
20

Low-Latency Adaptive Streaming over TCP

ASHVIN GOEL

University of Toronto

CHARLES KRASIC

University of British Columbia

and

JONATHAN WALPOLE

Portland State University

Media streaming over TCP has become increasingly popular because TCP’s congestion control provides remarkable stability to
the Internet. Streaming over TCP requires adapting to bandwidth availability, but unforunately, TCP can introduce significant
latency at the application level, which causes unresponsive and poor adaptation. This article shows that this latency is not inherent
in TCP but occurs as a result of throughput-optimized TCP implementations. We show that this latency can be minimized by
dynamically tuning TCP’s send buffer. Our evaluation shows that this approach leads to better application-level adaptation and
it allows supporting interactive and other low-latency applications over TCP.

Categories and Subject Descriptors: C.2.5 [Computer-Communication Networks]: Local and Wide-Area Networks—Internet
(e.g., TCP/IP); D.4.4 [Operating Systems]: Communications Management—Buffering and network communication

General Terms: Measurements, Performance
Additional Key Words and Phrases: TCP, low latency streaming, multimedia applications

ACM Reference Format:
Goel, A., Krasic, C., and Walpole, J. 2008. Low-latency adaptive streaming over TCP. ACM Trans. Multimedia Comput. Commun.
Appl. 4, 3, Article 20 (August 2008), 20 pages. DOI = 10.1145/1386109.1386113 http://doi.acm.org/10.1145/1386109.1386113

1. INTRODUCTION

Media streaming applications are increasingly using TCP as their transport protocol because TCP, the
most common transport protocol on the Internet today, offers several benefits for media streaming. It
provides congestion-controlled delivery, which is largely responsible for the remarkable stability of the
Internet despite an explosive growth in traffic, topology and applications. TCP handles flow control and
packet losses so that applications do not have to explicitly perform packet loss recovery. This issue is
especially important because the effects of random packet loss can quickly become severe. For instance,

Authors’ addresses: A. Goel, Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd., Toronto, ON
M5S 3G4, Canada; email: ashvin@eecg.toronto.edu; C. Krasic, University of British Columbia, 2366 Main Mall, Vancouver BC
V6T 1Z4, Canada; email: krasic@cs.ubc.ca; J. Walpole, Computer Science, Portland State University, PO Box 751, Portland, OR
97207; email: walpole@pdx.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2008 ACM 1551-6857/2008/08-ART20 $5.00 DOI 10.1145/1386109.1386113 http://doi.acm.org/10.1145/1386109.1386113

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:2 • A. Goel et al.

loss of the header bits of a picture typically renders the whole picture and possibly a large segment of
surrounding video data unviewable. Thus, media applications over a lossy transport protocol have to
implement complex recovery strategies such as FEC [Rizzo 1997] that potentially have high bandwidth
and processing overhead even when packets are not lost.

The main challenge in using TCP for media streaming is that the application must adapt media
quality in response to TCP’s estimate of current bandwidth availability. Otherwise, the stream can
be delayed indefinitely when the available bandwidth is below the stream’s bandwidth needs. Non-
adaptive streaming protocols compensate for this problem with large buffering, but this approach still
requires that users choose the appropriate media quality (e.g., for a 56-kb/sec, 1.5-mb/sec or 10-mb/sec
connection) and the client-side buffer size (e.g., 20 sec). Both these choices are hard because a static
value does not reflect the dynamic nature of bandwidth availability.

Adaptive streaming applications solve the varying bandwidth problem by adapting the quality of the
media based on available bandwidth using techniques such as prioritized data dropping and dynamic
rate shaping [Rejaie et al. 1999; Feng et al. 1999; Krasic et al. 2003]. The effectiveness of the quality
adaptation depends on the delay in the bandwidth feedback. In particular, the application can adapt
its transmission requirements to the available bandwidth more accurately with low delay feedback.
Unfortunately, TCP can introduce significant latency at the application level. Therefore, the application
must make adaptation decisions far in advance of data transmission, which makes the adaptation
unresponsive and perform poorly as the available bandwidth varies over time.

In this article, we show that the latency introduced by TCP at the application level is not inher-
ent in TCP. Instead, a significant part of the latency occurs on the sender side of TCP as a result of
throughput-optimized TCP implementations. Then, we develop an adaptive buffer-size tuning technique
that reduces this latency. This technique helps streaming applications because it dramatically reduces
the end-to-end latency experienced by streaming applications, especially when the network is loaded.
The reduced latency improves the responsiveness of adaptation and hence the quality observed by the
application. Our experiments also show reduced variance in throughput so that the streaming media
has smoother quality. Consequently, our approach enables low-latency media streaming over TCP and
benefits interactive applications such as conferencing as well as applications that transmit prioritized
data over the same connection. For example, in a pervasive computing [Kozuch and Satyanarayanan
2002] or an interactive environment (e.g., a remote VNC desktop [RealVNC Limited 2002]), data could
be transmitted with high priority while an ftp or another long-lived flow could be transmitted with low
priority on a virtual connection. Similarly, media control operations such as the sequence of start play,
fast forward, and restart play can be more responsive because the network and the end-points have low
delay in the data path.

We demonstrate these benefits by extensively evaluating our scheme using a real adaptive-streaming
application. While buffer-size tuning reduces latency, it also reduces network throughput. We explore
the reasons for this effect and then propose a simple enhancement that allows trading latency and
network throughput. Our approach changes the TCP implementation but does not change the TCP
protocol and is thus attractive in terms of deployment.

The next section presents related work in the area. Section 3 analyzes the ways in which TCP intro-
duces latency. Then, Section 4 introduces our adaptive send-buffer technique for reducing TCP latency.
Section 5 explains how this technique affects TCP throughput and then extends our approach to al-
low trading between latency and throughput. Then, Section 6 describes our implementation. Section 7
presents the benefits of our approach for a real adaptive streaming application. Finally, Section 8 jus-
tifies our claims about the benefits of our buffer-size tuning approach for low-latency streaming over
TCP.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:3

2. RELATED WORK

Researchers in the multimedia and networking community have proposed several alternatives to
TCP [Allman et al. 1999] for media streaming [Stewart et al. 2000; Floyd et al. 2002; Kohler et al.
2006]. These alternatives aim to provide TCP-friendly congestion control for media streams without
providing reliable data delivery and thus avoid the latency introduced by packet retransmissions. Unfor-
tunately, the effects of packet loss on media streaming are nonuniform and can quickly become severe.
For instance, loss of the header bits of an I-frame in an MPEG movie can render a large segment of
surrounding video data unviewable. Thus, media applications over a lossy transport protocol have to
implement complex recovery strategies such as FEC [Rizzo 1997] that potentially have high bandwidth
and processing overhead. The benefit of FEC schemes for loss recovery is that they often have lower
latency overhead as compared to ARQ schemes such as employed in TCP. Thus, Nonnenmacher et al.
[1998] explores introducing FEC as a transparent layer under an ARQ scheme to improve transmission
efficiency.

DCCP [Kohler et al. 2006] implements congestion-controlled, unreliable flow of datagrams suitable
for use by streaming media applications. It features reliable handshakes and acknowledgments but it
does not retransmit data packets. It is a packet stream protocol that requires application-level framing
similar to our use of application-level framing over TCP (see Section 6.3). The goals of DCCP are very
similar to our goals, but we do not require a new transport protocol. The main difference between
DCCP and our approach is related to packet dropping. With buffer tuning, we minimize the negative
impacts of packet dropping and, in addition, we use ECN to minimize packet dropping. DCCP drops
packets instead of retransmitting them. This can be beneficial for delayed packets but handling dropped
packets can introduce significant complexity at the application level. DCCP provides multiple different
congestion control algorithms that could be combined with buffer tuning to further improve latency.

Popular interactive streaming applications include Voice over IP (VoIP) products such as Microsoft
NetMeeting [NetMeeting]. NetMeeting provides reasonable voice quality over a best effort network
but was originally implemented over UDP because the delays introduced by TCP were considered
unacceptable. This article shows that TCP buffer tuning yields acceptable delays, especially for quality
adaptive applications. Skype [Skype], a popular VoIP application, uses several UDP and TCP ports for
communication especially in restricted conectivity scenarious such as with NATs.

The feasibility of TCP-based media streaming for stored media (e.g., movies) has been studied by
several researchers. These approaches typically require adaptation of the media quality in response
to TCP’s estimate of bandwidth availability. Generally, the trade-off in the adaptation is short-term
improvement in video quality versus long-term smoothing of quality. Rejaie et al. [1999] uses layered
video and adds or drops video stream layers to perform long-term coarse grained adaptation, while
using a TCP-friendly congestion control mechanism to react to congestion on short-time scales. Feng
and Krasic [Feng et al. 1999; Krasic et al. 2003] use priority-based streaming, which allows a more
flexible implementation of quality adaptation.

Various researchers have explored the used of TCP-friendly congestion control schemes [Bansal et al.
2001] such as TCP-Friendly Rate Control (TFRC) [Floyd et al. 2000] and AIMD with different linear
constants from TCP [Yang and Lam 2000] to reduce variation in media quality. These schemes can
be combined with our buffer tuning approach to further improve the latency and jitter of streaming
applications.

Our send-buffer adaptation approach is similar to the buffer tuning work by Semke et al. [1998].
Semke tunes the send buffer size to between two to four times the congestion window of TCP to improve
the throughput of a high bandwidth-delay connection that is otherwise limited by the send buffer size.
The buffer size value is chosen to limit small, periodic fluctuations in buffer size. This paper shows that

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:4 • A. Goel et al.

a connection can achieve throughput close to TCP throughput by keeping the send buffer size slightly
larger than the congestion window and also achieve significant reduction in latency.

Active queue management and explicit congestion notification (ECN) [Ramakrishnan et al. 2001]
have been proposed for improving the packet loss rates of TCP flows. Salim and Almed [2000] show
ECN has increasing throughput advantage with increasing congestion levels and ECN flows have
hardly any retransmissions. Feng [Feng et al. 1997] shows that adaptive active queue management
algorithms (Adaptive RED) and more conservative end-host mechanisms can significantly reduce loss
rates across congested links. In this article, we show that ECN can be combined with our buffer-tuning
technique to further improve latency.

Many differentiated network services have been proposed for low-latency streaming. These schemes
are complementary to our adaptive tuning approach. Hurley and Le Boudec [1999] provides a low-delay
alternative best-effort (ABE) service that trades high throughput for low delay. The ABE service drops
packets in the network if the packets are delayed beyond their delay constraint. In this model, the client
must recover from randomly dropped packets. Further, unlike with TCP, the server does not easily get
back-pressure feedback information from the network in order to make informed quality adaptation
decisions.

For interactive applications, ITU G.114 [ITU 1993] recommends 150 ms as the upper limit for one-way
delay for most applications, 150 to 400 ms as potentially tolerable, and above 400 ms as generally unac-
ceptable delay. The one-way delay tolerance for video conferencing is in a similar range, 200 to 300 ms.

3. TCP INDUCED LATENCY

In this section, we examine the various ways in which latency is introduced in a streaming application.
The end-to-end latency in a streaming application consists of two main latencies: (1) application-level
latency, that is, latency at the application level on the sender and the receiver side, and (2) protocol
latency, which we define as the time difference from a write on the sender side to a read on the receiver
side at the application level, that is, socket write to socket read latency. These latencies should be
minimized so that the latency tolerance of a streaming application can be met.

In this article, we will mainly deal with reducing protocol latency although our evaluation considers
application-level latencies also. TCP introduces protocol latency in three ways: packet retransmission,
congestion control and sender-side buffering. To understand these latencies, we briefly describe TCP’s
transmission behavior.

TCP is a window-based protocol. It uses a window size, which is the maximum number of unacknowl-
edged and distinct packets in flight in the network at any time. TCP stores the size of this current
window in the variable CWND. When an acknowledgment (or ACK) arrives for the first packet that
was transmitted in the current window, the window is said to have opened up, and then TCP transmits
a new packet from a buffer on its sending side. This send buffer keeps copies of packets that are already
in flight so that packets dropped by the network can be retransmitted. Given a network round-trip time
(RTT), the throughput of a TCP stream is roughly CWND/RTT, because CWND packets are sent by
TCP every round-trip time.

Since TCP is normally used in a best-effort network, such as the Internet, it must estimate bandwidth
availability. To do so, it probes for additional bandwidth by slowly increasing CWND, and hence its
transmission rate, by one packet every RTT. Eventually, the network drops a packet for this TCP
stream, and TCP perceives this event as a congestion event. At this congestion event, TCP drops its
CWND value by half to reduce its transmission rate. With this brief description of TCP, next we examine
each of the ways in which TCP introduces latency.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:5

Packet Retransmission. When packets are dropped in the network, they have to be retransmitted by
TCP. Due to the round-trip time (RTT) needed for the congestion event feedback, these retransmitted
packets are delayed by at least one RTT (multiple drops can cause multiple RTT delays). Further, since
TCP is an in-order protocol, the receiving side does not deliver packets that arrive out-of-order to the
application until the missing packets have been received. Hence, a retransmitted packet adds at least
an additional RTT delay for CWND consecutive packets.

Congestion Control. TCP congestion control reduces the CWND value and thus its transmission rate
in response to congestion feedback. Normally, TCP infers a network congestion event when it notices
that a packet has been dropped. Hence, congestion control adds RTT delay for packets in flight, as
discussed above. In addition, packets that are buffered on the sending side in the send buffer are
delayed further since the sending rate (CWND) has decreased. For example, if CWND is halved, then
the first lost packet is delayed by at least 1 1

2 RTT (at least one RTT for the dropped packet + 1
2 RTT

due to CWND reduction). The subsequent buffered packets suffer a delay of 1
2 RTT due to CWND

reduction. This problem is reduced by the rate-halving algorithm [Mathis et al. 1999] that paces packet
transmissions when CWND is reduced. With this algorithm, the initial buffered packets are delayed
by a small fraction of 1

2 RTT (+ RTT due to packet dropping) when CWND is large.
To reduce the delay associated with packet dropping, an explicit congestion notification (ECN) can

be employed [Floyd and Jacobson 1993]. With ECN, routers use active queue management and ex-
plicitly inform TCP of impending congestion by setting an ECN bit on packets that would otherwise
have been dropped by the router. This ECN bit is received by the receiver and then returned in an
ACK packet to the sender. The TCP sender considers the ECN bit as a congestion event and reduces
CWND before packets are dropped in the network due to congestion. In essence, ECN allows TCP
congestion control to operate without packet dropping. Assuming few packets are dropped, TCP con-
gestion control with ECN (together with rate-halving) introduces latencies that are a small fraction
of RTT.

Sender-Side Buffering. The last component of protocol latency is caused by buffering on the sender
side. TCP transmits application packets from a fixed size send buffer, as shown in Figure 1. Since TCP
is a reliable protocol, it keeps copies of the CWND packets in flight in this buffer for retransmission. As
described above, these packets can introduce latency (in the order of an RTT) due to packet dropping
or congestion control.

Note that the TCP throughput is proportional to CWND and CWND can never exceed the send buffer
size. Hence, TCP uses a large send buffer to ensure that this buffer does not restrict TCP throughput.
Unfortunately, a large send buffer can introduce significant latency in a TCP stream. Consider the
following example: the TCP send buffer in most current Unix kernels is at least 64 KB. For a 300 kbps
(high quality) video stream, a full send buffer contributes 1700 ms of delay. This delay increases for
a smaller bandwidth (low quality) stream or when the stream faces increasing competition since the
stream bandwidth goes down. By comparison, the round trip time (RTT) generally lies between 50–
100 ms for coast-to-coast transmission within North America. Next, we propose a technique to minimize
the send buffer latency.

4. ADAPTIVE SEND-BUFFER TUNING

Figure 1 shows that the first CWND packets in the send buffer are in flight or have been transmitted.
When an application sends a new packet into the send buffer, the packet is not transmitted until it
becomes the first packet after the CWND packets in flight and an ACK arrives to open the window. We
refer to such a packet as a blocked packet because it contributes to latency in a TCP stream, as shown
in Figure 1.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:6 • A. Goel et al.

Kernel

Packets in Flight

Blocked Packe

Network

S
end B

uffer S
ize

C
W

N
D

Application

Driver Queue

TCP’s send buffer stores the CWND packets that are currently being transmitted in case they are needed for retransmission.
These packets generally do not introduce any latency while the blocked packets can add significant latency.

Fig. 1. TCP’s send buffer.

It should be clear from Section 3 that the blocked packets can cause far more latency than packet
dropping or congestion control. In particular, for a standard video stream, these packets can cause
latencies that are greater than 10–20 RTT while packet dropping and congestion control cause latencies
typically less than 2 RTT. Furthermore, the latter number goes down to a fraction of an RTT when rate
halving and ECN (which minimizes packet dropping) are used.

The discussion above shows that large latencies are not inherent in the TCP protocol but are mainly
introduced by the large send buffer in TCP implementations. Hence, we focus on reducing sender-side
buffering to improve latency. To avoid storing blocked packets, the send buffer should store no more
than CWND packets. Furthermore, the send buffer should not be smaller than CWND because a buffer
smaller than CWND packets is guaranteed to limit throughput. In this case, CWND gets artificially
limited by the buffer size rather than a congestion (or flow control) event in TCP. Hence, tuning the send
buffer size to follow CWND should minimize latency without significantly affecting stream throughput.
Since CWND changes dynamically over time, we call this technique adaptive send-buffer tuning and a
TCP connection that uses this technique is a MIN BUF TCP flow [Goel et al. 2002].

A MIN BUF TCP stream blocks an application from writing data to a socket when there are CWND
packets in the send buffer. Later, the application is allowed to write data to the socket when at least
one new packet can be admitted in the send buffer. Consider the operation of a MIN BUF TCP stream.
The send buffer will have at most CWND packets after an application writes a packet to the socket.
MIN BUF TCP can immediately transmit this packet since this packet lies within TCP’s window. After
this transmission, MIN BUF TCP will wait for the arrival of an ACK for the first packet in the current
window. When the ACK arrives, TCP’s window opens up by at least one packet and thus a packet can
be admitted in the send buffer. Once again the application can write a packet to the send buffer, which
can be transmitted immediately without introducing any latency. Hence, as long as packets are not
dropped or CWND is nondecreasing, MIN BUF TCP will minimize latency in the TCP stack.

In essence, MIN BUF TCP moves the latency due to blocked packets to the application level. The
application then has much greater control over sending time-critical data. For example, the application
may decide to drop stale data or send a recently generated higher-priority packet.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:7

Receiver (R2)

Receiver (R1)

RouterSender (S)

Sender (S)

Sender (S2)Receiver (R2)

Router

Receiver (R1)

(a) Forward path congestion topology (b) Reverse path congestion topology

Note that the figure on the right has congestion on both the forward and reverse paths.

Fig. 2. Network topology.

4.1 Evaluation

This section provides our initial results on latency improvements due to MIN BUF streams. We evaluate
the protocol latency of MIN BUF and TCP streams under varying and heavy network load. These
experiments were performed on a Linux 2.4 test-bed that simulates WAN conditions by introducing
delay at an intermediate Linux router in the test-bed. To emulate a heavily loaded network environment,
we run experiments with varying numbers of long-lived TCP streams, bursts of short-lived TCP streams,
and a constant bit rate (CBR) stream, such as a UDP stream. All TCP flows use rate halving.

All our experiments use a single-bottleneck “dumbbell” topology and FIFO scheduling at the bot-
tleneck. The network topology is shown in Figure 2. Figure 2(a) shows the topology used to evaluate
MIN BUF under forward path congestion, while Figure 2(b) shows the topology used when congestion
occurs in the reverse path also. Each box is a separate Linux machine. The latency and throughput mea-
surements are performed for a single stream originating at the sender S and terminating at the receiver
R1. In Figure 2(a), the sender S generates cross traffic for both receivers R1 and R2. In Figure 2(b), the
sender S generates cross traffic for receiver R1 and the second sender S2 generates cross traffic along
the reverse path to receiver R2. The router runs nistnet [NISTnet], a network emulation program that
allows the introduction of additional delay and bandwidth constraints in the network path.

The protocol latency in all the experiments described below is measured by recording the application
write time for each packet on the sender S and the application read time for each packet on the receiver
R1. All the machines are synchronized to within one millisecond of each other using NTP. For the results
shown below, we chose the round-trip time to be 100 ms since the median RTT between west-coast and
east-coast sites in North America is approximately 100 ms [Huffaker et al. 2001]. The router queue
length is chosen so that bandwidth is limited to 30 Mb/sec.

Figure 3 shows the results of a run using the forward path congestion topology. This figure compares
the latency of a standard TCP and a MIN BUF TCP1 stream. The experiment is run for about 80 seconds
with load being introduced at various different time points in the experiment. The standard TCP or
MIN BUF TCP long-lived stream being measured is started at t = 0 s. We refer to this stream as the
latency stream. For evaluation, we inject heavy and varying cross traffic. At t = 5 s, 15 other long-lived
(elephant) streams are started, 7 going to receiver R1 and 8 going to receiver R2. At t = 20 s, each
receiver initiates 40 simultaneous short-lived (mouse) TCP streams. A mouse stream is a repeating
short-lived stream that starts the connection, transfers 20 KB of data, ends the connection, and then
repeats this process continuously [Iannaccone et al. 2001]. The number of mouse streams was chosen
so that the mouse streams would get approximately 30 percent of the total bandwidth. At t = 40 s, CBR
traffic that consumes 10 percent of the bandwidth is started. At t = 60 s, the elephants are stopped and
then the mice and the CBR traffic are stopped at t = 75 s.

Figure 3 shows the protocol latency of each packet in the latency stream as a function of packet re-
ceive time. The figure shows two horizontal lines at the 160-ms and at the 500-ms thresholds. The first

1The significance of the (1, 0) notation after MIN BUF will be explained in the next section. For the moment, it can be ignored.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:8 • A. Goel et al.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
m

s)

Time (seconds)

TCP MIN_BUF (1,0)

These figures show the protocol latency of packets plotted as a function of packet receive time. For comparison, the horizontal
lines on the figures show the 160 ms and 500 ms latency threshold.

Fig. 3. Protocol latencies of TCP and MIN BUF TCP with forward path congestion topology.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
m

s)

Time (seconds)

TCP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
m

s)

Time (seconds)

TCP MIN_BUF (1,0)

These figures show the protocol latency of packets plotted as a function of packet receive time. For comparison, the horizontal
lines on the figures show the 160 ms and 500 ms latency threshold.

Fig. 4. Protocol latencies of TCP and MIN BUF TCP with reverse path congestion topology.

threshold approximates the requirements of interactive streaming applications such as video conferenc-
ing (the ITU suggests 200 ms for end-to-end latency [ITU 1993]), whereas the 500-ms threshold, while
somewhat arbitrary, is chosen to represent the requirements of media-streaming control operations
such as the sequence consisting of start play, fast forward, and restart play.

Figure 4 compares the protocol latency of TCP and MIN BUF TCP when the experiment is performed
using the reverse path congestion topology in which both the forward and the reverse paths are con-
gested. The graphs in Figures 3 and 4 show that the MIN BUF TCP stream has significantly lower
protocol latency than a standard TCP stream. Reverse path congestion can cause acknowledgments to
be dropped and as a result MIN BUF TCP performs slightly worse in this topology. We conducted an
extensive set of experiments with a smaller bandwidth limitation (10 Mb/sec) at the router and with
smaller round-trip times (25 ms and 50 ms). As expected, the protocol latency increased with smaller
available bandwidth and decreased with smaller round-trip times. However, the latency of MIN BUF
TCP flows in all these configurations is significantly lower than corresponding TCP flows and com-
parable to the latency shown in the two figures. We provide the latency distribution results across
multiple runs later in Section 5.1, after we discuss our approach in more detail. More details about
these experiments are also available in our previous paper [Goel et al. 2002].

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:9

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
m

s)

Time (seconds)

TCP MIN_BUF (1,0)

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80

L
at

en
cy

 (
m

s)

Time (seconds)

ECN MIN_BUF (1,0)

Fig. 5. Protocol latencies of MIN BUF TCP and MIN BUF TCP with ECN.

We also ran the same experiment with MIN BUF TCP enabled with ECN. For ECN, we use deriva-
tive random drop (DRD) active queue management, which is supported in nistnet. DRD is a RED
variant that is implemented efficiently in software. The drdmin, drdmax and drdcongest parameters
of DRD were chosen to be 1.0, 2.0 and 2.0 times the bandwidth-delay product, respectively. DRD marks
10-percent packets with the ECN bit when the queue length exceeds drdmin, progressively increasing
the percentage until packets are dropped when the queue length exceeds drdcongest. Unlike RED, DRD
does not average queue lengths. Figure 5 shows the protocol latency for MIN BUF TCP and MIN BUF
TCP with ECN enabled. The left graph in Figure 5 zooms into the right graph of Figure 3. The right
graph in Figure 5 shows that MIN BUF TCP with ECN has lower latency than without ECN. Each of
the spikes in the left graph of Figure 5 is a packet dropping event (note that the network is heavily
loaded) that causes an additional round-trip time delay (100 ms in these experiments) that MIN BUF
TCP with ECN does not suffer. The smaller spikes seen with ECN occur because congestion control
decreases CWND. However, as explained in Section 3, these congestion control spikes are small because
they occur without packet dropping. Note that TCP with ECN but without MIN BUF drops few packets
but still suffers large delays because of blocked packets.

4.2 Implications for Adaptive Applications

MIN BUF TCP removes sender-side buffering latency from the TCP stack so that low-latency appli-
cations are allowed to handle buffering themselves. This approach allows applications to adapt their
bandwidth requirements to maintain low latency through data scalability techniques such as frame
dropping, priority data dropping and dynamic rate shaping [Rejaie et al. 1999; Feng et al. 1999; Krasic
et al. 2003]. More precisely, the benefit of MIN BUF TCP streaming is that the sending side application
can wait longer before making its adaptation decisions. Hence, it has more control and flexibility over
what data should be sent and when it should be sent. For instance, if MIN BUF TCP doesn’t allow
the application to send data for a long time, the sending side can drop low-priority data. Then it can
send higher-priority data, which will arrive at the receiver with low delay (instead of committing the
low-priority data to a large TCP send-buffer early and then losing control over quality adaptation and
timing when that data is delayed in the send buffer). In our model, applications are typically written
using nonblocking write socket calls so that the sending side can do other work such as media encoding
and make adaptation decisions when the network is busy.

Note that low-latency applications that do not adapt their sending behavior or are simply bandwidth
limited but do not have any any latency requirements (e.g., ftp) will not benefit from MIN BUF TCP.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:10 • A. Goel et al.

5. EFFECT ON THROUGHPUT

Until now, we have compared the protocol latency of MIN BUF TCP and standard TCP flows. However,
another important issue for MIN BUF TCP streams is the throughput of these streams compared with
standard TCP. The size of the send buffer in standard TCP is large because it helps TCP throughput. The
MIN BUF approach will impact network throughput when standard TCP could have sent a packet but
there are no new packets in MIN BUF TCP’s send buffer. This condition occurs because when an ACK
arrives, standard TCP has a packet in the send buffer that it can send immediately while MIN BUF
TCP has to wait for the application to write the next packet before it can send it. With this loop, system
latencies such as preemption and scheduling latency can affect MIN BUF TCP throughput.

These adverse affects on MIN BUF TCP throughput can be reduced by adjusting the buffer size so
that it is slightly larger than CWND. To understand how much the buffer size should be increased,
we need to consider events in TCP which cause new packets to be transmitted. There are four such
events: ACK arrival, delayed ACK arrival, CWND increase and back-to-back ACK arrivals due to ACK
compression [Shenker et al. 1991]. These events and the way MIN BUF TCP can handle them are
described below.

ACK Arrival. When an ACK arrives for the first packet in TCP window, the window moves for-
ward and admits a new packet in the window, which is then transmitted by TCP. In this case, the
MIN BUF TCP send buffer should buffer one additional packet so that it can immediately send this
packet.

Delayed ACK. To save bandwidth in the reverse direction, most TCP implementations delay ACKs
and send, by default, one ACK for every two data packets received. Hence, each ACK arrival opens
TCP’s window by two packets. To handle this case, MIN BUF TCP should buffer two instead of one
additional packets.

CWND Increase. During steady state, when TCP is in its additive increase phase, TCP probes for
additional bandwidth by increasing its window by one packet every round-trip time. Hence, TCP incre-
ments CWND by 1. At these times, the ACK arrival allows releasing two packets. With delayed ACKs,
three packets can be released. Hence, MIN BUF TCP should buffer three additional packets to deal
with this case and delayed ACKs.

TCP can also use a byte-counting algorithm [Allman 2003] in which the congestion window is in-
creased based on the number of bytes acknowledged by the arriving ACKs. The byte-counting algo-
rithm improves performance by mitigating the impact of delayed ACKs on the growth of CWND. A
byte counting TCP behaves similar to regular TCP unless its L limit parameter is chosen to be more
aggresive than the default one MSS value [Allman 2003]. For instance, byte counting TCP effectively
increments CWND by one MSS sized packet every RTT. Hence the discussion in this section applies to
byte counting TCP also.

ACK Compression. At any time CWND TCP packets are in transit in the network. Due to a phe-
nomenon known as ACK compression [Shenker et al. 1991] that can occur at routers, ACKs can arrive
at the sender in a bursty manner. In the worst case, the ACKs for all the CWND packets can arrive
together. To handle this case, MIN BUF TCP should buffer 2 * CWND packets (CWND packets in ad-
dition to the first CWND packets). Note that the default send buffer size can often be much larger than
2 * CWND and thus we expect lower protocol latency even in this case. If we take CWND increase into
account with ACK compression then MIN BUF TCP should allow buffering 2 * CWND + 1 packets to
achieve throughput comparable to TCP.

Dropped ACK. When the reverse path is congested, ack packets can be dropped. Then later acks can
acknowledge more than two packets. This case is similar to ACK compression.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:11

To study the impact of the send-buffer size on throughput and latency, we add two parameters A > 0
and B ≥ 0 to MIN BUF TCP streams. With these parameters, the send buffer is limited to A * CWND +
B packets at any given time.2 We use the A * CWND + B function because increasing the first parameter
(A) allows handling any bandwidth reduction that can be caused by ACK compression, as described
above, while progressively increasing the second parameter (B) allows taking ACK arrivals, delayed
ACKs and CWND increase into account. Furthermore, when A ≥ 2 and B ≥ 1, the timing with which
TCP sends and acknowledges packets is unaffected by our approach, and as a result the throughput
achieved by MIN BUF TCP should be comparable to TCP.

The parameters A and B represent a trade-off between latency and throughput. In general, we expect
that for every additional CWND blocked packets, output latency will increase by a network round-trip
time since a packet must wait for an additional CWND ACKs before being transmitted. From now
on, we call a MIN BUF TCP stream with parameters A and B, a MIN BUF(A, B) stream. Hence, the
original MIN BUF TCP stream which limited the send-buffer size to CWND packets is a MIN BUF(1, 0)
stream.

5.1 Evaluation

Figure 6 shows the protocol latency and throughput of TCP and three MIN BUF configurations:
MIN BUF(1, 0), MIN BUF(1, 3) and MIN BUF(2, 0). The MIN BUF(1, 0) stream is the original stream
with the least protocol latency. We chose a MIN BUF(1, 3) stream to take ACK arrivals, delayed ACKs
and CWND increase into account. Finally, we chose a MIN BUF(2, 0) stream because it takes ACK
compression and dropped ACKs into account and we expect it to have throughput close to TCP, as
explained earlier.

The top two graphs in Figure 6 show the protocol latency distribution when the experiments are
performed using the forward and the reverse path congestion topologies. This distribution is the per-
centage of packets that arrive at the receiver within a delay threshold. The vertical lines show the
160 ms and 500 ms delay thresholds. The first threshold represents the requirements of interactive
applications such as video conferencing while the second threshold represents the requirements of me-
dia control operations. Each experiment was performed eight times and the results show the latencies
accumulated over all the runs. The figures show that TCP has a much longer tail than any of the
MIN BUF TCP flows. Note that the x-axis, which shows the protocol latency in milliseconds, is on a
log scale. In the forward path topology, the MIN BUF(1, 0) and MIN BUF(1, 3) streams have less than
2% packets outside the 160 ms threshold while MIN BUF(2, 0) and TCP streams have about 10% and
30% packets outside this threshold. With reverse path congestion, acknowledgments can be dropped,
leading to slightly increased delays. However, MIN BUF(1, 0) and MIN BUF(1, 3) streams still drop
less than 10% packets within the 160 ms threshold while TCP drops over 40% packets.

We conducted an extensive set of experiments for the four MIN BUF configurations and with a smaller
bandwidth limitation (10 Mb/sec) at the router and with smaller round-trip times (25 ms and 50 ms).
The results of these experiments are similar to the latency results shown in Figure 6 and hence not
presented here. More details about these experiments are available in our previous paper [Goel et al.
2002].

The normalized throughput of these flows is shown in the bottom graph of Figure 6. The numbers
shown are the mean and 95% confidence interval over 8 runs. The graph shows that, as expected, the
MIN BUF(2, 0) flow receives throughput close to standard TCP (within the confidence intervals). The
MIN BUF(1, 0) flow receives the least throughput because TCP has no new packets in the send buffer

2With the byte counting algorithm [Allman 2003], the send buffer is limited to (A * CWND + B) * (maximum segment size (or
MSS)) bytes.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:12 • A. Goel et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

P
ro

to
co

l L
at

en
cy

 D
is

tr
ib

ut
io

n
P

ro
to

co
l L

at
en

cy
 D

is
tr

ib
ut

io
n

Time (milliseconds)

Time (milliseconds)

30 Mb/s total bandwidth, 100ms RTT

30 Mb/s total bandwidth, 100ms RTT

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

0

0.2

0.4

0.6

0.8

1

1.2

Std TCP Min Buf(1, 0) Min Buf(1, 3) Min Buf(2, 0)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(30 Mb/s total bandwidth, 100 ms RTT)

 10 100 1000 10000

 0

 0.2

 0.4

 0.6

 0.8

 1

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)
MIN_BUF(2,0)

The experiments were performed with a 30 Mb/sec limit and with 100 ms round-trip delay. The top two graphs shows the
protocol latency distributions for the forward and the reverse path congestion topologies. The bottom graph shows the normalized
throughput of the different MIN BUF TCP configurations.

Fig. 6. Protocol latency distribution and throughput of TCP in three MIN BUF TCP configurations.

that can be sent after each ACK is received and hence TCP must ask the application to write the next
packet to the send buffer before it can proceed with the next transmission. The MIN BUF(1, 3) flow
receives about 95 percent of TCP throughput. The three blocked packets in the send buffer are able to
handle delayed ACKs and CWND increase. These graphs show that the MIN BUF(1, 3) flow presents
a good compromise between achieving low latency and good throughput. Experiments with a lower

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:13

Table I. Major CPU Costs of TCP and
MIN BUF TCP

TCP MIN BUF(1,0)
write 2.33 seconds 2.67 seconds
poll 0.45 seconds 3.55 seconds
total CPU time 4.20 seconds 11.50 seconds

bandwidth limitation of 10 Mb/sec and shorter RTT of 50 and 25 ms show similar results and hence
are not presented here.

5.2 System Overhead

The MIN BUF TCP approach reduces protocol latency compared to TCP flows by allowing applications
to write data to the kernel at a fine granularity. However, this approach can cause higher system
overhead because more system calls are invoked to transfer the same amount of data. To quantify this
overhead, we profiled the CPU usage of TCP and MIN BUF(1,0) flows for the experiment shown in
Figure 3. Profiling the event-driven application showed that the two main costs on the sender side were
the write and the poll system calls for both standard TCP and MIN BUF TCP flows. Table I shows the
total time spent in the kernel (system time) in write and poll for these flows and the total CPU
time (user and system time).

Table I shows that the MIN BUF TCP flow has slightly more overhead for write calls. MIN BUF
TCP writes one packet at a time to the socket while standard TCP writes several packets at a time
before the application is allowed to write next time. In particular, TCP in Linux allows the application
to write only after a third of the send buffer has been drained. Hence, standard TCP amortizes context
switching overhead over larger writes.

Table I also shows that MIN BUF TCP has significantly more overhead for poll calls. With standard
TCP, poll is called after the application writes a third of the send buffer because, as explained above,
TCP wakes the application only after draining a third of the buffer. With MIN BUF TCP, poll is called
after every write. The default send buffer size in TCP is 64 Kb. A third of that size is 21 Kb, which
allows 14 packets of MSS size (1448 bytes). Hence, in our application, with standard TCP, poll should be
called after every 14 writes, while with MIN BUF(1,0) it is called every time. We measured the number
of calls to poll over the entire experiment for TCP and MIN BUF(1,0) flows and found the ratio of these
numbers is 12.66, which is close to the expected value of 14. The slight discrepancy occurs because when
TCP increases CWND, then MIN BUF TCP can send two packets in a single write, hence the ratio of
writes is slightly less than 14.

The last row of the Table I shows that the MIN BUF(1, 0) TCP flows are approximately three times
more expensive in CPU time compared to standard TCP flows. This overhead occurs as a result of fine-
grained writes that are allowed by MIN BUF TCP flows. These fine-grained writes occur as a result
of low-latency streaming but their benefit is that applications have much finer control over latency. To
reduce the overhead of MIN BUF(1, 0), larger values of the MIN BUF parameters can be used. The
larger values will help amortize the poll and write overheads at the cost of increased latency.

6. IMPLEMENTATION

We have implemented the MIN BUF TCP approach with a small modification to the TCP stack on the
sender side in the Linux 2.4 kernel [Goel et al. 2002]. This modification can be enabled per socket by
using a new SO TCP MIN BUF option, which limits the send buffer size to A ∗ CWND+MIN(B, CWND)
segments (segments are packets of maximum segment size or MSS) at any given time. The send buffer
size is at least CWND because A must be an integer greater than zero and B is zero or larger.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:14 • A. Goel et al.

With the send-buffer modification, an application is blocked from sending when there are A ∗ CWND +
MIN(B, CWND) packets in the send buffer. In addition, the application is woken up when at least one
packet can be admitted in the send buffer. By default A is one and B is zero, but these values can be
made larger with the SO TCP MIN BUF option.

6.1 Sack Correction

The previous discussion about the send buffer limit applies for a non-SACK TCP implementation. For
TCP SACK [Mathis et al. 1996], we make a sack correction by adding an additional term sacked out
to A ∗ CWND + MIN(B, CWND). The sacked out term (or an equivalent term in other OSs) is main-
tained by a TCP SACK sender and is the number of selectively acknowledged packets. With TCP
SACK, when selective acknowledgments arrive, the packets in flight are no longer contiguous but lie
within a CWND+sacked out packet window. We make the sack correction to ensure that the send
buffer limit includes this window and is thus at least CWND+sacked out. Without this correction,
TCP SACK is unable to send new packets for a MIN BUF flow and assumes that the flow is appli-
cation limited. It can thus reduce the congestion window multiple times after the arrival of selective
acknowledgments.

6.2 Alternate Application-Level Implementation

It is conceivable that the objectives of the send-buffer modifications can be achieved at the application
level. Essentially the application would stop writing data when the socket buffer has a fill level of
A ∗ CWND + MIN(B, CWND) packets or more. The problem with this approach is that the application
has to poll the socket fill level. Polling is potentially both expensive in terms of CPU consumption and
inaccurate since the application is not informed immediately when the socket-fill level goes below the
threshold.

6.3 Application Model

Applications that use MIN BUF TCP should explicitly align their data with packets transmitted on the
wire (application level framing) [Clark and Tennenhouse 1990]. This alignment has two benefits: (1)
it minimizes any latency due to coalescing or fragmenting of packets below the application layer and
(2) it ensures that low-latency applications are aware of the latency cost and throughput overhead of
coalescing or fragmenting application data into network packets. For alignment, an application should
write maximum segment size (MSS) packets on each write. TCP determines MSS during stream startup
but the MSS value can change due to various network conditions such as routing changes [McCann
et al. 1996]. A latency-sensitive application should be informed when TCP determines that the MSS
has changed. Currently, we detect MSS changes at the application level by querying TCP for the MSS
before each write. Another more efficient option, currently unimplemented, would be to return a write
error on an MSS change for a MIN BUF socket.

In our experiments, we use the TCP CORK socket option in Linux, which ensures that TCP sends
data only when there are at least MSS bytes of data available. Thus, application data is never broken
up by TCP into less than MSS sized packets. This option improves throughput by always sending
maximum sized packets but does not affect protocol latency since applications have already aligned
their data with MSS sized packets.

If applications such as audio streaming have packets smaller than MSS bytes, then the CORK option
should not be used since it introduces additional delay. Note that when packets smaller than MSS bytes
are transmitted, the stream has lower throughput than a stream using the TCP CORK socket option,
but the latency improvements due to MIN BUF are unaffected because MIN BUF simply minimizes
buffering in the send buffer. Finally, if the network is not saturated (e.g., when using a single stream

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:15

of audio with no competing traffic), then the send buffer will not fill up and TCP and MIN BUF flows
will exhibit similar latencies.

7. APPLICATION-LEVEL EVALUATION

The previous section evaluated the protocol latency due to TCP under heavy network load. This section
evaluates the timing behavior of a real live streaming application and shows how MIN BUF TCP helps
in improving application-level end-to-end latency. In particular, our experimental results will show that
MIN BUF TCP improves the end-to-end latency distribution of video frames and hence the number of
frames that arrive within a given deadline. In addition, we show that MIN BUF TCP has lower variance
in throughput compared to TCP, which allows streaming video with smoother quality.

We ran these experiments over TCP and MIN BUF TCP on a best-effort network that does not guar-
antee bandwidth availability. With a nonadaptive media application, data will be delayed, possibly for
long periods of time, when the available bandwidth is below the application’s bandwidth requirements.
Hence, we need to use an adaptive media application that can adapt its bandwidth requirements based
on currently available bandwidth. For this purpose, we have chosen an open-source adaptive streaming
application called Qstream [Krasic et al. 2003].

We need to understand the adaptive media format and the adaptation mechanism used in Qstream
to analyze the components of application-level end-to-end latency. Qstream uses an adaptive media
format called scalable MPEG (SPEG). SPEG [Krasic et al. 2003] is a variant of MPEG-1 that supports
layered encoding of video data that allows dynamic data dropping. In a layered encoded stream, data
is conceptually divided into layers. A base layer can be decoded into a presentation at the lowest level
of quality. Extension layers are stacked above the base layer where each layer corresponds to a higher
level of quality in the decoded data. For correct decoding, an extension layer requires all the lower
layers.

Qstream uses an adaptation mechanism called priority-progress streaming (PPS). For the purposes
of this work, the key idea in the PPS adaptation mechanism is an adaptation period, which determines
how often the sender drops data. Within each adaptation period, the sender sends data packets in
priority order, from the highest priority to the lowest priority. The priority label on a packet exposes the
layered nature of the SPEG media so that higher layers can be sent and the display quality improved
with increases in resource availability. Hence, the highest priority data has the base quality while lower
priority data encodes higher quality layers. The data within an adaptation period is called an adaptation
window. Data dropping is performed at the end of the adaptation period where all unsent data from
the adaptation window is dropped and the server starts processing data for the next adaptation period.
Consequently, the data that is transmitted within an adaptation period determines the quality of the
presentation for that adaptation period. On the receiver side, data packets are collected in priority
order for each adaptation period and then reordered in time order before they are displayed.3 Note that
Qstream displays data in real-time even when it drops lower priority data. If the available bandwidth
is low or the sender side is blocked from sending data for long periods of time, then the sender drops
entire adaptation windows, which we call dropped windows.

The minimum expected latency at the application level at the sender and the receiver sides is a
function of the adaptation period. In particular, the sender must wait for an adaptation period to
perform data prioritization before it can starting sending the adaptation window. Similarly, the receiver
must wait for an adaptation period to receive and reorder an adaptation window. Figure 7 shows all
the components of the end-to-end latency experienced in Qstream. Note that capture, protocol and
display latencies occur in the kernel while the rest of the latencies occur at the application level. In our

3PPS uses time-stamps on data packets to perform the reordering.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:16 • A. Goel et al.

Sender application latency Receiver application latency

Encoding
latency

latency latency

Decoding
latency latency

application
buffer

application
buffer

Protocol latency Display latencyCapture latency

router buffer

Network

Sender
send buffer

Receiver

C
am

er
a D

isplay

receive buffercamera buffer

Kernel Kernel

display buffer

Fig. 7. Breakup of end-to-end latency in Qstream.

experience, capture and display latencies are relatively small and hence our focus on protocol latency
helps to significantly reduce kernel latencies.

7.1 Evaluation Methodology

We use three metrics latency distribution, sender throughput and dropped windows to evaluate the
performance of the Qstream application running under MIN BUF TCP versus TCP. The latency dis-
tribution is a measure of the end-to-end latency, shown in Figure 7, experienced by the adaptation
windows during an experimental run. It measures the ratio of the number of entire windows that ar-
rive within an application’s end-to-end latency requirements (henceforth called latency tolerance) to the
number of windows transmitted by the sender. Note that Qstream displays entire or partial windows
that arrive within the latency tolerance and hence this metric is a conservative estimate of goodput
(i.e., throughput that is useful) especially when the windows are large. The sender throughput is the
amount of data that is transmitted by the sender. Finally, dropped windows is the number of entire
adaptation windows that are dropped by the sender. Qstream drops an entire adaptation window when
the first packet of this window arrives after the latency tolerance and hence none of the packets of the
window can be displayed in time. Note that the number of windows dropped by the sender across runs
can be different even if the sender throughput is the same because the amount of data sent in each
window (and hence the quality of a window) is variable. For the same value of sender throughput, a
smaller value of dropped window indicates that more windows were transmitted and the stream had
smoother quality.

The experiments are performed on our Linux 2.4 test-bed that simulates WAN conditions by intro-
ducing a known delay at an intermediate Linux router in the test-bed. Experiments are run under
varying network load and the cross-traffic and the network topology is similar to the traffic and the
topology described in Section 4.1.

7.2 Results

First, we compare the latency distribution of flows using TCP versus MIN-BUF TCP. For these ex-
periments, the round-trip time is 50 ms and the bandwidth capacity of the link is 10 Mb/s. Figure 8

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

L
at

en
cy

 D
is

tr
ib

ut
io

n

Latency Tolerance (seconds)

Window = 133.3ms, Flows = 20, RTT = 50ms

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

L
at

en
cy

 D
is

tr
ib

ut
io

n

Latency Tolerance (seconds)

Window = 133.3ms, Flows = 40, RTT = 50ms

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)

The bandwidth limit for all the experiments is 10 Mbps, the round trip time is 50 ms. Note that for latency tolerance of less than
a second, the MIN BUF flows have significantly higher number of windows that arrive in time compared to TCP.

Fig. 8. Latency distribution (adaptation window = 133 ms).

Table II. Throughput of TCP and MIN BUF TCP
20 flows 40 flows

TCP 0.76 ± 0.11 0.56 ± 0.04
MIN BUF(1,0) 0.60 ± 0.05 0.47 ± 0.04
MIN BUF(1,3) 0.72 ± 0.04 0.54 ± 0.03

The throughput of the MIN BUF(1,0) and the MIN BUF(1,3)
flows is approximately 80% and 95% of TCP. The experiments
are run with 20 and 40 competing flows.

compares the results for TCP, MIN BUF(1, 0) and MIN BUF(1, 3) flows. It shows the latency distribu-
tion of each of the flows when the adaptation window period is 4 frames or 133.3 ms (camera captures
data at 30-frames a second). The figures show that as long as the application’s latency tolerance is less
than a second, significantly more windows arrive in time for MIN BUF flows compared to a TCP flow.
For example, 80% windows arrive in less than 500 ms for MIN BUF flows while only 40% windows
arrive within the same time for a TCP flow when there are 20 competing flows.

We conducted experiments with different competing loads. The two graphs in Figure 8 show the re-
sults of experiments with 20 and 40 competing long-lived flows. These figures show that with increasing
load, the percent of transmitted packets that arrive in time is only marginally affected for MIN BUF
flows (clearly the total amount of throughput achieved by the video flow is lower in the second case, as
shown in Table II later).

Note that Figure 8 shows the end-to-end latency that includes kernel as well as application-level
latencies and in this experiment, the Qstream application itself introduces a latency of 2 times the
adaptation window or 266 ms. To reduce this latency, we ran the experiments above with a smaller
adaptation window of 2 frames (or 66.6 ms). Figure 9 shows the latency distribution in this case. It
shows that with MIN BUF, 80% of packets arrive within 300–400 ms when there are 20 competing
flows. This figure shows that the latency tolerance can be made tighter when the adaptation window
is made smaller for any desired percent of timely window arrivals. The trade-off, as discussed below,
is that the video quality varies more as the window is made smaller. We performed experiments with
other values of the round-trip time and the bandwidth capacity but those results are similar and hence
not shown here.

Next, we compare the sender throughput of TCP and MIN BUF flows. We show one set of results
(averaged over 5 runs) when the adaptation window is 2 frames (66 ms) since the size of the adaptation
window does not affect the sender throughput much. Table II shows that the throughput achieved by

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:18 • A. Goel et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

L
at

en
cy

 D
is

tr
ib

ut
io

n

Latency Tolerance (seconds)

Window = 66.6ms, Flows = 20, RTT = 50ms

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

L
at

en
cy

 D
is

tr
ib

ut
io

n

Latency Tolerance (seconds)

Window = 66.6ms, Flows = 40, RTT = 50ms

TCP
MIN_BUF(1,0)
MIN_BUF(1,3)

Fig. 9. Latency distribution (adaptation window = 66 ms).

Table III. Windows Dropped by TCP and
MIN BUF TCP

4 frames 2 frames
TCP 45 ± 3% 58 ± 5%
MIN BUF(1,0) 28 ± 2% 37 ± 2%
MIN BUF(1,3) 27 ± 2% 34 ± 3%

The adaptation window is 4 frames and 2 frames.
MIN BUF drops fewer entire adaptation windows
and thus provides smoother video quality. Reducing
the adaptation window reduces the smoothness.

MIN BUF(1,0) is close to 80% of TCP while the throughput achieved by MIN BUF(1,3) is close to 95%
of TCP with 20 or 40 competing flows. These numbers are close to the relative throughput achieved by
MIN BUF flows in the micro-benchmarks presented in Figure 6 and confirm that MIN BUF(1,3) flows
compete closely with TCP flows while significantly improving end-to-end latency.

The last metric we compare for TCP and MIN BUF flows is the number of dropped windows over the
course of the experiment, which provides a rough estimate of the variation in video quality over time
and hence the responsiveness of adaptation. Table III shows the ratio of adaptation windows dropped
at the sender to the number of adaptation windows generated at the server, expressed as a percentage,
with 20 competing flows. The sender drops windows when it is unable to transmit data for an entire
window period. This table shows that MIN BUF flows drop fewer entire windows because these flows
can send data in a less bursty manner, which results in smoother video quality since more frames are
transmitted. Table III also shows that when the adaptation window period is small, then more windows
are dropped as a percent of total number of windows because an idle transmission period is more likely
to lead to a smaller window being dropped. Since larger numbers of windows are dropped with a smaller
adaptation window, the video quality fluctuates more over time.

7.3 Discussion

The adaptation period allows control over the delay and the quality stability trade-off. A large adapta-
tion period reduces the frequency of quality fluctuations because there are at most two quality changes
in each adaptation period within Qstream and the window is more likely to be at least partially trans-
mitted. However, a large adaptation period increases end-to-end latency as shown in the graphs above.
For a low-latency streaming application, the user should have control over Qstream’s adaptation period
so that the desired latency and quality trade-off can be achieved.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

Low-Latency Adaptive Streaming over TCP • 20:19

8. CONCLUSIONS

The dominance of the TCP protocol on the Internet and its success in maintaining Internet stability
has led to several TCP-based stored media-streaming approaches. The success of TCP-based streaming
led us to explore the limits to which TCP can be used for low-latency network streaming. Low la-
tency streaming allows building adaptive streaming applications that respond to changing bandwidth
availability quickly and sufficiently low-latency streaming makes interactive applications feasible.

This paper shows that low-latency streaming over TCP is feasible by tuning TCP’s send buffer so that
it keeps just the packets that are currently in flight. Compared to packet dropping, TCP retransmissions
or TCP congestion control, this approach has the most significant effect on TCP induced latency at the
application level. In addition, we showed that a few extra packets (blocked packets) help to recover
much of the lost network throughput without increasing protocol latency significantly. Our adaptive
buffer tuning approach can be used by any application that prioritizes data. To validate our approach,
we evaluated the performance of an adaptive streaming application that prioritizes data based on
layered media encoding. Our results show that TCP buffer tuning yields significant benefits in terms
of reducing end-to-end latency and variation in media quality.

ACKNOWLEDGMENTS

We greatly appreciate the detailed feedback from our anonymous reviewers. The ideas in this paper
were refined during several discussions with Kang Li, Wu-chang Feng and Wu-chi Feng. We wish to
thank the members of the Quasar group at OGI, Portland who provided comments on initial drafts of
the paper.

REFERENCES

ALLMAN, M. 2003. TCP congestion control with appropriate byte counting (ABC). Internet RFC 3465.

ALLMAN, M., PAXSON, V., AND STEVENS, W. 1999. TCP congestion control. Internet RFC 2581.

BANSAL, D., BALAKRISHNAN, H., FLOYD, S., AND SHENKER, S. 2001. Dynamic behavior of slowly-responsive congestion control
algorithms. In Proceedings of the ACM SIGCOMM. ACM, New York.

CLARK, D. D., AND TENNENHOUSE, D. L. 1990. Architectural considerations for a new generation of protocols. In Proceedings of
the ACM SIGCOMM. ACM, New York. 200–208.

FENG, W., KANDLUR, D. D., SAHA, D., AND SHIN, K. S. 1997. Techniques for eliminating packet loss in congested TCP/IP networks.
Tech. Rep. CSE-TR-349-97, Univ. Michigan. Nov.

FENG, W., LIU, M., KRISHNASWAMI, B., AND PRABHUDEV, A. 1999. A priority-based technique for the best-effort delivery of stored
video. In Proceedings of the SPIE Multimedia Computing and Networking Conference. 286–300.

FLOYD, S., HANDLEY, M., AND KOHLER, E. 2002. Problem statement for DCP. Work in progress, IETF Internet Draft draft-floyd-
dcp-problem-00.txt, expires Aug 2002.

FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. 2000. Equation-based congestion control for unicast applications. In
Proceedings of the ACM SIGCOMM. ACM, New York. 43–56.

FLOYD, S. AND JACOBSON, V. 1993. Random early detection gateways for congestion avoidance. ACM/IEEE Trans. Netw. 1, 4
(Aug.), 397–413.

GOEL, A., KRASIC, C., LI, K., AND WALPOLE, J. 2002. Supporting low latency TCP-based media streams. In Proceedings of the
International Workshop on Quality of Service (IWQoS). 193–203.

HUFFAKER, B., FOMENKOV, M., MOORE, D., AND CLAFFY, K. C. 2001. Macroscopic analyses of the infrastructure: Measurement and
visualization of internet connectivity and performance. In Proceedings of the workshop on Passive and Active Measurements
(PAM2001).

HURLEY, P. AND LE BOUDEC, J. Y. 1999. A proposal for an asymmetric best-effort service. In Proceedings of the International
Workshop on Quality of Service (IWQoS). 132–134.

IANNACCONE, G., MAY, M., AND DIOT, C. 2001. Aggregate traffic performance with active queue management and drop from tail.
ACM Comput. Commun. Rev. 31, 3 (July), 4–13.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

20:20 • A. Goel et al.

ITU. 1993. Transmission Systems and Media, General Recommendation on the Transmission Quality for an Entire Interna-
tional Telephone Connection; One-Way Transmission Time. Geneva, Switzerland. Recommendation G.114, Telecommunication
Standardization Sector of ITU.

KOHLER, E., HANDLEY, M., AND FLOYD, S. 2006. Datagram congestion control protocol (DCCP). Internet RFC 4340.
KOZUCH, M. AND SATYANARAYANAN, M. 2002. Internet Suspend/Resume. In Proceedings of the Workshop on Mobile Computing

Systems and Applications. 40–48.
KRASIC, C., WALPOLE, J., AND FENG, W. 2003. Quality-adaptive media streaming by priority drop. In Proceedings of the Interna-

tional Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV). 112–121.
MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW, A. 1996. TCP selective acknowledgment options. Internet RFC 2018.
MATHIS, M., SEMKE, J., MAHDAVI, J., AND LAHEY, K. 1999. Rate-halving algorithm for TCP congestion control. http://www.psc.
edu/networking/ftp/papers/draft-ratehalving.txt.

MCCANN, J., DEERING, S., AND MOGUL, J. 1996. Path MTU discovery for IP version 6. Internet RFC 1981.
NETMEETING. Windows Netmeeting. http://www.microsoft.com/netmeeting, viewed in Jun 2002.
NISTNET. The NIST network emulation tool. http://www.antd.nist.gov/itg/nistnet, viewed in Jun 2002.
NONNENMACHER, J., BIERSACK, E. W., AND TOWSLEY, D. 1998. Parity-based loss recovery for reliable multicast transmission.

ACM/IEEE Trans. Netw. 6, 4, 349–361.
RAMAKRISHNAN, K., FLOYD, S., AND BLACK, D. 2001. The addition of explicit congestion notification (ECN) to IP. Internet RFC

3168.
REALVNC LIMITED. 2002. Realvnc. http://www.realvnc.com.
REJAIE, R., HANDLEY, M., AND ESTRIN, D. 1999. Quality adaptation for congestion controlled video playback over the internet.

In Proceedings of the ACM SIGCOMM. ACM, New York. 189–200.
RIZZO, L. 1997. Effective erasure codes for reliable computer communication protocols. ACM Comput. Commun. Rev. 27, 2

(Apr.), 24–36.
SALIM, J. H. AND ALMED, U. 2000. Performance evaluation of explicit congestion notification (ECN) in IP networks. Internet

RFC 2884.
SEMKE, J., MAHDAVI, J., AND MATHIS, M. 1998. Automatic TCP buffer tuning. In Proceedings of the ACM SIGCOMM. ACM, New

York. 315–323.
SHENKER, S., ZHANG, L., AND CLARK, D. 1991. Observations on the dynamics of a congestion control algorithm: The effects of

two-way traffic. In Proceedings of the ACM SIGCOMM. ACM, New York. 133–147.
SKYPE. Skype. http://www.skype.com/.
STEWART, R., XIE, Q., MORNEAULT, K., SHARP, C., SCHWARZBAUER, H., TAYLOR, T., RYTINA, I., KALLA, M., ZHANG, L., AND PAXSON, V. 2000.

Stream control transmission protocol. Internet RFC 2960.
YANG, Y. R., AND LAM, S. S. 2000. General aimd congestion control. Tech. Rep. TR-2000-09, University of Texas at Austin.

Austin, TX, May.

Received June 2005; revised November 2005, August 2006, August 2007; accepted October 2007

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 3, Article 20, Publication date: August 2008.

