Kernel Integrity Protection from Untrusted
Extensions Using Dynamic Binary Instrumentation

Akshay Kumar Peter Goodman

Ashvin Goel Angela Demke Brown

University of Toronto
ak.kumar@mail.utoronto.ca, pag@cs.toronto.edu, ashvin@eecg.toronto.edu, demke@cs.toronto.edu

1. Problem Statement

Device drivers are the major source of concern for maintgisie-
curity and reliability of an operating system. Many of thelewice
drivers, developed by third parties, get installed in keadgress
space as extensions. These extensions are implicithetiastd are
allowed to interact with each other and kernel through wefined
interfaces and by sharing data in an uncontrolled mannefortn
tunately, the assumed trust leaves commodity OSes vulieetab
misbehaving and malicious kernel extensions.

Over the years, researchers have attempted to addres®otie pr
lem of kernel extensions misbehaving and potentially cams-
ing the kernel. This problem has been approached using ¢empi
time and run-time checking/annotations [4, 8, 14, 15], ivare
protection domains [7, 14], by moving extensions into ugeice
[6, 15], and by extending virtual machines (VMs) and hypsovs
with the ability to introspect and monitor a running kernelda
its extensions [12, 13, 16]. While these approaches haeadjr
achieved many of the goals of this research, all suffer frotaast
one of the following issues: i) they depend on VMs/hypermsgso
and thus limit the breadth of extensions which can be magitor
or; ii) they require a custom compilation toolchain and/errel
modifications, and so limit the likelihood of their integrat with
existing OS build processes.

Clearly, a high level of security against misbehaving keexe
tensions can be achieved and is desirable. We think thateke b
way to encourage the adoption of secured kernel extensipoas-b
isting commodity kernels is by showing that arbitrary esiens
can be securely executed. Our approach uses dynamic bimary i
strumentation (DBI) to achieve this goal [2, 3]. We have im-
plemented a proof-of-concept that enforces control-flotegrity
(CFI) constraints [1] in the Linux kernel using the Dynam@RlI
Kernel (DRK) DBI framework [9, 10]. Our choice of DRK as a
host platform was motivated by its ability to provide finexgred
control over instrumentation. Our prototype is loaded a®fdd
module and transparently monitors all control-flow trarsfghile
the kernel is running. Our system is able to detect and repat-
thorized control transfers by potentially malicious kénmedules.
Building on this, we intend to develope a security systemcihi
will protect the kernel from multiple type of malicious adties
by untrusted extensions. We are hopeful of achieving higklle

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. ..$10.00

of security with a smaller performance overhead by instnting
only extension binaries and isolating it into different ddmmon-
itoring all its interactions with the kernel. However aalhigy this
is difficult for commodity operating system since OS kerneits
extensions reside in same address space and DRK, having
plete control over all kernel execution, holds little clumat when
these extensions start executing. We proposes to tackleyhily-
namically inserting unpassable barriers between the kamkits
extensions using hardware page protection in a similaidasio
Nooks [14] and Gateway [13]. Any transition from kernel page
table to extension page table will generate a page faulingaod
start the instrumentation system. Once started the insintation
system will get “attach” to the untrusted extensions biggimstru-
menting it and putting it into code-cache. The code cachkgetl
“filled in” in two ways: a basic block is eagerly inserted irttee
code cache when that basic block is the target of a directthran
and lazily inserted to the code cache when that block is tlgeta
of an indirect branch. Direct and Indirect branches thatditéon
from the code cache to the kernel will “detach” the instrutagon
system by branching it to the desired address if that addsess
trusted entry point. Once loaded into the Linux kernel, guatesm
will replace Linux’s exception and interrupt handlers ahd sys-
tem call table and any future modifications to these subsysteill
be disallowed.

Our system will contain an Interface layer which will meeiat
communication between kernel and instrumented extendtomil
guarantee control flow integrity (CFI) by enforcing follovg con-
ditions: i) Maintaining kernel code integrity ii) Attall andjumpin-
struction between extensions and kernel should targetstetd en-
try point and iii) All return instruction should target to the instruc-
tion following call. Our system will maintain kernel codetégrity
by providing page protection against write on transiticonirker-
nel code into the code cache. The direct access of kernelpzuye
from code-cache will lead to a page fault and it will get haaidby
our system. The other approach to maintain kernel coderibtég
by sandboxing every extension instructions so that it caodify
kernel code directly. This approach will save us the cosplme
fault handling but it will increase instrumentation costl éontrol
transfer happening due tall and jump instruction will get me-
diated by interface layer. It will verify the target addréesthese
control transfers by ensuring if the address belongs togkgrage
table or extensions page table and whether this addressustad
entry point or not. We intend to reduce the performance @amth
cause due to mediation by creating a fast path for all diraltt ¢
from untrusted extensions to kernel during instrumentation-
trusted extensions can also subvert CFl by manipulatindgraion
data in its stack frame causing return-oriented attacksergesys-
tem achieves stack integrity by using stack canaries[5keturn
stack encryption[11]. However these approaches are ngthetp-
ful for us since we intend to monitor execution at Interfaager

com-

leaving kernel execution unaffected. To protect the kefrah
such attacks our system will monitor the sequence afallandre-
turn happen accross Interface layer. It will record the retudress
at the top of the stack on every call before switching to esitam
page and on subsequent return it will verify if it is targetegre-
viously stored address or not.

As mentioned previously, the system will maintain kerneleo
integrity by making it write protected when accessed frordezo
cache. However there are still security sensitive datarinetespace
which can be exploited by malicious modules to launch attack
Maintaining data integrity in kernel space is difficult asytremain
widely scattered across kernel memory space. Existingsysses
different approach to maintain data integrity. XFI [8] irapients
an inline monitoring system through guarded write insiorg
where as BGI [4] maintains data integrity by maintaining an a
cess control list at byte-granularity level and insertirgrpission
checking code with every memory access operation duringpcom
lation. we have different approaches to implement kern&d d&a
tegrity in our system and one of them is providing page ptaiac
to kernel data against write and execute on transition fremnéd
to code-cache and handling it at Interface layer. This egggr@an
prove costly for us when extension will do lot of data openasi.
The other approach is by inserting access check instrictigtin
every memory reference operation during instrumentatiwhveer-
ifying it against an access control policy but this will irese in-
strumentation cost for us. For implementing kernel dategrity it
is important to maintain a judicious tradeoff between penance
and kind of security system enforces. We are still open toagudr
proach of implementing it in our system.

2. Related Work

The system proposed by us draws its inspiration from volume
of previous research work on device driver isolation. One¢hef
method to achieves it in kernel is by pushing them in useresidr
space.Microdrivers [15] splits the extensions in kernel and user
space component using programmer annotations. This esqair
effort from programmers to decide which part of extensidreyt
want to run in user-space. The system also dont achieveshi#i-i
tion as a part of extensions runs in kernel address spsoaig6]

is micro-kernel based system and executes the extensiarsem
space. It uses reference validation mechanism to isolé¢@sons
from kernel space. It enforces safety properties beyond pea
vious user-level driver system provide. These systemsareany
effective as they dont support all extensions and posesdamable
performance overhead.

There are systems likéatewayl13] andHUKO[16] utilizes vir-
tualization to establish strong isolation between kerpnetjgonents
but they are not effective when it comes to isolating natiee d
vice drivers. Other systems implements isolation of malisiex-
tensions while running it in kernel address spddeoks[14] uses
hardware enforced protection domain to isolate the ureduskten-
sions in kernel space. The use of hardware protection layse9
high performance overhead in it. This is because it doesnit ¢
tain support for accessing global data structure direktondrix(7]
uses similar approach to provide fine-grained memory igwidor
unsafe kernel extensions with low overhead but it requirepea
cific designed processor architecture to support the piotedo-
main.NooksandMondrix enforces strong isolation in kernel space
but they are not effective in protecting kernel from malig@xten-
sions.XFI [8] makes use of software fault isolation (SFI) technique
to enable a host program safely execute untrusted extenisiors
address space by enforcing control flow and data intedBiye-
Granularity Isolation (BGIY4] is another approach which enforces
fault isolation by implementing memory protection throwagttess
control. It associates an access control list with each dfytétual

memory to control the memory access by untrusted extensides
untrusted extensions in BGI is provided temporary accesheo
kernel data structure by wrapping up all the calls with a pssian
granting and permission revoking code.

Both XFI and BGI are powerful technique of fault isolation in
kernel space but they lack transparency. XFI uses binaryitesw
which uses debugging informations to insert software gubad
perform checks at runtime whereas BGI requires a special com
piler to compile the source code which inserts permissi@atks
before every memory access and control transfer stater@emt.
system is inspired by BGI and we are hopeful of achieving same
level isolation in kernel space maintaing transparency systiem
performant.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Conkftow in-
tegrity: Principles, implementations, and applicatioA€M Transac-
tions on Information and System Secur2907.

[2] D. Bruening. Efficient, Transparent, and Compre-
hensive Runtime Code Manipulation. Ph.d. thesis,
Massachusetts Institute of Technology, 2004. URL
http://portal.acm.org/citation.cfm?id=1087758.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An in-
frastructure for adaptive dynamic optimization. IGO0,
pages 265-275, San Francisco, CA, 2003. ACM. URL
http://portal.acm.org/citation.cfm?id=776261.776290.

[4] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. AkiigidA. Don-

nelly, P. Barham, and R. Black. Fast Byte-Granularity Safenvault
Isolation. INSOSP pages 45-58, Big Sky, MT, 2009. ACM.

[5] C. Cowan, D. M. Calton Pu, H. H. J. Walpole, S. B. Peat Balkke/N.
Aaron Grier, and Q. Zhang. Stackguard: Automatic adaptteation
and prevention of buffer-overflow attacks.

[6] P. R. Dan Williams, E. G. . n. S. Kevin Walsh, and F. B. Sdtee
Device driver safety through a reference validation meisman

[7] J. Emmett Witchel and R. K. Asanovi. Mondrix: Memory iatibn
for linux using mondriaan memory protection. Brighton, L2Q05.
SOSP.

[8] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. NeaulXFI:
Software guards for system address spacesO3D| pages 75-88,
Seattle, WA, 2006. USENIX Association.

[9] P. Feiner, A. Demke-Brown, and A. Goel. A Design for Coeimen-
sive Kernel Instrumentation. IHOTDEP, Vancouver, Canada, 2010.
USENIX Association.

[10] P. Feiner, A. Demke-Brown, and A. Goel. Comprehensierni€l
Instrumentation via Dynamic Binary Translation. ASPLOSACM,
2012.

[11] M. Frantzen and M. Shuey. Stackghost: Hardware fatdd stack
protection. Published in USENIX Security Symposium '01020

[12] D. Hofmann, R. Kim, and Witchel. Ensuring operatingteys kernel
integrity with osck. ASPLOS, 2011.

[13] A. Srivastava and J. Giffin. Efficient monitoring of un-
trusted kernel-mode execution. Work 2011. URL
http://www.cc.gatech.edu/ giffin/papers/ndss11/SG11.pdf.

[14] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving theliability
of commodity operating systemsTOCS 23(1), 2005. ISSN 0734-
2071.

[15] M. J. R. Vinod Ganapathy, M. M. S. Arini Balakrishnan,da8. Jha.
The design and implementation of microdrivers. SeattlesiWagton,
USA, 2008. ASPLOS.

[16] D. T. Xi Xiong and P. Liu. Practical protection of kernetegrity for

commodity os from untrusted extensions. San Diego, CA, (ZBA]1.
NDSS.

