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Abstract
Storage systems rely on maintenance tasks, such as backup

and layout optimization, to ensure data availability and good

performance. These tasks access large amounts of data and

can significantly impact foreground applications. We argue

that storage maintenance can be performed more efficiently

by prioritizing processing of data that is currently cached

in memory. Data can be cached either due to other mainte-

nance tasks requesting it previously, or due to overlapping

foreground I/O activity.

We present Duet, a framework that provides notifications

about page-level events to maintenance tasks, such as a page

being added or modified in memory. Tasks use these events

as hints to opportunistically process cached data. We show

that tasks using Duet can complete maintenance work more

efficiently because they perform fewer I/O operations. The

I/O reduction depends on the amount of data overlap with

other maintenance tasks and foreground applications. Con-

sequently, Duet’s efficiency increases with additional tasks

because opportunities for synergy appear more often.

1. Introduction
Modern enterprise environments impose a host of demands

on storage systems, including performance scalability, high

availability and data security. In addition, they require var-

ious storage-related capabilities for meeting service-level

agreements and legal needs, such as data retention, disaster

recovery, data mining and storage analytics. To meet these

diverse demands, storage systems rely on various types of

maintenance tasks. These tasks run in the background, help-

ing improve storage reliability, performance, or enabling

data analysis. Common reliability and security tasks are

backup and archiving [5, 9, 15, 17, 23, 27, 28, 56, 68], data

scrubbing [11, 22, 37, 44, 45], write verification [47], and

virus scanning [7, 24, 30, 33, 43, 55]. Performance-related
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tasks include data layout optimization [54], garbage collec-

tion [66] and deduplication [21]. Analysis tasks include data

mining [46] and storage data analytics [14].

Maintenance tasks raise challenges for storage systems

because they access a significant amount of data that does

not easily fit in memory. For example, enterprises typically

run full backups weekly and often more frequently [3].

Similarly, anti-virus scans in virtual machines cause I/O

storms [53]. These tasks can interfere with foreground appli-

cations, which we call the workload, causing significant im-

pact on their performance. Thus, administrators have to care-

fully schedule maintenance tasks during idle times. How-

ever, long idle times may not be available, especially with

increasing data storage needs. For instance, as enterprises

are moving to the cloud, data sharing occurs across time

zones, and much higher consolidation ratios are observed

in storage systems. As a result, workloads are losing their

traditional diurnal characteristics that guarantee predictable

idle periods, making it harder to meet maintenance goals.

A recent survey of 500 CIOs of medium scale organi-

zations confirms this trend, showing that 40% of Microsoft

SMB backups fail to complete within their scheduled win-

dow [64, Chart 13]. Another survey of 1200 IT profession-

als shows that 33% of backups routinely miss their window,

while only 28% always complete on time [31, p. 3]. Iron-

ically, over 50% of IT professionals believe that someone

could lose their job if critical data was lost after a disas-

ter [18].

Existing approaches for minimizing the impact of main-

tenance tasks focus on I/O scheduling, taking device char-

acteristics into account. On hard disks, maintenance is pig-

gybacked on workload requests [19] or performed during

the seek time and rotational latency between workload re-

quests [41, 57]. These approaches require detailed device

performance characteristics to be determined, which is non-

trivial in modern disks [36], and even more complicated for

SSDs [1]. To be effective, they also require applications to

a-priori specify the I/O requests they plan to issue. Further-

more, they need complex mechanisms for handling inter-

block dependencies [57], as discussed in the next section.

We propose a novel maintenance approach that priori-

tizes processing of data that is cached in memory. Data may

be cached as a result of other maintenance tasks requesting

it, or due to overlapping foreground I/O activity. This ap-
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proach reduces the impact of maintenance in two ways. First,

maintenance tasks can implicitly collaborate with each other.

For example, during a full logical file system backup, data

layout reorganization (such as defragmentation or garbage

collection) can be performed with no additional reads. Sec-

ond, data that has recently been accessed can be provided to

a maintenance task. For example, a block modified by the

workload can be used by an incremental backup task, avoid-

ing an additional read. This I/O reduction helps maintenance

tasks complete their work within their scheduled windows.

Our key insight is that maintenance work can be re-
ordered. Maintenance tasks typically process items, such as

blocks or files, in some predefined order, but they are not

dependent on this order. For instance, a system administra-

tor might require a backup to complete within a few hours.

Within that period, backup of different files can be reordered

without affecting the system’s reliability guarantees.

We present Duet, a storage maintenance framework that

provides hints to tasks about page-level events, such as a

page being added, or modified in the page cache. Tasks use

these hints to process their items out-of-order, which we

call opportunistic work. For example, tasks can prioritize

processing of files that have more pages in memory. Page-

level events provide fine-grained information, helping sup-

port items of various granularities such as blocks, files, ex-

tents etc. Duet helps track completion of opportunistic work

so that it is not repeated by the task.

An important goal of our work is to provide a simple

programming model that minimizes changes to the tasks. We

have modified five existing maintenance tasks to work with

Duet. In the kernel, we have modified the scrubbing, backup,

and defragmentation tasks in the Btrfs file system [49], and

garbage collection in the F2fs log-structured file system [39].

These tasks required changes to fewer than 150 lines of code

(LoC) each, or 2-10% of the original code. At the application

level, we have modified the rsync application [59, 60], which

required changes to 300 LoC, or 0.67% of its code.

We show that maintenance tasks using Duet can complete

faster because they perform fewer I/O operations. This re-

duction depends on the amount of overlapping data accessed

by the various maintenance tasks and the workloads. Tasks

using Duet implicitly collaborate with each other, and are

able to complete within their scheduled windows, even on

busy devices. For example, when scrubbing, backup, and

defragmentation are run concurrently with a workload that

keeps the device busy 50% of the time, Duet-enabled tasks

perform their work four times faster than the original tasks.

Our work makes three contributions. We identify that

maintenance tasks can process data items in arbitrary order

without affecting correctness. We provide a simple program-

ming model that enables these tasks to perform opportunistic

processing based on data cached in memory. We apply this

model to several kernel and user tasks, with minimal task

changes, and show the performance benefits obtained.

The rest of the paper describes our approach in more de-

tail. Section 2 provides additional motivation for this work

and compares our approach with previous work. Section 3

presents our opportunistic work model, and Section 4 de-

scribes the Duet framework that implements this model.

Then, Section 5 explains how we modified five maintenance

tasks to use Duet, and Section 6 demonstrates the effective-

ness of the Duet-enabled tasks. Finally, in Section 7 we con-

clude and discuss possible avenues for future work.

2. Motivation and Related Work
We motivate this work by characterizing when and how often

maintenance work is performed. A recent study of 40,000

enterprise backup systems, monitored over a span of 3 years,

found that full backups are performed frequently: 28% of

systems conduct one every 1-3 days, 44% perform them

every 3-6 days, and only 17% of systems perform them

weekly [3]. Systems that perform full backups weekly or less

frequently, however, complement them with daily incremen-

tal backups. The study also reports that administrators sim-

ply use the default scheduling windows when configuring

backup policies, causing backup jobs to execute in bursts.

Anti-virus scans in virtual machines cause I/O storms for

similar reasons [53]. These observations suggest that mainte-

nance work is performed frequently and concurrently, where

our approach is expected to have the most benefits.

Existing approaches for reducing the impact of mainte-

nance tasks primarily focus on scheduling I/O requests [41,

57]. They require specifying the requests (in terms of sets of

disk locations that will be read or written) sufficiently in ad-

vance to the scheduler, which complicates programming and

limits flexibility. These approaches help amortize the cost of

seeks and rotational delays but do not necessarily reduce the

number of I/O operations. Consider two hypothetical tasks,

one that traverses the file system in depth-first order, and

the other in breadth-first order. If these tasks are run con-

currently, even careful scheduling of I/O requests may not

provide much benefit. Even if the two tasks traverse the file

system in the same order, but are staggered in time, then the

benefits of scheduling will be limited. These examples argue

for out-of-order processing at the level of the maintenance

application itself, which helps with both of these issues. Our

approach provides hints to applications to enable efficient

out-of-order processing.

With scheduling approaches, task-specific deadlock pre-

vention mechanisms are needed for handling inter-block de-

pendencies [57]. For example, if a block needs to be moved

to a location containing live data, then the live data is copied

to a persistent staging area until it can be moved to its own

new location. However, deadlocks can occur if the staging

area fills up with blocks that have unresolved dependencies.

Our approach sidesteps this issue because it uses hints, and

out-of-order processing is performed within the maintenance

application rather than at the scheduler level. In particular,
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Duet has no knowledge of dependencies and hence does not

require staging.

Our work, which aims to reduce I/O accesses, is or-

thogonal to general I/O scheduling schemes, such as antic-

ipatory scheduling [32], idle-time scheduling [20] and oth-

ers [8, 26, 42]. We can use any of these to run maintenance

tasks, but we found experimentally that running maintenance

tasks with an idle-time scheduler [26] minimizes impact on

workloads. The scheduling algorithm does not reduce the

amount of maintenance work, however, so the challenges

with meeting maintenance goals still persist [3, 43, 64].

Sharing work across some maintenance tasks is supported

by the Simpana suite from CommVault [13], which per-

forms a single file system pass and delivers data to “con-

verged” backup, archive and reporting tasks that are part of

the same application. Our approach supports existing main-

tenance tasks, that have been developed independently, both

at the user and kernel level. We are also able to take advan-

tage of data cached as a result of workload accesses.

PACMan [4] helps reduce job completion times in a clus-

ter environment with a global cache replacement policy that

coordinates data that is cached in memory across nodes. Our

work focuses on long running (large) tasks, whose data may

not fit in caches. Therefore, our approach aims to make the

best use of the current cached data, by modifying the order in

which tasks process data. However, we expect that informed

cache replacement will provide us additional benefits.

The database community has investigated data-driven ap-

proaches, with systems actively scanning in-memory data

and invoking interested queries [2, 62], or pushing data onto

processors and allowing any interested computation to pro-

cess it [6]. These approaches take advantage of declarative

database queries to perform out-of-order processing. We use

polling and hints so that tasks can perform out-of-order pro-

cessing, instead of using a pure data-driven approach. The

latter may be harder to retrofit in existing, imperative tasks

that impose specific ordering requirements.

3. Opportunistic Work Model
Our aim is to enable one or more maintenance tasks to exe-

cute concurrently, with minimal impact on the foreground

workload. To do so, we leverage the property that main-

tenance work can usually be reordered. Maintenance tasks

typically process items, such as data blocks or files, in a

predefined order but they are not dependent on this order.

Our Duet framework provides tasks with hints about cached

data. Tasks can use these hints to opportunistically process

cached data out-of-order, reducing the total I/O required to

meet their goals.

Our work has two sub-goals. First, to encourage adoption,

we would like to provide a simple programming model that

minimizes changes to the tasks. This requirement introduces

several challenges. We would like to reuse existing main-

tenance tasks rather than writing them from scratch. These

tasks are developed independently, so rewriting each task to

explicitly collaborate with every other task in the system is

unreasonable, both due to the large number of possible com-

binations of tasks, and the effort needed to add new tasks.

We should also not require tasks to specify maintenance I/O

a-priori, because it is too onerous on the developer, and con-

strains the ability to adapt tasks to changes in the system. Fi-

nally, tasks operate at several granularities (e.g. blocks, files,

extents, segments), and we need to easily support all of them.

Our second goal is to design a framework that supports a va-

riety of maintenance tasks and scales with the number of

tasks running on the system.

Next, we provide an overview of Duet and how it meets

these goals. The design of Duet is described in more detail

in Section 4.

3.1 Overview of Duet
Duet hooks into the page cache and provides notifications

about page-level events to maintenance tasks, such as a page

being added, removed, dirtied or flushed (written back to

storage) from the page cache. We leverage page-level events

because data is cached at page-size granularity when it is

read from and written to storage. Tasks use the Duet API

to poll for these events at appropriate times, such as before

each item is processed. We provide a polling interface be-

cause it avoids complications with handling asynchronous

events. The tasks then use their own criteria to decide how

and when to act upon the events. The result is that tasks per-

form out-of-order processing of cached items, reducing I/O

operations. Duet helps track work completion so that tasks

operate once on each item, either opportunistically or during

normal operation.

While Duet events occur at the page granularity, a task,

such as defragmentation, may operate at a different granu-

larity, such as extents. For example, the task may require all

pages of an extent to be in memory before defragmenting

it, but the task will receive notifications when any of these

pages are brought into memory by other applications. In-

stead of encumbering Duet with inter-page dependencies,

the Duet events help tasks keep track of data available in

memory, so that they can perform opportunistic process-

ing. For example, the defragmentation task can use the Duet

events to build a priority queue based on the extents with the

most pages in memory. It can then use this queue to prior-

itize its processing, requesting from storage any additional

pages of that extent that are needed to complete its opera-

tion. This approach avoids pinning pages in memory and the

related issues that arise under memory pressure [57].

Algorithm 1 shows a simple example of a Duet file task,

based on the Defragmentation and Rsync file tasks that we

adapted for Duet (see Table 3). The sid parameter is a

session id, and the Duet API calls are shown in bold, as

described in Section 3.2. The original task runs a loop, call-

ing pick_next_file (line 6) to choose files in some

predetermined order, and then invoking process_file
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1: function example_task(sid, pqueue)
2: while (1) do
3: // Process files opportunistically
4: handle_queued(sid, pqueue)
5: // Resume normal processing order
6: (inode, path) = pick_next_file()
7: if (!inode) then return
8: handle_file(sid, inode, path)
9:

10: function handle_queued(sid, pqueue)
11: // Process files opportunistically
12: while (1) do
13: prioqueue_update(sid, pqueue)
14: inode = prioqueue_dequeue(pqueue)
15: if (!inode) then return
16: duet_get_path(sid, inode, path)
17: handle_file(sid, inode, path)
18:

19: function prioqueue_update(sid, pqueue)
20: // Fetch events, update priority queue
21: while (1) do
22: num = duet_fetch(sid, items, max)
23: if (num == 0) then return
24: prioqueue_enqueue(pqueue, items, num)
25:

26: function handle_file(sid, inode, path)
27: // Skip if processed opportunistically
28: if (duet_check_done(sid, inode)) then
29: return
30: // Process file as usual
31: process_file(path)
32: duet_set_done(sid, inode)

Algorithm 1. An example Duet task.

(line 31) to process the chosen file. The handle_queued
(line 4) function performs opportunistic processing. It uses

prioqueue_update (line 13), which fetches pending

page events from Duet (line 22) and updates a priority queue

of inodes (line 24). The priority queue is sorted by some

task-specific criteria, such as the number of pages the inodes

have in memory. Next, the handle_queued function de-

queues the highest priority inode (line 14) and processes it

opportunistically. The handle_file code is modified to

check whether inodes have been processed already and to

mark them as processed. This processing repeats, aggres-

sively fetching page events again because the page cache

may have changed, until there are no more items in the pri-

ority queue.

Our approach helps meet the goals described earlier. It

does not require tasks to specify their pending work to Duet

a-priori. In particular, a task can change the work it performs

while it is running, without informing Duet. For example,

a defragmentation task in a copy-on-write file system can

simply ignore an overwritten file that it was planning to

defragment. Duet also does not need to know about subtle

dependencies that exist in the task, such as a page A needing

to be processed before another page B. With our best-effort

int duet_register(path, notification_mask)
int duet_deregister(session_id)
int duet_fetch(session_id, item_array, count)
int duet_check_done(session_id, item_id)
int duet_set_done(session_id, item_id)
int duet_unset_done(session_id, item_id)
int duet_get_path(session_id, inode_num, path)

Table 1. The Duet API

approach, the task can simply ignore inopportune events,

such as page B being available in memory before page A.

While our approach requires tasks to be modified, they do

not need to explicitly collaborate or be aware of each other.

3.2 Duet API
Duet supports maintenance tasks operating at either the

block or the file system layer. Block layer tasks, or block
tasks, operate on data blocks, while file system layer tasks,

or file tasks, are aware of files and directories.

Table 1 shows the Duet API. Maintenance tasks call

duet_register to start using Duet. In the path param-

eter, block tasks specify a device file, while file tasks specify

a directory (which we call the registered directory). The

notification_mask consists of the types of events that

are of interest to the task, as shown in Table 2 and explained

later in the section. The duet_register call returns a

session_id that is used in the rest of the Duet calls. The

task ends the session when its work is complete by calling

duet_deregister, which releases all Duet session state.

The heart of the Duet API is the duet_fetch sys-

tem call that provides notifications to tasks about page-level

events. These notifications are returned in item_array,

up to a maximum of count, similar to the read system

call. The fetch call returns any events that have occurred but

have not yet been returned by previous calls to fetch. Block

tasks receive notifications for any page-level events occur-

ring on the device, while file tasks receive them for page-

level events on all the files or directories located within the

registered directory and its sub-directories.

Table 2 shows that tasks can register to be notified about

page events or changes in page state. Event notifications
are triggered when a page is added, removed, modified, or

flushed from the cache. State notifications are emitted when

the existence or modification status of a page changes in

the page cache. For example, if a task registers for Exists

notifications, and a page is removed and re-added between

two consecutive fetch operations, then the page is considered

to have reverted back to the same state, i.e. it exists in the

cache, and an event is not generated on the next fetch call.

An item in item_array, returned by duet_fetch,

consists of a tuple (item_id, offset, flag), that cor-

responds to a given page. For block tasks, the item_id is

the block number, while for file tasks it consists of the inode

number uniquely identifying a file or directory. The offset
is only used for file tasks, and corresponds to the logical off-
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Event State Change Description
Added Exists Page added in cache

Removed ¬ Exists Page removed from cache

Dirtied Modified Dirty bit set for page

Flushed ¬ Modified Dirty bit cleared for page

Table 2. Event and State-based Notifications

set within the file. The flag field consists of six bits, one for

each event and state notification type shown in Table 2. This

field identifies only the page events that have not yet been

made available to the task via fetch operations. For example,

suppose a page is added, a fetch operation occurs, and then

the page is removed. The next fetch call will return an item

for the page with only the removed bit set in the item flag,

informing the task that the page has been removed.

To track whether items have been processed, tasks use

the duet_*_done calls (Table 1), as described in more

detail in Section 4. Finally, file tasks use duet_get_path
to translate an item’s inode to a path relative to the reg-

istered directory. We provide this call, rather than return-

ing file paths in duet_fetch for two reasons. First, tasks

will generally invoke duet_get_path once per file, but

duet_fetch is called much more frequently because it

operates at page granularity. Second, duet_get_path
serves as the truth for our page cache hints [38]. When it

fails, it indicates that the file is no longer cached, allowing

tasks to back out of opportunistic processing that may not be

worthwhile. Section 5 shows how tasks use these primitives.

3.3 Discussion
Our initial design for Duet was event-driven, with tasks

being informed as I/O requests moved through the page

cache, file system, and block layers in the storage stack.

While this approach provided comprehensive control over

storage processing, we found it tedious to implement and

use. The implementation challenges arose from requiring

changes across the storage layers, while in practice we found

that page-level events are sufficient for maintenance tasks.

The event-driven approach is hard to use because exist-

ing maintenance tasks are not designed to process data made

available at arbitrary times, either because of synchroniza-

tion issues with on-going processing, or because of depen-

dencies with unavailable data. Our current polling-based ap-

proach is easier to retrofit in maintenance tasks because it

allows them to poll for events and perform out-of-order pro-

cessing at suitable times. However, polling makes no guaran-

tees of data availability between fetching and processing an

item. For this reason, we take advantage of the page cache,

which provides sufficient time to detect and exploit synergies

between tasks. A side benefit is that our current approach

does not require any file-system specific changes.

While Duet does not change the file access control model

because duet_fetch doesn’t provide any file data, it can

leak information about pages in memory. For block tasks,

we require them to be able to access their block device. For

file tasks, we use file permissions to return events for files

that are accessible to the task, but we currently do not take

path-based access control into account.

Note that tasks using direct I/O will not benefit from

Duet because they bypass the page cache. However, the

maintenance tasks that we have examined do not use direct

I/O. Tasks such as databases that use direct I/O cache data

themselves, and we plan to apply the Duet API to such

caches at the user level.

Finally, there are some similarities between Duet and the

Linux Inotify mechanism [29, 35] that reports file-level ac-

cesses to applications. Inotify is used by applications such

as the file manager, desktop search utilities, and for file

synchronization (e.g. Dropbox, Google Music Manager).

While Inotify focuses on file-level accesses, Duet is de-

signed to track file data in memory. As a result, Duet pro-

vides page-level information, which is finer grained than

Inotify’s file-level information, allowing better prioritization

for out-of-order processing. Similarly, Duet provides infor-

mation about when data is flushed and evicted. Unlike Duet,

Inotify does not support watching directories recursively,

so adding watches to each sub-directory can take signifi-

cant time for large directories, and is race prone. On the

other hand, Duet does not inform tasks about file metadata

changes (e.g. permissions, extended attributes).

4. The Duet Framework
This section describes the design and implementation of the

Duet framework.

4.1 Framework Design
Duet hooks into the page cache modification routines and

gets control when a page is added or removed from the page

cache, or when a page is marked dirty or flushed. When these

page cache events occur, Duet is passed a page descriptor

and an event type, such as a page being added, removed, etc.

Duet traverses the list of sessions, examining the notification

mask registered by each session to determine whether the

event type is of interest. If so, we determine whether the page

is relevant to the session by checking whether it belongs to

the correct device for a block task, or whether it lies within

the registered directory for a file task. If the page is relevant,

and has not been marked done, we update its set of pending

events.

Duet maintains an item descriptor for each relevant page

with pending events. The item descriptor contains the same

information that a fetch call returns, i.e. an item of type

(item_id, offset, flag), as described in Section 3.2.

An item descriptor contains pending events when one or

more bits are set in its flag field. A fetch call returns item

descriptors with pending events, and marks the descriptors

up-to-date by clearing their flag fields.

When a session is registered, we scan the page cache

and initialize an item descriptor for each relevant page. The
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flag field is set to indicate that the page is present (and

possibly dirty). This scan serves two purposes. First, it is

required for state notifications to be generated correctly, such

as the Exists state from Table 2. Second, a scan allows a task

to immediately take advantage of pages in the page cache

(by invoking fetch after session registration).

While item descriptors help track pending events, Duet

also needs to track relevant pages so that events can be

generated efficiently. To do so, Duet maintains per-session

state consisting of either one or two bitmaps. For block tasks,

Duet maintains a single done bitmap that tracks completed

work. The bitmap stores one bit for each block on the device.

Tasks use the duet_*_done functions shown in Table 1 to

check, set, and reset bits in the bitmap. When the task marks

a block as done, the associated item descriptor is marked

in the bitmap. Future events on the page are then ignored

until the done bit is unset by the task. Although tasks decide

when some work is complete and can track completed pages

themselves, informing Duet avoids tracking and generating

events for completed pages.

For file tasks, Duet maintains two bitmaps, done and

relevant. Both bitmaps store a bit for each inode (i.e.,

for each file or directory) in the file system that contains

the registered directory. When a file is marked in the done
bitmap, the item descriptors for all the associated pages of

the file are marked up-to-date and future events on the file are

no longer tracked. We use file-level marking because these

tasks operate at file granularity.

File tasks are only interested in files or directories lo-

cated within the registered directory. We use the relevant
bitmap to ensure that fetch only returns events on these rele-

vant objects. When any page of a file (or directory) is added

to the page cache for the first time, we traverse its path back-

wards to detect whether the file lies within the registered di-

rectory.1 This check would be expensive if applied on every

page access, so after the first access we use the relevant
bit to determine whether the corresponding inode is relevant.

If the inode is not relevant, we immediately mark the file

as done, thus avoiding tracking the file pages or generating

any events for the file in the future. Otherwise, we mark the

relevant bit, and consult it on page cache events before

generating notifications for the file.

Duet also needs to handle files and directories being

moved into, or out of, the registered directory. We detect

that a file is moved into the registered directory at the VFS

layer and initialize item descriptors for all pages of the file

in a manner similar to the page scan performed during ses-

sion initialization. When a file is moved out of the registered

directory, we set the Removed bit and clear the Exists bit for

all existing pages of the file, marking the file as done. After

the next fetch, Duet will ignore the file.

1 This operation is relatively efficient in our Linux implementation, which

maintains a directory entry cache that pins in memory the directory path

leading to a file page.

Directory renames are trickier, because they require han-

dling all files and directories under the renamed direc-

tory. Duet deals with directory renames by resetting the

relevant and done bitmaps for all files other than the

files that have already been processed, i.e. have both bits set.

This approach avoids the need to traverse the renamed direc-

tory, and it guarantees that tasks will not receive unnecessary

events for processed files. However, it requires rechecking

file relevance when the files are accessed again.

4.2 Implementation
Our implementation of Duet consists of three components:

a Linux kernel module, hooks in the Linux page cache, and

a library for user and kernel tasks, implemented for Linux

3.13. Our implementation consists of 1700 lines of code for

the first two components, and 1000 lines for the library.

While the item descriptors of different sessions are log-

ically independent, we reduce memory requirements by

keeping a single item descriptor per page for all sessions.

The merged item descriptor consists of the item_id,

offset, and an N -byte array for storing the flag fields

for up to a maximum of N concurrent sessions. This maxi-

mum value can be configured at module load time. With this

implementation, we allocate a descriptor when any session

has pending events on the page, and deallocate it when no

session has pending events on the page.

The merged descriptor implementation allows using a

more efficient single, global hash table to look up the de-

scriptors. We use the item_id and offset as the hash

key, and then use the session id (which ranges between 0

and (N − 1)) to index into the flag array.

Note that an item descriptor with pending events will re-

main allocated even if the corresponding page is deallocated

from the page cache. For tasks that only subscribe to event

notifications, the descriptor is only deallocated when it is

marked up-to-date by a fetch call. Thus, item descriptors can

grow over time if a task does not issue fetch calls. To counter

denial of service, we limit the number of item descriptors

per session and drop new events when this limit is reached.

Note that this issue did not affect our Duet tasks because

they invoke fetch calls many times per second, as explained

in Section 6.4.

When a task registers for state notifications (e.g. Exists), a

page can also be marked up-to-date when the corresponding

events cancel each other, such as when a page is added

and subsequently removed from the cache. As a result, the

maximum number of item descriptors are bounded by (2 ×
max. number of pages in page cache). This bound would

be reached if all existing pages are relevant, and they are

removed and subsequently replaced by new pages between

fetch calls. With this bound, events are never dropped.

We use a red-black tree to dynamically allocate portions

of the relevant and done bitmaps, to represent ranges

that have marked bits, and deallocate them when all their

bits are unmarked or when the session terminates. This limits
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memory consumption when tasks are interested in small,

localized chunks of a device or file system.

Duet allows synergies to be detected between block and

file tasks. For example, a block device could be mounted

as a file system. In this case, we would like to provide any

block task operating on the device with page events for files

accessed by file tasks, or applications operating on the file

system. However, the translation of a page’s file offset to a

block number is a filesystem-specific operation, and Duet is

filesystem agnostic. Fortunately, many file systems in Linux

(e.g. Btrfs, Ext2/3/4, XFS, F2fs) implement this translation

through the FIBMAP ioctl call [40, 61]. We use this func-

tionality, when implemented, to inform block tasks of file-

level accesses on the same device. A similar API exists in

Windows [48]. In the event that a page does not correspond

to a block yet (e.g. due to delayed allocation [16]), the page

is left to be returned by a later fetch operation.

Duet ignores pages that are not backed by files because

they are not useful for maintenance tasks. It further provides

both file and directory pages to file tasks. However, our

current file tasks ignore the directory pages.

Finally, the Duet library is used by both in-kernel and

user-level tasks. It implements a priority queue for storing

Duet events that are fetched using the Duet API. Through

this library, tasks can access the Duet API (Table 1), and the

priority queue primitives shown in Algorithm 1. Our current

implementation uses a red-black tree for the priority queue.

5. Applications
This section describes how applications use the Duet frame-

work. Table 3 shows three block and two file tasks that we

have modified to work with Duet. We have modified the ex-

isting in-kernel scrubbing, backup, and defragmentation util-

ities available in the Btrfs copy-on-write file system [49].

We have also modified the in-kernel garbage collector used

by the log-structured F2fs file system [39]. These modifica-

tions were made in Linux 3.13. Finally, we have changed

version 3.1.1 of the Rsync user-level application [59, 60].

Table 3 describes the order in which these applications nor-

mally process items and the changes we have made to them

for Duet. Next, we describe these changes in more detail.

5.1 File System Scrubbing
To protect against data loss due to silent data corrup-

tion [10, 11, 37], commercial storage systems rely on scrub-

bing [44, 52]. A scrubber is a background process that peri-

odically scans data and verifies its correctness using check-

sums. While scrubbing is commonly performed at the block

layer, the Btrfs scrubber operates within the file system pro-

tecting against a wider variety of errors [37]. In Btrfs, a

checksum is stored for every file system block, updated on a

block write, and verified on a block read to ensure that appli-

cations receive correct data. The scrubber reads all allocated

file system blocks on a given device sequentially and verifies

them against their checksums for correctness.

Our opportunistic scrubber relies on the semantics of the

file system’s read and write operations to reduce mainte-

nance work, while providing the same reliability guarantees

as the original scrubber. The opportunistic scrubber receives

notifications when a page is Added or Dirtied in the page

cache. When a page is added, we mark the relevant block

number as scrubbed, since Btrfs verifies data correctness

during the read operation. On the other hand, checksums are

not verified on a write request, so we unmark the bit for the

dirty page block, indicating that the new checksum needs to

be re-verified.

5.2 Snapshot-based backup
Btrfs is a copy-on-write file system that supports taking fast,

file-system snapshots. All data and metadata in the snapshot

is shared with the live file system until blocks are updated in

the live system. Btrfs provides backup tools that allow taking

a consistent backup using a read-only snapshot.

Our opportunistic backup tool exploits copy-on-write

sharing because read operations to the live data may ac-

cess data shared with the snapshot that is being backed up.

By registering the backup session with Duet for the Exists

notifications, we are informed of pages that currently exist

in the page cache and their corresponding block numbers.

To perform opportunistic processing, the backup tool

locks a page, checks that it is not dirty and then copies it

to a private buffer. Next, it checks that the page has not been

modified since the snapshot using back-references in Btrfs,

and then unlocks the page. Finally, the data from the private

buffer is sent out-of-order to the backup storage.

5.3 File Defragmentation
Due to the copy-on-write nature of Btrfs, any write to a file

stores the new data in unused blocks. This layout reorga-

nization causes fragmentation, especially for small random

writes. Btrfs allows defragmenting a file by merging small

extents with logically adjacent ones. The existing Btrfs tool

allows defragmenting one file at a time at the user level.

We have reimplemented this tool in the kernel to speed

up defragmentation for multiple files and directories. Our

in-kernel implementation uses metadata prefetching during

namespace traversal, speeding it up by a factor of 10. We use

this implementation as the baseline for our experiments.

Our opportunistic defragmenter monitors Exists notifica-

tions to track files that have data in memory, and prioritizes

those files with the highest fraction of pages in memory com-

pared to their size, similar to the example in Algorithm 1.

5.4 Garbage Collection
F2fs is a log-structured file system [50], designed to perform

well on flash storage [39]. F2fs groups blocks in segments.

When a block is updated, it is appended to the log, and its

previous version becomes invalid (in some segment). Seg-

ments with many invalid blocks are cleaned by a background

garbage collector that copies the remaining valid blocks in
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Task Type Notification Mask Processing Order Duet Modifications

Scrubber Block task Added ∨ Dirty Processes blocks by Btrfs extent key Recently read blocks are not scrubbed

Backup Block task Exists Processes files by inode number Backup in-memory blocks out of order

Defragmentation File task Exists Processes files by inode number Prioritize files with blocks in memory

Garbage collector Block task Exists ∨ Flushed Uses cost function to pick victim

out of a segment group

Cost function adjusted to take into

account blocks already in memory

Rsync File task Exists Traverses directory hierarchy in

depth-first order

Out-of-order transfer of files with

pages already in memory

Table 3. Tasks adapted to use Duet and their characteristics

the segment to the log, freeing the segment for logging fu-

ture writes. The garbage collector prioritizes segment clean-

ing using a cost function based on the amount of data that

needs to be moved and the segment’s age. It runs when the

device is idle, cycles through 4096 segments at a time (in-

stead of all segments on the device), and cleans one segment

with the minimum cost (i.e. the most invalid blocks).

Our opportunistic garbage collector modifies the cost

function to account for the number of valid blocks of a

segment that are cached because these blocks save read

operations. During cleaning, a segment’s blocks are syn-

chronously read from storage, and marked dirty in mem-

ory for asynchronous writeback. We conservatively weigh

both read and write operations equally, and change the num-

ber of blocks that need to be moved from valid blocks to

valid blocks− cached blocks/2 in the cost function.

The garbage collector also monitors Flushed notifica-

tions. When a block is flushed to disk, it is mapped to a new

segment, and its copy in the old segment is invalidated. On

a flush event, we adjust the in-memory counters for both the

old and new segments. Interestingly, the notion of completed

work does not apply to the garbage collector because a seg-

ment can always become dirty again, and so the Duet done

primitives are not used.

5.5 Rsync Application
Rsync is a widely-used user-level tool for synchronizing the

contents of a source and a destination directory. It uses data

checksums to find differences between source and destina-

tion files, sending only the updated data blocks. Rsync con-

sists of three processes that communicate via sockets and

pipes. The sender process is responsible for traversing the

directory hierarchy at the source and sending the file meta-

data to the receiver process, which passes it to the generator
process. The generator calculates file checksums and sends

them to the sender, which then generates its own checksums

to detect updated blocks. Finally, updated data is sent to the

receiver, which updates the destination files.

The opportunistic rsync uses the Exists notifications to

track files that have data in memory, prioritizing files with

the highest number of pages in memory, similar to the exam-

ple task shown in Algorithm 1. It ensures that the metadata

for a file is sent once in the first step, either opportunistically

or during normal operation.

5.6 Lessons Learned
This subsection outlines the most important lessons we have

learned when adapting tasks for Duet.

Some tasks may require operating on a consistent view of

at least a portion of the device or filesystem. For example, a

file backup task may require that backed up files represent a

consistent version of the data, unaffected by partial updates.

Duet does not provide any such guarantees to tasks, apart

from hints on data availability. The backup task we examined

relies on the ability of Btrfs to take filesystem snapshots,

to ensure backup consistency. Alternatively, a backup task

could use file locking to ensure consistency at the file-level

and leverage Duet events to prioritize files with in-memory

pages, similar to our defragmentation task.

Tasks should not assume that data will be available (or

unmodified) after being notified about an event. This helps

avoid races and inconsistencies. For example, our backup

task locks a page before checking its dirty status and whether

it belongs to the snapshot, as described earlier in Section 5.2.

Maintenance tasks may consume CPU and memory re-

sources while running, which could affect the performance

of workloads. In our experience, maintenance tasks make

moderate use of these resources, as they are usually bottle-

necked on I/O. Thus, an I/O scheduler capable of assigning

low priority to maintenance I/O works well [20, 26, 42]. Fur-

thermore, maintenance work is usually partitioned in small

chunks that can be scheduled around workloads. For exam-

ple, rsync processes files in 32KB chunks. Overall, Duet is

not dependent on the way that maintenance work is sched-

uled or partitioned, allowing tasks to individually regulate

their impact on workloads.

6. Evaluation
This section evaluates the benefits of Duet. Our evaluation

has three goals. First, we evaluate the ability of Duet to

reduce I/O when a maintenance task runs together with a

foreground workload. Second, we evaluate the I/O reduction

when maintenance tasks are run concurrently, which implic-

itly enables them to collaborate on shared data. Third, we

evaluate the overhead of Duet.
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Section 6.1 describes our experimental setup. Section 6.2

and Section 6.3 quantify the I/O reduction when running

maintenance tasks individually and concurrently. Section 6.4

evaluates the overhead of Duet using microbenchmarks. Sec-

tion 6.5 concludes our evaluation by discussing the effect of

other parameters on our approach.

6.1 Experimental Methodology
We have chosen to use the Filebench benchmark [25] as

the foreground workload in our experiments. Filebench is

a widely used benchmark that allows us the flexibility to

change most aspects of its workload, allowing us to evaluate

Duet for a range of workload characteristics.

An alternative would be to use real traces of file system

activity for the workload, but we found few publicly avail-

able traces that can be replayed accurately [67]. Moreover,

the traces did not contain sufficient information needed for

our evaluation. For instance, existing traces do not provide

information on files that are not accessed (or the correspond-

ing fraction of the file system), but we need this information

for some maintenance tasks. Using existing traces also does

not allow for adjusting any workload parameters.

6.1.1 Workload Characteristics
Three workload characteristics have the most impact on our

opportunistic approach: data overlap, read-write ratio and

workload I/O rate. Next, we describe how we vary these

characteristics to study their effect in our experiments.

Our approach reduces the I/O footprint of a maintenance

task when the data accessed by the task overlaps with the

data accessed by other ongoing maintenance tasks or with

foreground workloads. While there is potential for high data

overlap between maintenance tasks running concurrently,

the data overlap with workloads depends on both the type

of maintenance task and the workload. Many tasks, such as

incremental backups and garbage collectors, tend to access

hot areas of the file system, so data overlap with the work-

load is expected to be high. For tasks that access all data on

a device, such as scrubbing, the data overlap will vary de-

pending on the workload since there is high variability in the

fraction of device data accessed across workloads [12, 51].

By default, Filebench uses a uniform distribution to pick

the files it operates on, which gives it high coverage of the

file system, i.e. a large percentage of the files get accessed,

creating high data overlap with maintenance work. We mod-

ified Filebench in two ways to vary the amount of data over-

lap. First, we limit the data coverage of Filebench to different

fractions of the overall file system. Second, we analyzed the

Microsoft Production Build Server trace [34] and extracted

traces of file events for three different storage devices. Fig-

ure 1 shows that the file access distributions of the Microsoft

traces are highly skewed compared to Filebench’s uniform

distribution policy. We have modified Filebench to pick files

using the Microsoft distributions, and we show results for

both the uniform and the skewed file access distributions.
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Figure 1. File access distributions for Microsoft traces and

the Filebench benchmark

The read-write ratio of workload operations also impacts

opportunistic processing because maintenance tasks react

differently to updates. For example, a file may be further

fragmented or defragmented due to a write, and sharing with

the backup snapshot is broken when a block is updated. We

use Filebench with three of its default workload personal-

ities. The fileserver personality is a write-heavy workload,

with a read-write ratio of 1:2. The webproxy personality is

more read-heavy, with read-write ratio of 4:1. Finally, the

webserver personality is a read-mostly workload with a 10:1

read-write ratio, with all write operations appending data to

a single log file. Note that maintenance operations are use-

ful even on systems that run read-mostly workloads. For ex-

ample, scrubbing can help detect and repair data corruption

caused by hardware failure, and similarly, backup can help

with recovery from software bugs, administrative errors or

security incidents.

Finally, the workload I/O rate affects the opportunistic

processing performed by Duet tasks. Increased workload

I/O rate creates more opportunities for synergy with main-

tenance work, but it reduces the overall time that the storage

device remains idle. When maintenance tasks are run at idle

times to reduce their impact on workloads, they need enough

idle time to complete their work. In our experiments, we con-

trol workload I/O by using rate-limiting commands available

in Filebench to throttle its bandwidth.

6.1.2 Evaluation Metrics
Our evaluation uses three metrics: I/O saved, maximum uti-

lization, and speedup. The first metric measures the mainte-

nance I/O saved by Duet. The second metric takes into ac-

count that when tasks only run at idle periods, they may not

complete under high device utilization. We define device uti-
lization as the percentage of time during which foreground

I/O requests keep the device busy, when no maintenance

tasks are being run. This metric is reported as the %util
statistic of the iostat tool. We profiled each Filebench

personality with different levels of throttling (and no main-

tenance load) to achieve a given device utilization, and re-

port results for utilization values ranging from 0-100%, in

10% intervals. The maximum utilization is the highest de-

vice utilization at which maintenance work can still be com-
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Metric Description

I/O saved
Maintenance I/O saved with Duet

Total maintenance I/O performed without Duet

Maximum

utilization

Maximum device utilization by the foreground
workload, at which maintenance work completes

by the end of the experiment

Speedup
Task completion time without Duet

Task completion time with Duet

Table 4. Duet evaluation metrics

pleted in 30 minutes, by the end of the experiment. Finally,

when tasks run with normal IO priority, such as Rsync, we

run Filebench unthrottled, and measure the speedup of the

maintenance task. Table 4 summarizes these metrics; higher

values are always better.

6.1.3 Experimental Setup
We conduct our experiments for 30 minutes on a file sys-

tem populated with 50GB of data, during which maintenance

tasks run concurrently with the workload. At this rate, main-

tenance can be run weekly on a 16TB storage system. Each

experiment is run three times, and every data point in our

plots is an average across these runs. Generally, there is low

variability across the runs, and so we omit the error mar-

gins. Otherwise, we show 95% confidence intervals. We use

CFQ, the default Linux I/O scheduler that supports I/O prior-

itization. Our in-kernel tasks issue their maintenance I/O re-

quests at Idle priority. These requests are serviced only after

the device has remained idle for some time. We have mea-

sured the latency of Filebench workloads, both without and

with one or two maintenance tasks running concurrently, at

various device utilizations, and found that there is insignif-

icant impact on workload latency. As an example, the web-

server workload latency at 50% device utilization, without

any maintenance task is 11.67 ± 0.12ms. When scrubbing,

it is 11.60± 0.25ms, and with backup it is 11.82± 0.16ms.

All experiments are run on HP ProLiant DL160 Gen8

servers, equipped with Intel Xeon E5-2650 CPUs with 8

cores, and 300GB SAS drives running at 10K RPM. While

the machine has 32GB of DDR3 RAM, we boot it with 2GB

of memory to have a realistic page cache size compared to

our working set of 50GB. We examine the effect of the page

cache size on our approach in more detail in Section 6.5.

6.2 Running Single Tasks
This section evaluates the ability of Duet to perform main-

tenance work opportunistically. We evaluate Duet with five

different maintenance tasks, while varying the data overlap

between the maintenance and foreground work.

Scrubbing We implemented opportunistic scrubbing by

modifying 75 of the 3500 lines of code of the Btrfs scrubber.

Our evaluation with different Filebench workloads shows

that, as expected, the I/O saved with opportunistic scrubbing
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Figure 2. I/O saved when the scrubbing task is run together

with the webserver workload

increases with higher device utilization and the data overlap

between the workload and the scrubber. Figure 2 shows the

results for the webserver workload. As utilization and data

overlap increase, more data gets accessed by the workload,

avoiding the need to scrub it. Beyond a certain utilization,

the I/O saved reaches an upper limit, equal to the data over-

lap. At this point, the scrubber skips scrubbing all shared

data because the workload accesses it before the scrubber

processes it as part of its sequential scan, showing that Duet

allows exploiting any available synergy between I/O tasks.

Savings decrease for more write-heavy workloads. Re-

call that we unset the done bit for updated blocks, if they

have not already been scrubbed in the course of normal (se-

quential) scrubbing. The webproxy performs similarly to

the webserver because its write operations mainly append

data to files, allowing read operations to significantly re-

duce scrubbing work. However, the write-intensive fileserver

workload has 40% of the IO savings compared to the other

two workloads, since any file can be overwritten, so the op-

portunistic savings are lower. When the skewed file access

distribution is used, the results are similar, but savings are

decreased by 15-30%. This decrease is small, despite the

majority of accesses being directed to a small fraction of the

files, because it is sufficient for a file to be read once to be

considered scrubbed.

By reducing the required I/O, Duet allows scrubbing to

complete faster. Table 5 shows the maximum device utiliza-

tion at which scrubbing completes in a 30 minute interval.

Note that for normal scrubbing to complete, the device must

not be busier than 70% (column 4), regardless of the work-

load, because the amount of work remains constant. With

Duet, the maximum utilization increases with the data over-

lap. Devices can be busier, from 70% to 100% (column 5),

depending on the characteristics of the workload.

Backup We implemented opportunistic backup by modi-

fying 140 of the 4900 lines of code of the Btrfs backup tool.

The backup tool processes files in the order of their inode

numbers, and each file is processed fully before moving to

the next one. This results in more random accesss than scrub-

bing, and so the backup requires almost twice the amount of

time needed for scrubbing. This extra time allows the backup

task to interact longer with the foreground workload, result-
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Workload,
Read-Write ratio

Overlap with
maintenance

File access
distribution

Scrubbing Backup Defragmentation
Baseline Duet Baseline Duet Baseline Duet

Webserver, 10:1

25% Uniform 70% 80% 40% 50% 40% 40%

50% Uniform 70% 80% 40% 60% 40% 40%

75% Uniform 70% 90% 40% 70% 40% 50%

100% Uniform 70% 100% 40% 100% 40% 60%

100% MS trace 70% 80% 40% 60% 40% 60%

Webproxy, 4:1
100% Uniform 70% 90% 40% 90% 50% 70%

100% MS trace 70% 80% 40% 50% 50% 60%

Fileserver, 1:2
100% Uniform 70% 80% 40% 60% 60% 70%

100% MS trace 70% 70% 40% 50% 50% 60%

This table shows the maximum utilization (in 10% intervals) at which each maintenance task can still complete its work in a 30

minute interval. Higher values mean that the foreground workload is able to utilize the device more. Higher read-write ratios, higher

data overlap and a uniform distribution of file accesses improves opportunistic processing, allowing higher maximum utilization.

Table 5. Maximum utilization with and without Duet for Btrfs maintenance tasks

ing in more opportunities for I/O savings. Therefore, the I/O

saved reaches its upper limit at a much lower device utiliza-

tion compared to scrubbing. For example, Figure 3 shows

that with 25% overlap, the maximum I/O saved is reached at

20% utilization versus 40% for scrubbing (see Figure 2).

With the additional seeks, the baseline can tolerate a max-
imum utilization of 40%, which is close to half that for base-

line scrubbing (columns 6 and 4 in Table 5). Duet reduces

random I/O, allowing backup to complete on devices with

50-100% utilization (25-150% busier than the baseline).

When a block is updated, it gets copied to a new location

and is no longer shared with the backup snapshot. Therefore,

subsequent reads to the same file offset do not benefit the

backup task, as they no longer refer to the snapshot data.

As a result, the I/O saved decreases with decreasing read-

write ratio. This effect applies both to writes that append

and overwrite data, as well as to deletions and re-creations

of files. Webproxy, which includes file append, delete, and

create operations shows the impact of breaking sharing with

the backup snapshot in this way. It yields 80% of the I/O

savings of webserver, while fileserver, which also breaks

sharing by overwriting files, yields up to 40% of the IO

savings of webserver.

Defragmentation We implemented opportunistic defrag-

mentation by modifying 95 of the 1200 lines of code of the

Btrfs defragmenter. The defragmenter merges small, logi-

cally adjacent extents by bringing them into memory, and

then writing them back to storage as part of the same trans-

action, thus creating a single, larger extent. The total I/O re-

quired to defragment a file consists of the number of pages

read and then written, which is twice the number of pages in

the new extent. Recall that we reduce this I/O by prioritiz-

ing files that have more pages in memory. Therefore, the I/O

saved is the sum of the number of pages in memory when

an extent is processed and the number of pages that were

already marked dirty by the workload. The former do not
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Figure 3. I/O saved when the backup task is run together

with the webserver workload

require I/O and the latter will be flushed soon anyway.2 Our

experiments are performed on a 10% fragmented file system.

The I/O saved results with defragmentation are similar

but smaller than the scrubbing and backup results shown in

Figure 2 and Figure 3. For read-heavy workloads such as

webserver, we only save on read accesses, which are close

to 50% of the total I/O. On the other hand, a workload ap-

pending data to files, such as webproxy, can also save I/O

by defragmenting files with dirty pages in memory. This

benefit does not apply to a write-heavy workload like file-

server, which overwrites files thus defragmenting them, re-

ducing the total work performed by the maintenance task. In

this case, the savings are available for only those files that

the opportunistic defragmentation task processed. Similar to

scrubbing and backup, we find that using the skewed file ac-

cess distribution reduces the I/O saved by 15-30%.

The maximum utilization results for defragmentation are

similar to the previous two tasks, and shown in the last two

2 The page could be modified again between the time we flush it as part of

the defragmentation process, and the time when it was originally planned

to be flushed. We cannot account for this case.
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Workload,
device utilization

Segment cleaning time
Baseline Duet

Fileserver, 40% 17.1± 3.5ms 16.1± 2.6ms

Fileserver, 50% 17.0± 1.1ms 10.6± 2.4ms

Fileserver, 60% 16.4± 1.4ms 9.0± 3.6ms

Fileserver, 70% 15.8± 1.0ms 7.9± 2.8ms

Table 6. Segment cleaning time with and without Duet

columns of Table 5. The difference between the baseline and

Duet is less pronounced compared to the other workloads,

because most defragmentation writes still need to be per-

formed. As a result, we improve upon the baseline by at most

50% across different workloads.

Garbage collection The opportunistic garbage collector

was implemented by adding 150 lines to the 1400 lines of

code of the F2fs in-kernel garbage collector. Our aim is to

clean segments faster by selecting segments with cached

blocks. Reducing the segment cleaning time is crucial when

the file system is running out of clean segments. In that case,

F2fs transitions to overwriting invalid blocks in scattered

segments. When that happens, we have measured a 57% in-

crease in filebench latency, and 29% increase in device uti-

lization. However, even when there is no pressure for clean

segments, speeding up cleaning time enables consuming less

idle time or cleaning more segments.

We have used the fileserver workload for these experi-

ments because it is the only workload that overwrites and

deletes existing blocks. We present our results when the file-

server is run between 40% and 70% device utilization. At

lower utilization, the garbage collector does not run, and

at higher utilization, there is not enough idle time for the

garbage collector to run. Table 6 shows the average cleaning

time for a segment, with and without Duet. Duet improves

cleaning performance at higher utilization, when cleaning is

most needed. Performance improves because more segment

blocks are cached in memory, and the opportunistic garbage

collector picks segments requiring fewer read operations.

Rsync We implemented opportunistic Rsync by modifying

300 of the 45000 lines of code in the Rsync application. We

evaluated opportunistic Rsync by running it locally, copying

50GB of data between two disks, while running Filebench

on the source device during the transfer. Rsync is used lo-

cally for various tasks, such as when performing snapshot-

based backups [65], synchronizing data across VMs, and for

copying data when upgrading devices [63].

The total I/O required to synchronize a file between the

source and destination folders includes reading all of its data

at both the sender and the receiver side to produce check-

sums, and writing the updated data blocks on the receiving

side. In our experiments, the destination folder is initially

empty, so the files are not checksummed. Instead, their data

is sent to the receiving side and the I/O operations required

per file are twice the number of data blocks of the file, for

reading and writing each once. Similar to our previous ex-
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Figure 4. Runtime speedup with different overlap for Rsync

periments, we find that read I/O can be reduced proportional

to the data overlap between the workload and Rsync. Similar

to defragmentation, write I/O cannot be saved, so with 100%

overlap we can save 50% of the total I/O.

In the previous experiments, the maintenance task is

run at a lower priority, and thus the Filebench workload

is run throttled to allow the maintenance task to make

progress. Rsync, however, runs at normal I/O priority, af-

fecting Filebench throughput by up to 27%. Thus, in this

experiment we run Filebench unthrottled and measure the

speedup of Rsync. Figure 4 shows the results for the web-

server workload. It shows that the speedup increases with

higher data overlap, with Rsync completing twice as fast at

100% data overlap. This speedup reduces the time period

during which Rsync impacts the workload.

6.3 Running Multiple Tasks Together
Today, maintenance tasks are run in isolation to avoid inter-

ference and slowdown. This section shows that when Duet

tasks are run concurrently, I/O savings increase due to higher

data overlap, enabling them to complete their work faster.

Scrubbing and Backup In this experiment, we run scrub-

bing and backup together with the different Filebench work-

loads. Figure 5 shows the results for the amount of I/O saved

for the webserver workload. With Duet, data accesses by ei-

ther the backup task, or the scrubber, benefit the other task.

As a result, even when Filebench is not run (0% utilization),

Duet reduces the total I/O needed to complete maintenance

work by at least 50%. Similar to previous results, higher de-

vice utilization and higher data overlap increase I/O savings

further. The results for other workloads are similar to the

results discussed previously in Section 6.2, with more write-

intensive workloads resulting in lower savings.

The significant work reduction allows us to also com-

plete maintenance work on busier devices. Figure 6 shows

the maintenance work completed at various device utiliza-

tions. While the baseline tasks fail to complete maintenance

work beyond 30% device utilization, Duet allows 70-90%

maximum utilization.

Scrubbing, Backup, and Defragmentation We also exper-

imented with combining three maintenance tasks. As shown

in Figure 7, roughly 55% of maintenance I/O is needed when
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Figure 5. I/O saved when the scrubbing and backup tasks

are run together with the webserver workload
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Figure 6. Maintenance work completed when scrubbing and

backup are run together with the webserver workload

the tasks run without Filebench, as all three are accessing the

same data. This I/O includes one pass over the file system,

and the write requests for the defragmentater, which cannot

be saved. The maximum I/O saved with the read-only web-

server workload is roughly 80%, which is almost all main-

tenance work, other than the writes needed for defragmen-

tation. More write-intensive workloads perform worse, but

still achieve I/O savings up to 60%.

Figure 8 shows the maintenance work completed at dif-

ferent device utilizations. Duet completes all maintenance

work even with 50% device utilization, which the baseline

can complete only 25% of the work even on an idle device.

6.4 Performance Overhead
CPU overhead To determine the overhead of Duet, we

run a simple file task that registers the root directory of the

file system with Duet, and either remains idle, or fetches

events periodically in 10, 20 and 40ms intervals, sleeping in

between. We chose these intervals because they are close to

the typical Rsync fetch interval, which is 20ms. To generate

page events, we run the webserver workload unthrottled on

the file system, which generates roughly 12 page events/ms.

We estimate the CPU available to applications by running a

program that spins in a tight loop at low priority, and then

measure the loop counter value periodically. Based on the

counter value, the CPU overhead of using Duet is roughly

0.5-1.5%, as shown in Figure 9. State-based notifications
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Figure 7. I/O saved when scrubbing, backup, and defrag-

mentation are run together with the webserver workload
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Figure 8. Maintenance work completed when scrubbing,

backup, and defragmentation are run together with the web-

server workload. Without Duet, maintenance work fails to

complete even when the device is idle.

have slightly lower overhead because events can be merged.

The fetch frequency does not change the number of events

that need to be copied to user space and thus has a small

effect on overhead.

Memory overhead Duet maintains item descriptors for

pages and bitmaps for up to N concurrent sessions. For

N = 16, an item descriptor requires 32 bytes (inode num-

ber, offset, 16-byte flag array and hash node). With state no-

tifications, the worst case memory overhead is 1.5% ( 32∗24096 ),

as explained in Section 4.2. In practice, fetch is called often

enough that a buffer of 256 items does not fill up. At most,

such a buffer would require 2.3KB, since we only return the

flag variable for one session, and no hash node.

Item bitmaps are dynamically allocated when the range

that the bitmap represents contains both set and unset bits.

In the worst case, block tasks will use 1 bit per device block,

and file tasks will use 2 bits per inode. In our experiments,

when scrubbing a fully utilized disk with 100% overlap with

the workload, the bitmap required 1.47MB, while the worst

case estimate for 50GB of data is 1.56MB.
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6.5 Effect of Other Parameters
Storage device type The results presented so far have been

based on a hard drive setup. To evaluate the efficiency of

Duet on faster devices, we experimented with a consumer-

grade solid-state drive (Intel SSD 510 120GB), and found

that for this model, the I/O savings and the work completed

did not change qualitatively. For example, the scrubber com-

pletes in half the time, but the throughput of the workload is

also much higher, resulting in the same number of accesses

and savings, as shown in Figure 10. With backup, we achieve

higher savings on the SSD. The reason is that the backup

tool issues 64KB random reads, and the random read per-

formance of our Intel 510 SSD and our enterprise 10K hard

drive is roughly similar, about 21 MB/s [58]. Hence the de-

fault backup time is similar on the hard drive and the SSD.

However, the workload is more sequential and has higher

throughput on the SSD. This allows more data overlap and

thus the Duet-enabled backup achieves higher I/O savings.

I/O prioritization Our in-kernel maintenance tasks were

run at lower priority, which has minimal impact on the

workload. We also experimented with the Linux Deadline

I/O scheduler, which does not allow prioritizing different

streams of I/O. We find that without I/O prioritization, work-

load requests are slowed down significantly when a mainte-

nance task is running. Maintenance work finishes faster but

the workload issues fewer data requests and thus the I/O

saved is reduced. Hence, Duet works better when mainte-

nance tasks run at low priority.

Cold data placement We define cold data as the part of the

file system that is not accessed by the workload but requires

maintenance. We find that the physical placement of this

data on the storage device does not affect performance, even

when cold data is separated from the data accessed by the

workload. Since maintenance I/O occurs when the device

has been idle, additional seeks occur only when switching

between maintenance tasks and workloads.

Page cache size We also modified the ratio of the page

cache size to the file system size. This ratio is expected to

affect the workload’s performance, but it may also affect

the maintenance task. With a larger cache, more synergies

and thus more I/O saving are expected. In our experiments,
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Figure 10. I/O saved on a solid-state drive

the page cache size is roughly 2% of the file system data

accessed by the task. Surprisingly, changing this ratio had a

marginal effect on our results. We believe that maintenance

tasks access significant amounts of data, and hence it is

the out-of-order processing, rather than cache locality that

provides the most benefits.

7. Conclusion and Future work
We take advantage of the loose requirements on work or-

dering in maintenance tasks: maintenance work, by defini-

tion, runs in the background, and its processing can be gen-

erally reordered without affecting the correctness, reliability

or performance guarantees provided by the task.

We have presented a model that allows storage main-

tenance to be performed opportunistically based on data

cached in memory. Maintenance tasks perform out-of-order

operations on this data, reducing the total I/O needed. We

designed and built Duet, a framework that provides noti-

fications about page-level events to tasks. This granularity

works well for both the block or file granularity processing

performed by maintenance tasks, requiring relatively small

changes in them for performing out-of-order processing. Our

evaluation shows that opportunistic maintenance tasks re-

quire less I/O and complete faster, and the benefits increase

when tasks run concurrently.

Our work suggests that maintenance work does not have

to be relegated to a maintenance window, which is hard to

schedule because idle times are unpredictable and may not

be sufficient for the work needed. Instead, maintenance work

should be done at low priority, continuously and synergisti-

cally with other workloads to minimize its impact.
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