
Forensix: A Robust, High-Performance Reconstruction System
Ashvin Goel, Mike Shea, Sourabh Ahuja, Wu-chang Feng, Wu-chi Feng, David Maier, Jonathan Walpole

University of Toronto, OGI@OHSU
Tracking suspicious behaviour and
troubleshooting system problems

 takes very long!

Where did
the attack

come from?

What happened
as a result of
the attack?

What security hole
was exploited?

Motivation: need to
reconstruct system activity

quickly and accurately

VM approaches
are accurate

but
replay and analysis

can be slow

Question: what about
system-call tracing?

Provides:
● Completeness
● Reproducibility

Challenges:
● Authentication?
● Efficient?
● Powerful?
● Fast?

Modular Queries

Forensix reconstructs
system activity

quickly and accurately

Uses combination of:
●System-call tracing
●Separate, append-only, hardened storage
●Database for high-level querying

Future work:
●Storage efficiency
●Stepping stones
●Framework for queries

Its hard to capture and analyze system activity...

Current logging
is inaccurate

N/W tracing,
File system logs,

Appl logs, System logs,
Process accounting

Public network

Batched Record
Processing

Private network

Target
System

 Append-Only Files

Logging Pinhole

Database Backend

Forensic Analysis

Backend
Storage
System

Operating System

Application Server

Authenticated System-Call
Logging Facility

Forensix Architecture

Provides complete,
authenticated

service

Powerful Queries

Query 1: Show all user sessions that executed
 /bin/sh from daemon processes other
 than sshd, telnetd, or login and group
 sessions by user

Query 2: Generate a system activity log for all
 sessions generated by Query 1

Query 3: Show all activity for a particular user
 session S, whee S is denoted with a
 source IP address and port, a user ID
 and a connection time-stamp

exec()
fork()

Processes

Files Connections

Incoming
session

Console
Login

Network
Connection

connect(), listen(),
accept(), shutdown(),
send(), recv(),
...

open(), close(),
read(), write(),
link(), unlink(),
...

Attributing System Activity

Query Name Arguments Output

Active_Processes start_time, end_time List all active processes within a given time interval.

Immediate_Children PID List all immediate children of a process.

Children PID List all children of a process.

Immediate_Parent PID List immediate parent of a process.

Parents PID List all parents of a process.

Fds_written

All_FDs

Did_Process_Write

Writers

IO PID, fd_list

Replay_Shell PID

PID, start_time,
end_time

List all file descriptors written by a process within
time interval and time when they were written.

PID, filename, fd_list,
time

List all file descriptors that refer to a filename or
to other file desciptors in fd_list at a given time.

PID, filename,
start_time, end_time

Did process write to filename within a given time
interval?

Filename, start_time,
end_time

List all processes that wrote to filename within
a given time interval.

List the timing and the data for I/O performed
on file descriptors in fd_list by a process.

Run I/O query on file descriptors 0, 1, 2 for a
shell process (replay a shell process).

Examples of Queries

Fds_Written(PID, start_time, end_time) {
 SELECT fd, data FROM io, event
 WHERE io.parent = event.id
 AND event.pid = %1
 AND event.syscall = 4 /* write */
 AND event.date > %2
 and event.date < %3;
}

Did_Process_Write
 uses Fds_Written, All_FDs
Writers
 uses Did_Process_Write, Active_Processes
IO
 similar to Did_Process_Write
 but produces writes
Replay_Shell
 special case of IO

Kernel Build Times

Auditing off

Total Time 233.2 s 247.1 s (6%) 252.0 s (8%)

System Time 14.0 s 26.3 s 30.7 s

Auditing on
Network off

Auditing on
Network on

Webstone throughput

Auditing off

Throughput (Mb/s) 296.8 276.2 (93%) 186.87 (63%)

Auditing on
Network off

Auditing on
Network on

Performance Overhead Replay_Shell Time

Webstone test 100 s
Game community server 414 s (194 s with PID index)

Space Overhead

Kernel build test 30 GB/day
Webstone test 8.8 GB/day
Game community server 0.45 GB/day

