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Abstract

Cluster computing frameworks such as Apache Hadoop
and Apache Spark are commonly used to analyze large
data sets. The analysis often involves running multiple,
similar queries on the same data sets. This data reuse
should improve query performance, but we find that
these frameworks schedule query tasks independently of
each other and are thus unable to exploit the data shar-
ing across these tasks. We present Quartet, a system
that leverages information on cached data to schedule to-
gether tasks that share data. Our preliminary results are
promising, showing that Quartet can increase the cache
hit rate of Hadoop and Spark jobs by up to 54%. Our
results suggest a shift in the way we think about job and
task scheduling today, as Quartet is expected to perform
better as more jobs are dispatched on the same data.

1 Introduction

Cluster computing frameworks such as Apache
Hadoop [4] and Apache Spark [5] are commonly used
to run a variety of data analytics applications, helping
uncover correlations and trends in large data sets. These
frameworks allow users to focus on their particular data
analysis problem, while handling the complexities of
distribution, including data placement and replication,
computation placement, fault tolerance, and resource
negotiation in a shared cluster.

Unfortunately, the exponential growth in the volume
of data collected and used for analysis [13] has not been
matched by corresponding increases in hard disk perfor-
mance, where this data is primarily stored [7]. As a re-
sult, performing analysis on even the most recent part of
a dataset may be limited by disk access speeds. Further-
more, a common analysis pattern involves running multi-
ple, similar queries over the same data. For example, dur-
ing typical exploratory analysis of a dataset, a data scien-
tist may dispatch multiple queries that differ marginally
from each other. Evidence of this work pattern is seen
in a recent study of three academic Hadoop clusters by
Ren et al., which found that less than 10% of input files
are responsible for more than 80% of all accesses, and
that only 1% of datasets are shared across users [12].
They further found that 90% of data re-accesses happen

within 1 hour, and that 35-60% of job pipelines1 are sub-
mitted within 10 seconds after an earlier pipeline from
the same user finishes executing. Similar results are re-
ported by Chen et al. [8] for production workloads of
Cloudera customers and Facebook. In other words, users
commonly submit a series of jobs that access the same
input datasets in a relatively short period of time. Simi-
larly, in production settings, multiple data scientists may
run independent analyses that access a large portion of a
common dataset concurrently.

Users of cluster computing frameworks enjoy limited
benefit from this data sharing today. MapReduce, for ex-
ample, only considers disk and rack locality when mak-
ing task placement decisions. It does not take memory
locality into account, possibly because it assumes that
massive data sets will be displaced from memory before
they can be reused. The more recent caching support
added to the Hadoop Distributed File System (HDFS)
requires users to explicitly identify files that should be
pinned in memory; these pinned files are then also con-
sidered during task placement. This explicit cache man-
agement, however, both increases the burden on users
and is ineffective when the reuse occurs across multiple
jobs operating on datasets that are larger than available
memory. Users similarly expect caching to matter little
and tend to run jobs serially even when they are not de-
pendent on the results of the previous jobs [12].

Another challenge for exploiting data reuse in current
frameworks is that the order in which jobs process data is
agnostic to the data availability in the cache, which can
lead to unnecessary cache evictions and disk accesses.
As a result, even when the inputs of two jobs overlap
completely, if they are scheduled even slightly apart in
time they can miss opportunities for sharing data ac-
cesses. In our cluster, scheduling two identical Spark
jobs 4 minutes apart increases their runtime by 145%
compared to starting them together.

We argue that jobs on frameworks such as Hadoop and
Spark should be able to benefit from data reuse when jobs
share any portion of their input. We leverage the fact that
tasks within a job are independent of each other, which
is a core requirement in these frameworks for scalability
and for task re-execution to mask failures and stragglers.

1A pipeline is defined as a sequence of jobs where the output of one
job forms the input of the next job in the pipeline.
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Our insight is that we can reorder tasks within a job to
prioritize the processing of data brought into memory by
other jobs, without affecting correctness. To inform tasks
of data available in memory we use Duet, an in-kernel
framework that exposes page cache information to ap-
plications by notifying them about changes in the page
cache state, such as a page being added to, or removed
from, the cache [1]. As a result, we can harmonize task
scheduling with caching in these frameworks.

This paper makes the following contributions. First,
we propose changes to existing cluster computing frame-
works so that users can benefit from inter-job data shar-
ing. We describe the design of our system, Quartet, and
apply it to both Hadoop MapReduce and Spark. Sec-
ond, we present promising preliminary results that show
Quartet can effectively exploit data reuse with low over-
heads, reducing job runtimes and disk contention.

In the next section, we provide necessary background
on the architecture of cluster computing frameworks and
Duet. Section 3 reviews related work. We describe the
design of Quartet in Section 4, and evaluate its perfor-
mance in Section 5. Finally, we conclude in Section 6.

2 Background

This section provides background on Hadoop and Spark,
as well as an introduction to the Duet framework.

Hadoop. Hadoop is a distributed processing system
that aims to take advantage of the computing resources
of a cluster while being easy to understand and use [4].
Its main components include: (i) the Hadoop Distributed
File System (HDFS), (ii) the YARN resource manage-
ment platform, and (iii) the MapReduce application.

HDFS is a distributed file system where each file is
split into blocks, typically 128 or 256 MB in size, with
each block replicated to at least 3 different nodes in the
cluster to ensure availability in case of node failure or
network partitions. An HDFS installation consists of at
least one centralized Name Node service that manages
all file metadata and block location information, while
each storage node runs a Data Node service to manage
the blocks stored in the local file system.

The YARN resource management platform dictates
how resources are allocated and shared across user jobs.
At the core of YARN lies the Resource Manager, which
keeps track of all currently running applications and en-
sures that each receives their fair share of the cluster.
Each worker node runs a Node Manager, which is re-
sponsible for managing local computation slots, called
Containers, and for reporting usage statistics to the Re-
source Manager. Applications on YARN are run by sub-
mitting a request to the Resource Manager to allocate
a container in order to launch a designated Application

Master, which can in turn request additional containers
and resources on behalf of a job. Typically a worker node
will take on both the HDFS Data Node and YARN Node
Manager roles, enabling computations to be performed
on the same physical machine as the input data.

Hadoop MapReduce is an implementation of MapRe-
duce, a popular model of distributed computation [9], as
a YARN application. A MapReduce job consists of many
smaller tasks that are either mappers or reducers. Map-
pers read their input data from storage (typically limited
to one HDFS block) and run the first stage of the com-
putation, while reducers take the output from multiple
mappers to create the final result. The MapReduce Ap-
plication Master requests many containers from the Re-
source Manager, and attempts to schedule each mapper
task to a node that is nearest to the input data. Ideally, the
selected node will be one of the 3 replicas that contains
that block on its local disk.

Spark. Apache Spark is another popular framework
for distributed data processing, designed to support ap-
plications with cyclic data flow and in-memory comput-
ing, in addition to on-disk computing. A Spark applica-
tion can be run as a YARN Application Master, on top
of Mesos [10], or in standalone mode, which is a sim-
plified cluster management system designed specifically
to run Spark jobs. This mode is widely used, especially
when provisioning Spark-only clusters on cloud comput-
ing platforms. We adopt this version for our work.

While similar in operation to YARN, the standalone
mode uses different terminology. Roughly speaking,
the Master corresponds to the Resource Manager, the
Worker corresponds to the Node Manager, the Driver
corresponds to the Application Master, and an Executor
corresponds to a YARN container.

In Spark, the application flow is as follows. A Driver
connects to a Spark Master, receives Executor alloca-
tions on Worker nodes, and schedules tasks to those Ex-
ecutors over the duration of an application. The Driver
is responsible for all of the task scheduling and place-
ment logic. One distinguishing feature of Spark is that
an Executor runs many tasks for a given Driver within
one long-lived JVM process, which greatly reduces the
overhead of starting up a new container for each task.

Duet. To enable a given framework to schedule tasks
on the basis of cached data, we need to expose cache in-
formation to the framework’s scheduler. To do so, we
exploit Duet, a framework that provides notifications to
applications about events such as a page being added to,
modified in, or evicted from, a node’s memory [1]. Duet
is implemented as a Linux kernel module, with hooks in
the operating system’s page cache. Applications register
with Duet to receive notifications on events of interest.
We build upon Duet to provide aggregated information
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about HDFS blocks resident in memory across the clus-
ter, which the Application Master (or Driver) scheduler
can use to opportunistically select tasks with cached data
for a particular Container (or Executor), allowing them
to incur less I/O and complete faster.

3 Related Work

A significant amount of work has focused on improving
memory locality in cluster computing frameworks. We
restrict our discussion to work most relevant to Quartet.

Ananthanarayanan et al. [2] argue that in modern clus-
ters, accessing data from a remote node incurs marginal
overhead compared to accessing it directly on the node
storing the data. They predict that scheduling tasks for
disk locality will become less important, with focus be-
ing shifted to memory locality oriented scheduling.

PACMan [3] is a cache management system for clus-
ter environments, which aims to improve job completion.
To achieve this goal, PACMan introduces two cache re-
placement policies that aim to reduce the impact of strag-
glers, by scheduling together tasks of a given job that
are expected to exhibit high memory locality. Quartet’s
architecture is inspired from PACMan, but our work fo-
cuses on jobs who’s input data does not fit in the aggre-
gated memory of the cluster. We aim to take advantage
of cached data to reduce disk reads as well reducing pres-
sure on the OS page cache.

The Alluxio project [11] aims to reduce the disk write
latency caused by the replication scheme used for fault
tolerance in large scale storage systems. The authors ar-
gue that replication limits job throughput. Instead, they
provide fault tolerance by lazily checkpointing output
files to stable storage, keeping track of input and compu-
tation information needed to recreate each file if it is lost.
Our approach focuses on changing the order in which
jobs process their inputs to take advantage of memory
contents and reduce read latency.

The HDFS Cache Manager [6] was added so that users
can provision a specific amount of the cluster’s memory
to a cache pool that can serve popular files directly from
memory. HDFS ensures that those blocks are resident in
memory on a specified portion of the hosts at any time.
Our technique does not require the user to specifically
provision memory for caching, or to know what files are
being shared by a large number of jobs. Quartet op-
portunistically takes advantage of synergistic workloads
without any interactions with the users.

4 Design and Implementation

This section describes the Quartet system architecture,
and our modifications to the Hadoop and Spark schedul-

ing components to take advantage of memory locality.

4.1 Architecture

Quartet consists of four components: (i) the Duet kernel
module, (ii) the per-node Quartet Watcher service, (iii)
the centralized Quartet Manager, and (iv) changes to the
task schedulers in Hadoop MapReduce and Spark.

Quartet Watcher and Duet. The Watcher service
runs on each worker node in the cluster. Using the Duet
API, it tracks all kernel page cache changes related to
HDFS blocks. These observations are aggregated and pe-
riodically reported to the Quartet Manager as a list of tu-
ples of the form (hdfsBlockId, totalCachedPages, deltaS-
inceLastReport).

Quartet Manager. The Manager receives periodic
reports from the Watchers, and maintains a centralized
view of the location and number of memory-resident
pages of all cached HDFS blocks across the cluster. Ap-
plications register blocks of interest with the Manager
that correspond to the input files that they will access.
Using the centralized view, the Manager periodically no-
tifies applications about whether the relevant blocks are
currently cached on a given node. As applications make
progress, they unregister interest in completed blocks,
minimizing the size of these updates.

Application Master / Driver. We modified the
Hadoop MapReduce Application Master and Spark
Driver to take advantage of the memory locality infor-
mation offered by the Quartet Manager. These systems
currently schedule tasks such that the input blocks are
processed from the start of the file. We changed them so
that at job submission time, the HDFS blocks that will
be read by the tasks of a job are registered with the Quar-
tet Manager. We then use updates from the Manager to
reorder the scheduling of these tasks so that tasks with in-
memory blocks are executed before tasks whose blocks
are not cached currently (see Section 4.2). The informa-
tion from the Manager is periodically refreshed so that
jobs can have an up-to-date view of the cluster.

While Hadoop and Spark are different projects, writ-
ten in different languages, their internal structures were
similar enough to allow these changes to be implemented
in less than 500 lines of code for each. We believe that
applying the idea of Quartet task reordering to other sys-
tems should require similar effort.

4.2 Task Scheduling

MapReduce and Spark refer to a task as being node-local
if it can read its input block from a local disk of the
worker node on which it is run. We refer to a task as
memory-local if it is both node-local and its input block
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is memory-resident on that same node. The goal of Quar-
tet is to exploit all opportunities to run memory-local
tasks. It does this by preferring to schedule memory-
local tasks ahead of merely node-local ones whenever
possible.

In both Hadoop and Spark, once their task schedulers
have been granted an allocation to launch a task on a
node N, they search for a suitable candidate to launch.
Under Quartet, task T will be scheduled to N if 1) T is
memory-local to N, or 2) T is node-local to N but not
currently memory-local to any other node in the cluster.
The memory-local status of all candidate tasks will be
checked in Step 1 before proceeding to Step 2. Finally, if
neither of these conditions are met for all T , we fall back
to the default delay scheduling policy [14].

Step 1 ensures that the application will take any
memory-local opportunities available to it, thus avoiding
unnecessary reads, disk contention and page cache evic-
tions. Step 2 helps to ensure that redundant disk reads
are avoided, but that forward progress is still made if a
task is currently not memory-local anywhere.

5 Evaluation

This section evaluates the benefits of Quartet by measur-
ing the improvement in the cache hit rate and runtime of
jobs that are scheduled after jobs working on the same
dataset. We pick this scenario as representative of real-
world workloads reported in the literature [12].

5.1 Setup

Our cluster consists of 24 worker nodes, each configured
with an 8-core Intel Xeon L5420 CPU, 16 GB RAM and
a 1 TB 7200 RPM hard drive. In order to use Duet, these
nodes ran a modified Linux 3.13.6 kernel. A separate,
identical node was dedicated to running the HDFS Name
Node and Quartet Manager services, in addition to the
YARN Resource Manager for Hadoop (resp. the Spark
Master for Spark). We configured HDFS with three repli-
cas and 128 MB blocks. Each worker node was allocated
8 concurrent YARN containers (resp. Spark Executors).

The vanilla Hadoop version was 2.7.1, and vanilla
Spark was 1.6.0. The Quartet modifications were made
to each of these versions.

5.2 Experiments

We measure the effectiveness of Quartet through an ex-
periment based on a real-world workload. Ren et al. re-
port that 90% of data re-accesses occur within one hour
of the last access on two different Hadoop clusters [12].
To approximate this scenario, we run two jobs that access
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Figure 1: Percentage of HDFS blocks read from cache
(hit rate) for the second of two identical jobs.
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Figure 2: Runtime of the second job, normalized by the
runtime of the first, identical job.

the same dataset sequentially. We repeated our experi-
ment using three files of different sizes: 256 GB, 512 GB,
and 1 TB. The first of these fits completely within the
physical memory of the cluster (384 GB) while the latter
two exceed it. For our experiments, we used a custom
line counting application for both Spark and Hadoop, to
simulate an I/O-bound workload.

Disk accesses. Figure 1 shows the percentage of data
accesses that were satisfied from the cache, for the sec-
ond of two identical jobs. We show results for both
Hadoop and Spark, with and without Quartet. As ex-
pected, for 256 GB jobs most of the blocks are still in the
page cache when the first job finishes. Quartet can take
advantage of that fully, demonstrating cache hit rates of
92-98%. In the case of vanilla Hadoop and Spark, how-
ever, cache hit rates are as low as 42-44%, because task
scheduling is influenced by the timing of resource avail-
ability reports from the worker nodes. For job inputs
larger than the cluster memory, such as 512 GB and 1 TB,
part of the input data was already evicted from the cache
by the end of the first job. This, coupled with replica se-
lection in HDFS results in less than 4% cache hit rates.
When Quartet is enabled, however, resident blocks are
prioritized, and cache hits rates of 25-56% are possible.

Runtime. Reducing the amount of I/O for I/O-bound
jobs is also expected to reduce their runtime. Figure 2
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shows the runtime achieved by a job, once an identical
job has finished running. Overall, we find that Quartet
improves most on Spark job runtimes, because it reuses
Executors, while Hadoop launches new JVM containers
for each task. The cost of container setup and teardown is
significant (2-6 seconds), dwarfing the runtime improve-
ments made by Quartet and putting more pressure on the
page cache. More specifically, when job data fits entirely
in memory the runtime of the second job can be reduced
by an additional 45% for Spark and 2.7% for Hadoop
using Quartet, compared to the vanilla versions of both
frameworks. When the job data exceed our memory ca-
pacity, Quartet on Spark improves on job runtime by an
additional 21-43%, while Quartet on Hadoop improves
runtimes by 6-13%.

Overhead. On each of the worker nodes, our proto-
type Watcher implementation adds less than 20% CPU
overhead on a single core, while the Manager itself con-
sumed less than 5% CPU usage on a single core. The
network traffic between the watcher, the manager, and
the applications is proportional to the number of HDFS
blocks with page cache updates, and the update rate re-
quested by the application. In our experiments updates
are requested once per second, and this traffic is in the
order of 10-100 KB/s per application.

6 Conclusion

We presented Quartet, a system based on enhancements
applicable across cluster computing frameworks. Quar-
tet leverages information on cached data to schedule to-
gether tasks that operate on the same data. We have im-
plemented Quartet on both Hadoop and Spark, and our
preliminary results show that when jobs overlap, Quartet
can almost eliminate I/O of subsequent jobs depending
on memory capacity. We believe that our results suggest
a shift in the way we think about job and task scheduling
today, as Quartet performs better with more jobs being
dispatched on the same data concurrently. We are also
investigating scenarios where Quartet is used on differ-
ent frameworks accessing the same data concurrently.

The performance improvement achieved by using
Quartet depends on the amount of data reuse, and the
timing of re-accesses in a given workload. Analyses of
production workloads have shown that re-accesses tend
to occur close in time, so we are optimistic that our de-
sign will be applicable in those cases. On that end, we
are currently evaluating Quartet for more complex work-
loads, building on earlier work on workload characteriza-
tion for cluster computing frameworks. So far, however,
we have met a shortage of real-world traces that can be
used to evaluate our prototype. Due to the nature of our
approach, we require an understanding of the data shar-
ing that occurs across jobs in the field. To achieve this,

we need to characterize the timing and amount of the
sharing of data across jobs. Workloads and traces that
are currently available publicly either only capture the
start time of jobs without a description of the input data,
or contain HDFS events without information that would
allow us to link them to job scheduling. We hope that
this work encourages a discussion on workload tracing
for cluster computing frameworks.
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