidth limit for this experiment is 30 Mbs and the round
trip time is 100 ms. The horizontal lines on the figures show the 200
ms and 500 ms latency threshold.

Fig. 8. A comparison of the protocol latencies for ECN and MINBUF(1, 0)
streams

width related properties. First, the mouse bandwidth was tuned
to 50 percent of the bandwidth capacity as shown in Figure 7,
instead of 30 percent as shown in Figure 2. The mice were
able to achieve their bandwidth share quickly and more accu-
rately. With TCP, in some configurations (lower bandwidth and
smaller RTT), the mice were not able to achieve 50 percent
bandwidth share even when the application starts very large
numbers of mice. This is because the elephants are very ag-
gressive and the mouse are unable to connect for long peri-
ods of time. In addition, the ratio of mice to elephants needed
to achieve fair sharing between the mice and the elephants is
much smaller for ECN than with regular TCP flows. Thus, ele-
phants do not steal as much bandwidth from mice and also have
a smoother throughput profile (not shown here). We believe that



0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,0)

(a) MIN BUF(1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (1,3)

(b) MIN BUF(1,3)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

La
te

nc
y 

(m
s)

Time (seconds)

ECN MIN_BUF (2,0)

(c) MIN BUF(2,0)

These experiments were performed under the same conditions as described in Figure 8. Note that the maximum value of the y axis is 500 ms,
while it is 2000 ms in Figure 8.

Fig. 9. A comparison of the protocol latencies of 3 MINBUF configurations

although ECN may loose throughput compared to TCP for long
lived flows, its reduced aggressiveness leads to fewer retrans-
missions and thus it is desirable for low latency streaming.

V. RELATED WORK

The feasibility of TCP-based stored media streaming has
been studied by several researchers. Generally, the tradeoff
in these QoS adaptive approaches is short-term improvement
in video quality versus long term smoothing of quality. Re-
jaie [26] uses layered video and adds or drops video stream
layers to perform long-term coarse grained adaptation, while
using a TCP-friendly congestion control mechanism to react to
congestion on short-time scales. Krasic [14] contends that new
compression practices and reduced storage costs make TCP
a viable and attractive basis for streaming stored content and
uses standard TCP, instead of a TCP-friendly scheme, for me-
dia streaming. Feng [4] and Krasic use priority-based stream-
ing, which allows a simpler and more flexible implementation
of QoS adaptation. We believe that similar QoS adaptive ap-
proaches will be useful for low latency streaming also.

Researchers in the multimedia and networking community
have proposed several alternatives to TCP for media stream-
ing [30], [6]. These alternatives aim to provide TCP-friendly
congestion control for media streams without providing reliable
data delivery and thus avoid the latency introduced by packet
retransmissions. Unfortunately, the effects of packet loss on
media streaming are non-uniform and can quickly become se-
vere. For instance, loss of the header bits of anI -frame in an
MPEG movie can render a large segment of surrounding video
data unviewable. Thus media applications over a lossy transport
protocol have to implement complex recovery strategies such as
FEC [27] that potentially have high bandwidth and processing
overhead. The benefit of FEC schemes for loss recovery is that
they often have lower latency overhead as compared to ARQ
schemes such as employed in TCP. Thus, Nonnenmacher [21]
explores introducing FEC as a transparent layer under an ARQ
scheme to improve transmission efficiency.

Popular interactive streaming applications include Voice over
IP (VoIP) products such as Microsoft NetMeeting [19]. Net-
Meeting provides reasonable voice quality over a best effort

network but is implemented over UDP because the delays intro-
duced by TCP are considered unacceptable. This paper shows
that MIN BUF TCP should yield acceptable delays, especially
for QoS adaptive applications. For interactive applications, ITU
G.114 [12] recommends 150 ms as the upper limit for one-way
delay for most applications, 150 to 400 ms as potentially toler-
able, and above 400 ms as generally unacceptable delay. The
one way delay tolerance for video conferencing is in a similar
range, 200 to 300 ms.

Our send-buffer adaptation approach is similar to the buffer
tuning work by Semke [29]. Semke tunes the send buffer size
to between 2∗CWND and 4∗CWND to improve the throughput
of a high bandwidth-delay connection that is otherwise limited
by the send buffer size. The 4∗CWND value is chosen to limit
small, periodic fluctuations in buffer size. This paper shows that
a connection can achieve throughput close to TCP throughput
by keeping the send buffer size slightly larger than CWND and
also achieve significant reduction in protocol latency.

Many differentiated network services have been proposed for
low latency streaming. These schemes are complementary to
our work since, generally, a MINBUF TCP implementation
can be used for the low delay flow. Hurley [10] provides a
low-delay alternative best-effort (ABE) service that trades high
throughput for low delay. The ABE service drops packets in
the network if the packets are delayed beyond their delay con-
straint. In this model, the client must recover from randomly
dropped packets. Further, unlike with TCP, the server does
not easily get back-pressure feedback information from the net-
work in order to make informed QoS adaptation decisions.

Active queue management and explicit congestion notifica-
tion (ECN) [24] have been proposed for improving the packet
loss rates of TCP flows. Salim [28] shows ECN has increas-
ing throughput advantage with increasing congestion levels and
ECN flows have hardly any retransmissions. Feng [3] shows
that adaptive active queue management algorithms (Adaptive
RED) and more conservative end-host mechanisms can signifi-
cantly reduce loss rates across congested links.

Claffy [1] presents the results of a measurement study of the
T1 NSFNET backbone and delay statistics. In 1992, the one
way median delays between end points ranges from 20 to 80
ms with a peak at 45 ms. Newer data in 2001 [9] shows that



the median RTT for East-coast to East-coast or West-coast to
West-coast is 25-50 ms and East-coast to West-coast is about
100 ms. We use these median results in our experiments. US to
Europe median RTT is currently 200 ms. While the 200 ms me-
dian RTT makes interactive applications challenging, respon-
sive control operations for streaming media should be possible.

VI. FUTURE WORK

The results in this paper are based on experiments conducted
over an experimental network test-bed. While simulating our
experiments under more exhaustive conditions using a network
simulator, such asns , would be useful, the task is not trivial be-
causens does not simulate the send buffer. Thus a simulator for
the send buffer would have to be implemented. In addition, we
are interested in observing whether scheduling and other timing
effects change the latency or throughput behavior of MINBUF
streams. Simulating such effects is beyond the scope ofns .

We have explored adapting the send buffer using three dif-
ferent sizes for MINBUF(A, B) flows. These different config-
urations, with increasing buffer sizes, have increasing latency
and throughput. Another approach for adapting the send buffer
is to auto-tune the values of A and B so that the send buffer
contributes a certain amount of delay while providing the best
possible throughput.

We are currently implementing a streaming quality-adaptive
media server that will allow channel surfing as well as basic
control operations such as fast forward, stop, rewind, etc. We
plan to compare the latency of these operations using standard
TCP versus MINBUF flows. We are also integrating a real-
time MPEG encoder into the media server, which will allow
us to investigate some of the challenges raised by low latency
streaming, including the handling of late packets.

VII. C ONCLUSIONS

The dominance of the TCP protocol on the Internet and its
success in maintaining Internet stability has led to several TCP-
based stored media-streaming approaches. These approaches
use a combination of client-side buffering and QoS adaptation
to overcome various problems that were considered inherent
with TCP-based media streaming.

The success of TCP-based streaming led us to explore the
limits to which TCP can be used for low-latency media stream-
ing. Low latency streaming allows responsive streaming con-
trol operations and sufficiently low latency streaming would
make interactive applications feasible. We examined adapting
the TCP send buffer size based on TCP’s congestion window
to reduce protocol latency or application perceived network la-
tency. Our results show that this simple idea reduces protocol
latency and significantly improves the number of packets that
can be delivered within 200 ms and 500 ms thresholds.

REFERENCES

[1] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Traffic
Characteristics of the T1 NSFNET Backbone. InINFOCOM, pages 885–
892, 1993.

[2] David D. Clark and David L. Tennenhouse. Architectural Considerations
for a New Generation of Protocols. InSIGCOMM Symposium on Com-
munications Architectures and Protocols, pages 200–208, Philadelphia,
PA, 1990.

[3] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang S. Shin.
Techniques for Eliminating Packet Loss in Congested TCP/IP Networks.
Technical Report CSE-TR-349-97, U. Michigan, Nov 1997.

[4] Wu-Chi Feng, Ming Liu, Brijesh Krishnaswami, and Arvind Prabhudev.
A Priority-Based Technique for the Best-Effort Delivery of Stored Video.
In Proc. of SPIE Multimedia Computing and Networking Conference
(MMCN), January 1999.

[5] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413,
August 1993.

[6] Sally Floyd, Mark Handley, and Eddie Kohler. Problem Statement for
DCP. Work in progress, IETF Internet Draft draft-floyd-dcp-problem-
00.txt, expires Aug 2002, Feb 2002.

[7] M. Gaynor. Proactive Packet Dropping Methods for TCP Gateways.
http://www.eecs.harvard.edu/˜gaynor/final.ps , Octo-
ber 1996.

[8] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan Walpole. Support-
ing Low Latency TCP-Based Media Streams. Technical Report CSE-02-
002, Oregon Graduate Institute, March 2002.ftp://cse.ogi.edu/
pub/tech-reports/2002/02-002.ps.gz .

[9] Bradley Huffaker, Marina Fomenkov, David Moore, and kc claffy. Macro-
scopic Analyses of the Infrastructure: Measurement and Visualization of
Internet Connectivity and Performance. InA workshop on Passive and
Active Measurements, Amsterdam, April 2001.

[10] P. Hurley and J. Y. Le Boudec. A Proposal for an Asymmetric Best-Effort
Service. InProceedings of IEEE/IFIP IWQoS 1999, pages 132–134, May
1999.

[11] Gianluca Iannaccone, Martin May, and Christophe Diot. Aggregate Traf-
fic Performance with Active Queue Management and Drop from Tail.
ACM Computer Communication Review, 31(3), July 2001.

[12] International Telecommunication Union (ITU).Transmission Systems
and Media, General Recommendation on the Transmission Quality for an
Entire International Telephone Connection; One-Way Transmission Time.
Geneva, Switzerland, March 1993. Recommendation G.114, Telecommu-
nication Standardization Sector of ITU.

[13] V. Jacobson. Congestion Avoidance and Control. InACM SIGCOMM,
pages 314–329, Stanford, CA, August 1988.

[14] Charles Krasic, Kang Li, and Jonathan Walpole. The Case for Stream-
ing Multimedia with TCP. In8th International Workshop on Interactive
Distributed Multimedia Systems (iDMS 2001), pages 213–218, Sep 2001.
Lancaster, UK.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. Internet RFC 2018, October 1996.

[16] Matthew Mathis and Jamshid Mahdavi. Forward Acknowledgment: Re-
fining TCP Congestion Control. InACM SIGCOMM, 1996.

[17] J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP version
6. Internet RFC 1981, August 1996.

[18] Microsoft Inc. Windows Media Player.http://www.microsoft.
com/windows/windowsmedia .

[19] Microsoft Inc. Windows NetMeeting.http://www.microsoft.
com/netmeeting .

[20] NIST. The NIST Network Emulation Tool.http://www.antd.
nist.gov/itg/nistnet .

[21] Jörg Nonnenmacher, Ernst W. Biersack, and Don Towsley. Parity-Based
Loss Recovery for Reliable Multicast Transmission.ACM/IEEE Trans-
actions on Networking, 6(4):349–361, 1998.

[22] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient
and Portable Web Server. InProceedings of the 1999 USENIX Technical
Conference, pages 199–212, Monterey, CA, June 1999.

[23] V. Paxson. End-to-End Internet Packet Dynamics. InACM SIGCOMM,
pages 139–152, September 1997.

[24] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Con-
gestion Notification (ECN) to IP. Internet RFC 3168, September 2001.

[25] Real Networks. RealPlayer Streaming Media Player.http://www.
real.com .

[26] Reza Rejaie, Mark Handley, and Deborah Estrin. Quality Adaptation
for Congestion Controlled Video Playback over the Internet. InACM
SIGCOMM, pages 189–200, 1999.

[27] Luigi Rizzo. Effective Erasure Codes for Reliable Computer Communi-
cation Protocols.ACM Computer Communication Review, 27, 1997.

[28] J. Hadi Salim and U. Almed. Performance Evaluation of Explicit Conges-
tion Notification (ECN) in IP Networks. Internet RFC 2884, July 2000.

[29] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic TCP
Buffer Tuning. InACM SIGCOMM, pages 315–323, 1998.

[30] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmis-
sion Protocol. Internet RFC 2960, Oct 2000.


