
Storage environments are highly heterogeneous 
Storage and Hardware 
• SSDs (PCIE/SATA) 
• Disks (SAS/SATA) 
• Remote storage 
• Tapes 

Motivation 

Workloads and Applications 
• Databases 
• File systems 
• NFS servers 
• Scientific clusters 

Management Challenges 

Current solutions are :  
Applications manage underlying hardware 
Examples: 
File systems: ZFS/btrfs 
• ZFS as volume manager 
• Integrated: metadata replication, RAID-Z,... 
NFS Servers: NetApp Applience 
• Even integrate special hardware 

Problems with current solutions: What if …? 
• Management features are not built in? 
• Storage virtualization/deeply stacked storage? 
• Users run other applications? 

Monolithic solutions are inflexible 

Policy Based Management 
• Storage hardware is associated with properties (e.g. 

performance, reliability) 
• Storage system is aware of application semantics 

• Metadata vs data 
• Allocated vs unallocated 

• Flexible policies map application requests to hardware 
capability 

• Composable policies make it easier to create new 
solutions. 

Challenges 
• Policies may need to persist their own metadata 

• Key-Value pair like mapping 

Challenge: Consistency 

Summary of Solutions 

Guarantee Durability Consistency 

When to create 
mapping 

On data update After txn finish 
Before commit 

When to commit 
mapping 

On disk barrier Commit atomically 
wit txn 

Policy Based Storage System in Heterogeneous Environment 
Dai Qin, Ashvin Goel, Angela Demke Brown 

University of  Toronto 
{mike,ashvin}@eecg.toronto.edu demke@cs.toronto.edu 

Disk 
SATA SSD 

PCIE SSD 

Remote 
Disk 

Applications (File Systems/Databases) 

Block Interface Storage System 

I/O Requests with application 
semantics 

Composable 
Cache Policy 

Eviction  

Writeback 

Flush Policy 

High Level Storage Policies 

Block Mapping 

Provisioning 
Policy 

Challenge: Durability 
• Application have durability expectations 

• After disk barrier applications expect that file data 
are durable 

• Example Policy: Inline Deduplication 
• Blocks with same content mapped to same location 
• Need to persist the mapping on fdatasync() 

B B’ 

bitmap block B indicates 
 data block V is freed 

1 
V is allocated as data block again, 
flushing data first (ordered mode) 

2 

checkpoint: bitmap block B 
unmap(V) 

3 

txn commit: V marked  
allocated, but unprovisioned 

4 

Result: unmap(V) 
Data lost 

B 

bitmap block B indicates 
 data block V is freed 

unmap(V) 

1 

Power failure, 
Txn not committed 

2 

Result: unmap(V) 
Data lost 

B 

bitmap block B indicates 
 data block V is freed 

1 
Apply policies for the last txn: 

unmap(V) 

2 

Result: V might still 
be provisioned 

Block incoming 
I/O requests 

Power failure: 
V->nil might not be done 

3 

Lessons: ordering must be preserved 

Lessons: before txn commit would fail 

Lessons: after txn commit would fail 

Persist the mapping 
during checkpoint 

Persist the mapping 
before txn commit 

Persist the mapping 
after txn commit 

File System Journal Commit Block B Bitmap Block V The Deallocated Block 

• Example Policy: Thin Provisioning in a journaled file system 
• When bitmap deallocate a block, reclaim it 

B 

bitmap block B indicates 
 data block V is freed 

1 

unmap(V)  
in memory 

2 

commit the mapping 
atomically 

3 

Solution: commit the mapping atomically with file 
system commit record 

• Mapping needs to be consistent with application state 
• Mapping shouldn’t violate durability expectations 

unmapped 

Logical Blocks 

Mapping Table 

Physical  
Volumes 

Persist 

checkpoint 

B 

A B 

P P’ 

A and B have 
distinct contents 

1 

A B 

P P’ 

write(B, P); 
2 

Mapping in memory 

A B 

P 

fdatasync(); 
3 

Commit the mapping 

ashvin
Comment on Text
What do management challenges have to do with storage environments being heterogeneous is not clear.

ashvin
Highlight
Current solutions for what?

ashvin
Comment on Text
How does applications manging underlying hardware solve heterogeneous environments?

ashvin
Comment on Text
what is that?

ashvin
Comment on Text
I think the main points you are trying to make are:

1. Storage environments are heterogeneous
    . Need to support different types of applications and hardware
      . Give one or two examples
    . Need to support changing applications and hardware
       . Give one or two examples
    . Need to support local and remote storage
       . Give one or two examples

2. Problem: current storage solutions are increasingly monolithic, e.g., ZFS integrates volume management, which is a poor fit for heterogeneous requirements
     . Hard to take advantage of application or hardware characteristics
     . Hard to support changing hardware
     . Virtualization and remote storage break storage assumptions

ashvin
Comment on Text
what management features? what does this have to do with heterogeneous environments?

ashvin
Comment on Text
Move this slide to the right of the Motivation slide.

It is not clear what is the main idea behind "Policy Based Management". For example, do you have to rebuild storage systems from scratch for policy-based management or can policy-based management be retrofitted in existing systems. Similarly, what are the key abstractions behind policy-based management? How does all of this relate to the Motivation?

Here are some suggestions:

Policy-Based Management

Storage system is composed of simple building blocks that are composed using high-level policies.

Then explain in three bullet points how the policies provide support for the three things below (mentioned in the motivation):

    . Need to support different types of applications and hardware
    . Need to support changing applications and hardware
    . Need to support local and remote storage

Then clearly state what are the main building blocks in our system.

Then describe challenges.




ashvin
Comment on Text
You mention "properties" here but never use it any further.




