
Kernel Integrity Protection from Untrusted
Extensions Using Dynamic Binary Instrumentation

Akshay Kumar Peter Goodman Ashvin Goel Angela Demke Brown
University of Toronto

ak.kumar@mail.utoronto.ca, pag@cs.toronto.edu, ashvin@eecg.toronto.edu, demke@cs.toronto.edu

1. Problem Statement
Device drivers are the major source of concern for maintaining se-
curity and reliability of an operating system. Many of thesedevice
drivers, developed by third parties, get installed in kernel address
space as extensions. These extensions are implicitly trusted and are
allowed to interact with each other and kernel through well-defined
interfaces and by sharing data in an uncontrolled manner. Unfor-
tunately, the assumed trust leaves commodity OSes vulnerable to
misbehaving and malicious kernel extensions.

Over the years, researchers have attempted to address the prob-
lem of kernel extensions misbehaving and potentially compromis-
ing the kernel. This problem has been approached using compile-
time and run-time checking/annotations [4, 8, 14, 15], hardware
protection domains [7, 14], by moving extensions into user space
[6, 15], and by extending virtual machines (VMs) and hypervisors
with the ability to introspect and monitor a running kernel and
its extensions [12, 13, 16]. While these approaches have already
achieved many of the goals of this research, all suffer from at least
one of the following issues: i) they depend on VMs/hypervisors,
and thus limit the breadth of extensions which can be monitored,
or; ii) they require a custom compilation toolchain and/or kernel
modifications, and so limit the likelihood of their integration with
existing OS build processes.

Clearly, a high level of security against misbehaving kernel ex-
tensions can be achieved and is desirable. We think that the best
way to encourage the adoption of secured kernel extensions by ex-
isting commodity kernels is by showing that arbitrary extensions
can be securely executed. Our approach uses dynamic binary in-
strumentation (DBI) to achieve this goal [2, 3]. We have im-
plemented a proof-of-concept that enforces control-flow integrity
(CFI) constraints [1] in the Linux kernel using the DynamoRIO
Kernel (DRK) DBI framework [9, 10]. Our choice of DRK as a
host platform was motivated by its ability to provide fine-grained
control over instrumentation. Our prototype is loaded as a kernel
module and transparently monitors all control-flow transfers while
the kernel is running. Our system is able to detect and reportunau-
thorized control transfers by potentially malicious kernel modules.
Building on this, we intend to develope a security system which
will protect the kernel from multiple type of malicious activities
by untrusted extensions. We are hopeful of achieving high level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

of security with a smaller performance overhead by instrumenting
only extension binaries and isolating it into different domain mon-
itoring all its interactions with the kernel. However achieving this
is difficult for commodity operating system since OS kernel &its
extensions reside in same address space and DRK, having com-
plete control over all kernel execution, holds little clue about when
these extensions start executing. We proposes to tackle this by dy-
namically inserting unpassable barriers between the kernel and its
extensions using hardware page protection in a similar fashion to
Nooks [14] andGateway [13]. Any transition from kernel page
table to extension page table will generate a page fault leading to
start the instrumentation system. Once started the instrumentation
system will get “attach” to the untrusted extensions binaries instru-
menting it and putting it into code-cache. The code cache will get
“filled in” in two ways: a basic block is eagerly inserted intothe
code cache when that basic block is the target of a direct branch,
and lazily inserted to the code cache when that block is the target
of an indirect branch. Direct and Indirect branches that transition
from the code cache to the kernel will “detach” the instrumentation
system by branching it to the desired address if that addressis a
trusted entry point. Once loaded into the Linux kernel, our system
will replace Linux’s exception and interrupt handlers and the sys-
tem call table and any future modifications to these subsystems will
be disallowed.

Our system will contain an Interface layer which will mediate
communication between kernel and instrumented extensions. It will
guarantee control flow integrity (CFI) by enforcing following con-
ditions: i) Maintaining kernel code integrity ii) Allcall andjumpin-
struction between extensions and kernel should target to trusted en-
try point and iii) All return instruction should target to the instruc-
tion following call. Our system will maintain kernel code integrity
by providing page protection against write on transition from ker-
nel code into the code cache. The direct access of kernel codepage
from code-cache will lead to a page fault and it will get handled by
our system. The other approach to maintain kernel code integrity is
by sandboxing every extension instructions so that it can’tmodify
kernel code directly. This approach will save us the cost forpage
fault handling but it will increase instrumentation cost. All control
transfer happening due tocall and jump instruction will get me-
diated by interface layer. It will verify the target addressfor these
control transfers by ensuring if the address belongs to kernel page
table or extensions page table and whether this address is a trusted
entry point or not. We intend to reduce the performance overhead
cause due to mediation by creating a fast path for all direct calls
from untrusted extensions to kernel during instrumentation. Un-
trusted extensions can also subvert CFI by manipulating control
data in its stack frame causing return-oriented attacks. Several sys-
tem achieves stack integrity by using stack canaries[5] or return
stack encryption[11]. However these approaches are not very help-
ful for us since we intend to monitor execution at Interface layer

leaving kernel execution unaffected. To protect the kernelfrom
such attacks our system will monitor the sequence of allcall andre-
turn happen accross Interface layer. It will record the return address
at the top of the stack on every call before switching to extension
page and on subsequent return it will verify if it is targetedto pre-
viously stored address or not.

As mentioned previously, the system will maintain kernel code
integrity by making it write protected when accessed from code-
cache. However there are still security sensitive data in kernel space
which can be exploited by malicious modules to launch attacks.
Maintaining data integrity in kernel space is difficult as they remain
widely scattered across kernel memory space. Existing system uses
different approach to maintain data integrity. XFI [8] implements
an inline monitoring system through guarded write instructions
where as BGI [4] maintains data integrity by maintaining an ac-
cess control list at byte-granularity level and inserting permission
checking code with every memory access operation during compi-
lation. we have different approaches to implement kernel data in-
tegrity in our system and one of them is providing page protection
to kernel data against write and execute on transition from kernel
to code-cache and handling it at Interface layer. This approach can
prove costly for us when extension will do lot of data operations.
The other approach is by inserting access check instructions with
every memory reference operation during instrumentation and ver-
ifying it against an access control policy but this will increase in-
strumentation cost for us. For implementing kernel data integrity it
is important to maintain a judicious tradeoff between performance
and kind of security system enforces. We are still open to ourap-
proach of implementing it in our system.

2. Related Work
The system proposed by us draws its inspiration from volume
of previous research work on device driver isolation. One ofthe
method to achieves it in kernel is by pushing them in user address
space.Microdrivers [15] splits the extensions in kernel and user
space component using programmer annotations. This requires an
effort from programmers to decide which part of extensions they
want to run in user-space. The system also dont achieve full isola-
tion as a part of extensions runs in kernel address space.Nexus[6]
is micro-kernel based system and executes the extensions inuser
space. It uses reference validation mechanism to isolate extensions
from kernel space. It enforces safety properties beyond what pre-
vious user-level driver system provide. These systems are not very
effective as they dont support all extensions and poses considerable
performance overhead.

There are systems likeGateway[13] andHUKO[16] utilizes vir-
tualization to establish strong isolation between kernel components
but they are not effective when it comes to isolating native de-
vice drivers. Other systems implements isolation of malicious ex-
tensions while running it in kernel address space.Nooks[14] uses
hardware enforced protection domain to isolate the untrusted exten-
sions in kernel space. The use of hardware protection layer poses
high performance overhead in it. This is because it doesn’t con-
tain support for accessing global data structure directly.Mondrix[7]
uses similar approach to provide fine-grained memory isolation for
unsafe kernel extensions with low overhead but it requires aspe-
cific designed processor architecture to support the protection do-
main.NooksandMondrix enforces strong isolation in kernel space
but they are not effective in protecting kernel from malicious exten-
sions.XFI [8] makes use of software fault isolation (SFI) technique
to enable a host program safely execute untrusted extensions in its
address space by enforcing control flow and data integrity.Byte-
Granularity Isolation (BGI)[4] is another approach which enforces
fault isolation by implementing memory protection throughaccess
control. It associates an access control list with each byteof virtual

memory to control the memory access by untrusted extensions. The
untrusted extensions in BGI is provided temporary access tothe
kernel data structure by wrapping up all the calls with a permission
granting and permission revoking code.

Both XFI and BGI are powerful technique of fault isolation in
kernel space but they lack transparency. XFI uses binary rewriter
which uses debugging informations to insert software guardthat
perform checks at runtime whereas BGI requires a special com-
piler to compile the source code which inserts permission checks
before every memory access and control transfer statement.Our
system is inspired by BGI and we are hopeful of achieving same
level isolation in kernel space maintaing transparency andsystem
performant.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-

tegrity: Principles, implementations, and applications.ACM Transac-
tions on Information and System Security, 2007.

[2] D. Bruening. Efficient, Transparent, and Compre-
hensive Runtime Code Manipulation. Ph.d. thesis,
Massachusetts Institute of Technology, 2004. URL
http://portal.acm.org/citation.cfm?id=1087758.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An in-
frastructure for adaptive dynamic optimization. InCGO,
pages 265–275, San Francisco, CA, 2003. ACM. URL
http://portal.acm.org/citation.cfm?id=776261.776290.

[4] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black. Fast Byte-Granularity Software Fault
Isolation. InSOSP, pages 45–58, Big Sky, MT, 2009. ACM.

[5] C. Cowan, D. M. Calton Pu, H. H. J. Walpole, S. B. Peat Bakke, P. W.
Aaron Grier, and Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks.

[6] P. R. Dan Williams, E. G. . n. S. Kevin Walsh, and F. B. Schneider.
Device driver safety through a reference validation mechanism.

[7] J. Emmett Witchel and R. K. Asanovi. Mondrix: Memory isolation
for linux using mondriaan memory protection. Brighton, UK,2005.
SOSP.

[8] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Necula. XFI:
Software guards for system address spaces. InOSDI, pages 75–88,
Seattle, WA, 2006. USENIX Association.

[9] P. Feiner, A. Demke-Brown, and A. Goel. A Design for Comprehen-
sive Kernel Instrumentation. InHOTDEP, Vancouver, Canada, 2010.
USENIX Association.

[10] P. Feiner, A. Demke-Brown, and A. Goel. Comprehensive Kernel
Instrumentation via Dynamic Binary Translation. InASPLOS. ACM,
2012.

[11] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack
protection. Published in USENIX Security Symposium ’01, 2001.

[12] D. Hofmann, R. Kim, and Witchel. Ensuring operating system kernel
integrity with osck. ASPLOS, 2011.

[13] A. Srivastava and J. Giffin. Efficient monitoring of un-
trusted kernel-mode execution. Work, 2011. URL
http://www.cc.gatech.edu/ giffin/papers/ndss11/SG11.pdf.

[14] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability
of commodity operating systems.TOCS, 23(1), 2005. ISSN 0734-
2071.

[15] M. J. R. Vinod Ganapathy, M. M. S. Arini Balakrishnan, and S. Jha.
The design and implementation of microdrivers. Seattle, Washington,
USA, 2008. ASPLOS.

[16] D. T. Xi Xiong and P. Liu. Practical protection of kernelintegrity for
commodity os from untrusted extensions. San Diego, CA, USA,2011.
NDSS.

