
Forensix: A Robust, High-Performance Reconstruction System

Ashvin Goel∗ Mike Shea Sourabh Ahuja Wu-chang Feng
Wu-chi Feng David Maier Jonathan Walpole

Department of Computer Science and Engineering, OGI@ OHSU

When intrusions occur and systems are compromised, one of the
most time-consuming, error-prone, and expensive operations is de-
termining what happened. Unfortunately, current forensic systems
and techniques fail to provide the ability to quickly and accurately
reconstruct system activity. Often full-time investigators are em-
ployed to either do a post-mortem on the compromised machine or
to instrument machines to monitor subsequent activity. In addition,
because of the lack of forensic information on the initial intrusion,
a large amount of manpower and time is lost attempting to piece to-
gether enough evidence to track down the responsible parties. For
example, in the well-publicized cases of Mitnick, the Melissa virus,
and Mafiaboy, it took several full-time investigators months of time
and effort to finally nail their suspects.

With the precipitous drop in computing, networking, and stor-
age costs, the ability to do large-scale auditing and analysis of
system activity is now technically and economically feasible. In
this project, we are constructing an experimental computer forensic
system calledForensixthat will allow system administrators, law
enforcement officials, and security experts to quickly and easily
track down sources of security incidents after they have happened.

The Forensix system itself consists of three main components: a
system call auditing module that is installed on a target system such
as a honeypot or a sensitive server, a backend system that inserts
system call audit records into an optimized database, and a set of
tools for reconstructing system state via queries on the database
backend. These components are described below:

Target system: This component consists of a loadable kernel
module for capturing and transmitting system calls, their pa-
rameters, and their return values across a private network in-
terface to a secure, append-only, backend system. Monitor-
ing at the system-call level within the kernel provides a high-
resolution, application-independent view of all system activ-
ity, while transmitting the audit data in real-time over a secure
channel, to a separate, hardened, logging machine makes the
system resilient to a wide variety of attacks.

Backend system:This component receives the detailed audit trail
from the target system and periodically inserts it into a
database for subsequent querying. Given the amount of
records being generated, it must support fast bulk loading with
index creation and efficient post-mortem querying.

Reconstruction tools: In order to recreate system activity, a suite
of tools for querying the database must be written. We have

∗Presently at the Department of Electrical and Computer Engineering, Univer-
sity of Toronto.

implemented powerful tools that perform session replays, re-
construct connection logs, and generate process traces to sup-
port forensic analysis. As an example, these tools can be used
to quickly provide answers for queries such as

Query 1: Show all user sessions that executed/bin/sh
from daemon processes other thansshd , telnetd , or
login and group sessions by user.

Query 2: Generate a system activity log for all sessions that
were generated fromQuery 1.

Query 3: Show all activity for a particular user sessionS,
whereS is denoted with a source IP address and port,
a user ID, and a connection timestamp.

Perhaps the closest system to Forensix is a combination of Back-
Tracker [2] and ReVirt [1]. BackTracker uses a timing-based ap-
proach to generate a dependency between processes, files and file-
names and uses the dependency graph to detect intrusions. This ap-
proach is space-efficient but does not provide precise details about
all the system activities. For example, it can show the steps that
led to the modification of a sensitive password file but does not
show the precise changes made to the file. For the latter informa-
tion, BackTracker must be used in combination with ReVirt, which
places the system within a virtual machine and logs the VM-to-
host instruction stream. The clear advantage of ReVirt is that it
removes non-determinism by serializing all system activity at the
logging point and hence allows complete system replay. However,
unlike Forensix, ReVirt cannot support arbitrary queries without
forcing the user to replay the entire instruction stream. On a heav-
ily loaded system, such replay requires time that is proportional to
the length of time the system has been running since the last check-
point. Since forensic analysis is often an iterative process, such an
approach defeats the initial goal of our work in reducing the time
and human overhead required to perform forensic analysis.

Our initial Forensix implementation has been released. We hope
to demonstrate the tool at the conference.

References

[1] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
Revirt: Enabling intrusion analysis through virtual-machine
logging and replay. InProceedings of the USENIX Symposium
on Operating Systems Design and Implementation, December
2002.

[2] S. T. King and P. M. Chen. Backtracking intrusions. InPro-
ceedings of the Symposium on Operating Systems Principles,
October 2003.


