
A Measurement-Based Analysis of the Real-Time Performanceof Linux
�

LucaAbeni
�
, AshvinGoel,CharlesKrasic,JimSnow, JonathanWalpole

luca@sssup.it, � ashvin, krasic, jsnow, walpole � @cse.ogi.edu
Departmentof ComputerScienceandEngineering

OregonGraduateInstitute, Portland

Abstract

Thispaper presentsanexperimentalstudyof thelatency
behavior of theLinux OS.We identifymajor sourcesof la-
tencyin thekernelwith thegoal of providing real-timeper-
formance in a widelyusedgeneral-purposeoperating sys-
tem. We quantifyeach source of latencywith a seriesof
micro-benchmarksandalso evaluate the effectsof latency
on a time-sensitiveapplication. Our analysisshowsthat
there are two maincausesof latencyin theOS: timer res-
olution and non-preemptable sections. Our experiments
showthat in the standard Linux kernel the timer resolu-
tion latencyis predominant, and generally hidesthe non-
preemptable sectionlatency. We use accurate timers to
reducetimer resolutionlatencyand thenanalyzethe non-
preemptable sectionlatencyfor several variantsof Linux.

1. Intr oduction

In the last several years, there has beenan explosive
growth in interest in supporting multimedia applications
suchasvideostreamingprograms,softwareaudiomixers,
etc.,ongeneral-purposeoperatingsystems.Thesemultime-
dia applications, andsoft real-timeapplications in general,
arecharacterizedby implicit temporal constraints thatmust
besatisfiedto provide thedesiredQoS.We thuscall these
applicationstime-sensitiveapplications.

To support time-sensitive applications, a general-
purposekernel mustrespecttheapplication’s temporal con-
straintsandhencea predictable scheduleis needed. Un-
fortunately, general-purposekernelsoftengenerateasched-
ule that is different from the expectedonedueto various
reasons such as the implementation specificsof the ker-
�
Thiswork waspartially supported by DARPA/ITO undertheInforma-

tion TechnologyExpeditions,UbiquitousComputing, Quorum,andPCES
programs,NSFGrantCCR-9988440andEIA-0130344,andby Intel.�

Luca Abeni is affil iatedwith ReTiS Lab, ScuolaSuperiore S. Anna,
Pisa,Italy.

nel. This paperevaluates,measures,andcharacterizes the
temporal behavior of a widely usedgeneral-purposekernel
through an extensive set of experimentswith the goal of
supporting real-timeapplicationsonsuchoperating systems
(OSs).

In particular, we definea metric calledOSlatency that
quantifies the differencebetweenthe actualschedule pro-
ducedby the kernel andthe ideal schedule.Basedon this
definition, weperformacomprehensive,quantitativeevalu-
ationof latency in Linux [21]. WechoseLinux becauseit is
widely used,supports mostcommonly availablehardware
andis distributedunder an opensource license[6] which
enablesresearchersto easilyexperimentwith it.

We identify several sourcesof the OS latency, the two
most important sourcesbeing timer resolutionand non-
preemptivesectionsin the kernel or in the drivers. We
designed a set of micro-benchmarks and have usedthese
benchmarksto systematicallyquantify eachsourceof la-
tency in Linux. In addition,we comparethelatency behav-
ior of thestandardLinux kernelwith thebehavior of some
modified versionsof the kernel. We show that the appli-
cationof somewell known real-time conceptssuchasfull
kernel preemptability cangreatlyimprovethereal-timeper-
formanceof Linux.

We also quantify the effects of the OS latency at
the application-level by instrumenting a well-known au-
dio/videoapplicationandthusexperimentallyevaluatehow
well a general-purposeLinux kernelcansupport the real-
timeperformanceneedsof multimedia applications.

Themaincontribution of this paper is a characterization
of the temporal behavior of a general-purposekernel. We
believe thatthis studyis importantbecauseit enablesusing
real-timeanalysisfor suchsystems.Theresultscontainedin
thispapercomplementmany of theresultsobtainedin real-
timeresearch, in thatthey helpfocusattentiononthemajor
sourcesof latency in practice,andhence helpus move to-
wardsthe goal of realizingreal-timebehavior in a widely
usedoperatingsystemsuchasLinux.

Therestof thepaperis organized asfollows. Section2
formally definestheOSlatency andinvestigatesthefactors

that contribute to it. In Section3, we describethe experi-
mentalsetupfor evaluating the various componentsof the
OSlatency. Section4 presents theexperimentalresults,and
in Section5 we show how OS latency affectsa mediaap-
plicationrunning onLinux. Finally, in Section6 wepresent
relatedwork andin Section7 westateourconclusions.

2. The OS Latency

Themainobjective of Linux in termsof performanceis
to provide fairnessand high throughput, i.e., minimizing
theaverageexecution timeexperiencedby concurrentlyex-
ecutingprocesses.Until recently, Linux hasnot focused
on time-sensitive applications, which arecharacterizedby
temporal constraints.Suchapplications may require peri-
odic execution where, for example, the period is derived
from the frame rateof anaudio/videostream,or they may
require responsein a short time to external events suchas
thearrival of a network packet.

In this paper, we useOSlatencyasa metric to evaluate
the OS support for time-sensitive applications. We define
theOSlatency asfollows:

Definition 1 Let � bea task1 belonging to a time-sensitive
application that requiresexecutionat time � , and let �	� be
thetimeat which � is actually scheduled; wedefinetheOS
latencyexperiencedby � as
��� ��� � .
Examples of tasksthat needto execute at time � are, for
instance,periodic tasks(the taskwakesup at time � in re-
sponsetoaperiodicevent),or tasksthatmustreactin ashort
time to external interrupts.

2.1. Causesof the OSLatency

OS latency canbe causedby several factors. We have
identifiedthreemajorcausesof this latency: timer resolu-
tion, scheduling jitter, andnon-preemptable sections.

Timer resolutionlatency occursbecausekernel timers
aregenerally implemented usinga periodic tick interrupt.
For example, consider a periodic task � thatneedsto exe-
cuteevery ����� . Typically, the taskwill be woken up by
a kernel timer that is triggered by the periodic tick inter-
rupt with say, period ��������� . Hence,a taskthatsleepsfor an
arbitrary amount of time � canexperiencesometimer res-
olution latency
������! �" if its expectedactivationtime is not
ona tick boundary.

Scheduling jitter is causedbecause� maynot besched-
uled immediatelyeven if accurate timersensurethat � en-
ters the readyqueueat the correct time. The scheduling

1In this paper, we usethe word “task” to denote either a thread or a
process.

jitter experiencedby atask � canbeeasilyeliminatedby as-
signingthehighestreal-timepriority to it.2 Sincereal-time
scheduling algorithms that reducescheduling jitter have
beenwidely studiedin the literaturewe will not address
this problemin this paper. For the purposeof our experi-
mentswe will simply usethe highestreal-timepriority to
eliminatethelatency causedby scheduling jitter.

A third source of latency, that we call OS non-
preemptable sectionlatencyis causedby non-preemptable
sectionsin thekernelor in thedrivers. This componentof
latency includesInterruptServiceRoutines(ISRs)andother
kernel constructssuchasbottomhalvesandtasklets.Con-
sider an example whereinterrupts are disabledat time � .
Task � canonly enterthereadyqueue laterwheninterrupts
arere-enabled.In addition, evenif � entersthereadyqueue
at the correct time � andhasthe highestreal-timepriority
in the system,it may still not be scheduled if preemption
is disabledfor somereason. In this case,� will be sched-
uled when preemption is re-enabled at time �#� , contribut-
ing an OS non-preemptablesectionlatency
%$#&'�(�)� � � .
This OS non-preemptablesectionlatency includes kernel
non-preemptablesections,but also other sourcesof non-
preemptability, whichfor examplemaybecausedby device
drivers,suchasISRs,bottomhalves,andsoon.

2.2. Analysisof the Latencies

In ourexperiments,� is scheduledusingthehighestreal-
time priority to eliminatethelatency causedby scheduling
jitter. Thus,themaximum latency
 that � canexperience
is equalto thesumof themaximum latenciesdueto timer
resolution andnon-preemptablesections(*,+.-0/#
%������)"#132
*,+4-5/	
6$#&71). We analyze thesetwo termsseparately.

2.2.1 Timer Resolution

Standard Linux timersaretriggered by a periodictick in-
terrupt, which on x86 machines is generatedby the Pro-
grammableInterval Timer (PIT) andhasa period �8�������9�:<;>= � . As a result,themaximumlatency dueto the timer
resolution *,+4-?/	
@�����! �"41 is �����A���B� :<;>= � . Thus,thisvalue
can be reducedby reducing �C���A��� . However, decreasing
� ���A��� increasessystemoverheadbecause more tick inter-
ruptsaregenerated.In addition, thereis a lower bound on

D�����! �" which is equal to the execution time required for
servicingthetick interrupt.

The fact that a periodic timer interrupt is not an appro-
priatesolutionfor a real-timekernel is well known in the
literature,and thus most of the existing real-timekernels
provide high resolutiontimers basedon an aperiodic in-
terrupt source[17]. In an x86 architecture, the PIT or the

2NotethatusingLinux real-timepriorities, it is veryeasyto implement
a rate-monotonicpolicy.

CPU APIC (AdvancedProgrammable Interrupt Controller
present in many modernx86 CPUs)canbeprogrammedto
generateaperiodic interrupts for this purpose. We expect
thathigh resolution timerswill reduceEGF�H�I�J)K to the inter-
rupt servicetime without significantly increasingthe ker-
nel overhead,because theseinterrupts are generatedonly
whena timer expires. In this paper, we considerthe timer
resolution latency in two differentkernels: 1) thestandard
Linux kernel, 2) a high-resolutiontimer Linux kernel that
we have implementedat OGI. Our experimentsin Section
4 show thattheresolution of ourhigh-resolutiontimerslies
betweenLNM�O to P>M�O .

2.2.2 OSNon-PreemptableSectionLatency

Thesecondtermcontributing to themaximum OS latency
is theOSnon-preemptablesectionlatency Q,R4S5T	E%U	V7W . This
value depends on the device drivers, but alsoon the strat-
egy that thekernel usesto guaranteetheconsistency of its
internal structures,andon the internal organization of the
kernel. In this paper, we considerlatenciesof four different
variantsof thekernel.Thesekernelsusedifferentstrategies
for protecting their internal structures.Thesekernels are1)
thestandard Linuxkernel,2) theLow-LatencyLinuxkernel,
3) the Preemptable Linux kernel, and4) the Preemptable
Lock-BreakingLinuxkernel.

Standard Linux: Thestandardkernelis basedontheclas-
sicalmonolithic structure, in which theconsistency of
kernel structuresis enforcedby allowing at mostone
executionflow in thekernelat any giventime. This is
achieved by disablingpreemption whenan execution
flow entersthe kernel, i.e., whenan interrupt fires or
whena systemcall is invoked. In a standardLinux
kernel, Q,R4S?T	E�U	VNW is equalto themaximum lengthof
a systemcall plus theprocessingtime of all the inter-
rupts thatfire before returning to usermode.Unfortu-
nately, this valuecanbeaslargeas X.Y.Z[O asshown in
Section4.

Low-Latency Linux: This approach“corrects”themono-
lithic structureby insertingexplicit preemption points
(alsocalledrescheduling points) insidethekernel. In
this approach,when a threadis executing inside the
kernel it canexplicitly decideto yield theCPUto some
otherthread. In this way, thesizeof non-preemptable
sectionsis reduced, thus decreasing E U	V . In a low-
latency kernel, the consistency of kernel data is en-
forced by using cooperative scheduling (insteadof
non-preemptive scheduling) whenthe execution flow
entersthekernel.This approachis usedby somereal-
time versions of Linux, suchasRED Linux [26], and
by Andrew Morton’s low-latency patch[14]. In a low-
latency kernel, Q,R4S5T	E!U	V7W decreasesto themaximum

timebetweentwo rescheduling points.

Preemptable Linux: The preemptable approach,usedin
most real-timesystems,removes the constraintof a
single execution flow inside the kernel. Thus it is
not necessaryto disablepreemption whenan execu-
tion flow entersthekernel.To support full kernel pre-
emptability , kernel datamust be explicitly protected
usingmutexes or spinlocks. The Linux preemptable
kernel patch[11] usesthisapproachandmakestheker-
nel fully preemptable. Kernel preemption is disabled
onlywhenaspinlockis held.3 In apreemptablekernel,
Q,R4S5T	E\U	V7W is determinedby themaximum amount of
time for which a spinlock is held inside the kernel
(maximum sizeof a kernel non-preemptable section),
plusthemaximum time takenby ISRs,bottomhalves
andtasklets.

Preemptable Lock-Br eakingLinux: The kernel latency
canbehighin Preemptable Linux whensomespinlock
is held for a long time. Lock breaking addressesthis
problem by “breaking” long spinlocks, i.e., by releas-
ing spinlocks at strategic points. Breakingspinlocks
into smallernon-preemptable sectionsis similar to the
approachusedby Low-Latency Linux. This approach
reducesthe size of kernel non-preemptablesections,
but, of course,doesnot decrease the amount of time
“stolen” by devicedrivers.

As a final note,we would like to point out that thepre-
emption patchhasbeenrecentlyaccepted in the develop-
ment (unstable)branch of the Linux kernel, and is now
presentin version2.5.4 of thekernel.

3. Experimental Setup

Thegoalof this paperis to evaluateLinux latency. One
method for experimentallymeasuring the latency is to use
a taskthatinvokesusleep to sleepfor aspecifiedamount
of time and thenmeasuresthe time that it actually slept.
The latency E , asdefinedin Section2, is then the differ-
encebetweenthesetwo times.Unfortunately, thisapproach
measures the sumof all the latency componentsandthus
doesnotgiveusaninsightinto thecausesof latency.

We investigate the individual latency components by
measuring eachof them in isolation, i.e., measureeach
sourceof latency while eliminating the others. First, the
scheduling jitter is easily eliminatedby running the test
program at the highest real-timepriority. Next, we need
to measuretimer resolutionlatency EGF�H�I!J�K and OS non-
preemptablesectionlatency EGU	V in isolation. To measure
EDF�H�I!J�K , we eliminate E@U	V by running theexperimenton an

3Thereis alsoa different patch, from Timesys[9], basedon mutexes
andpriority inheritance instead of on spinlocks.

idle system.To measure]�^	_ , weeliminate]\`�a�b!c�d by using
highresolutiontimers.Thefollowing sectionsdescribe this
approachin moredetail.

3.1. Measuring Timer ResolutionLatency

TheOSnon-preemptable sectionlatency] ^	_ canbere-
duced significantly by running experiments on a lightly-
loadedsystem.In thiscase,few systemcallswill beinvoked
anda limited number of interrupts will fire andthus long
non-preemptableexecution pathsor drivers’ activations are
not likely to betriggered.

The latency]@`�a�b!c�d can be measured by using a typ-
ical periodic time-sensitive application. We implemented
this application by running a processthatsetsupa periodic
signal(usingtheitimer() systemcall) with a period e
ranging from f	g>g>h�i to f	g>g.j[i . The processmeasuresthe
time when it is woken up by the signal and then imme-
diately returns to sleep. We measuredthe differencebe-
tweentwo successiveprocessactivations,whichwecall the
inter-activation time. Notethatin theorytheinter-activation
times shouldbe equal to the period e . Hence,the devi-
ation of the inter-activation times from e is a measureof
]D`�a�b�c)d . SinceLinux ensuresthata timerwill never fire be-
fore thecorrect time, we expect this valueto be f<g.j[i is a
standard Linux kernel, andto becloseto theinterrupt pro-
cessingtimewith highresolution timers.

3.2. Measuring OS Non-PreemptableSection La-
tency

Oncethetimerresolution latency is eliminatedwith high
resolution timers,we canmeasure]G^	_ in isolation.Unfor-
tunately, aperiodicprocessisnotsuitablefor measuringthis
latency. For example, to measurethe effectsof disabling
preemptionfor a time k , thelatency mustbesampledwith
a period eml k or else the non-preemptive codecould
executebetweentwo consecutivemeasurements.Morepre-
cisely, if n is themeasuredlatency, thennpoq] ^	_ oqnsr8e�t
Hence,to reliablymeasure]�^	_ , thetesttaskshouldhavea
period e suchthat evu�uw]!^	_ . In practice,this require-
ment is hardto achieve andthuswe usean aperiodic test
application thatusestheusleep() call.

Thetesttaskis basedona loopthat:

1. readsthecurrenttime xzy
2. sleepsfor a time e
3. readsthetime x|{ , andcomputes]!^	_�}px){!~���x�yDr�e3�

Times x y and x { are readusing the PentiumTime Stamp
Counter (TSC), a CPU register that is increasedat every
CPU clock cycle and can be accessedin a few cycles.

Hence,themeasurementsintroducevery low overheadand
areveryaccurate.

We investigatedhow varioussystemactivitiescontribute
to]\^	_ by running variousbackgroundtasks.Thefollowing
tasksareknown to invoke long systemcalls or causefre-
quent interruptsandthusthey trigger longnon-preemptable
sectionseitherin thekernel or in thedrivers (asexplained
in Section2).

Memory Stress: One potential way to increase]3^	_ in-
volvesaccessinglargeamountsof memory sothatsev-
eralpagefaultsaregeneratedin succession.Thekernel
invokesthepagefault handler repeatedly andcanthus
executelongnon-preemptablecodesections.

Caps-LockStress: A quick inspectionof the kernelcode
reveals that whenthe num-lock or caps-lockLED is
switched,thekeyboarddriversendsa commandto the
keyboardcontroller andthenspinswhile waiting for
an acknowledgement interrupt. This processcanpo-
tentiallydisablepreemption for a longtime.

Console-SwitchStress: The console driver code also
seemsto contain long non-preemptablepathsthatare
triggeredwhenswitchingvirtual consoles.

I/O Stress: Whenthekernelor thedrivers have to transfer
chunks of data,they generallymove this datainside
non-preemptable sections. Hence,systemcalls that
move large amounts of datafrom userspaceto ker-
nel space(andvice-versa)andfrom kernel memory to
ahardwareperipheral,suchasthedisk,cancauselarge
latencies.

Procfs Stress: Otherpotential latency problems in Linux
arecausedby the/proc file system.The/proc file
systemis a pseudofile systemusedby Linux to share
databetweenthe kernel anduserprograms. Concur-
rentaccessesto theshareddatastructuresin theproc
file systemmustbeprotectedby non-preemptablesec-
tions. Hence,we expect thatreading largeamountsof
datafrom the/proc file systemcanincreasethe la-
tency.

Fork Stress: Thefork() systemcall cangeneratehigh
latenciesfor two reasons. First, the new processis
createdinsidea non-preemptablesectionandinvolves
copying large amounts of dataincluding pagetables.
Second, the overheadof the scheduler increaseswith
increasingnumberof activeprocessesin thesystem.

Experience andcareful codeanalysisby various mem-
bersof the Linux community (for example, seeSenoner
[18]) confirmsthattheabove list of latency sourcesis com-
prehensive, i.e., it triggersa representative subsetof long
non-preemptablesectionsin thekernelandin thedrivers.

4. Evaluation of the Kernel Latencies

In this section,we presentan evaluationof the various
OS latency components.We ranour experimentson a 1.8
GhzAthlon processorwith 512MB of memory.

4.1. Timer ResolutionLatency

The first set of experiments measures �������!��� and
shows that it can be easily eliminatedfrom the OS non-
preemptablesectionlatency byusinghighresolution timers.
We evaluatedthehigh-resolutiontimer Linux kernel (stan-
dardkernel+ ourimplementationof ahighresolution timers
mechanism)andcomparedits timer resolutionlatency with
the timer latency of a standardLinux kernel. Considerthe
periodic taskdescribed in Section3.1: In thestandardker-
nel, if the task period is not a multiple of �C���A��� then the
differencebetweentheinter-activation timesand � will be
greater be � andcan be as large as �����A��� . As explained,
this problemis solvedby the high-resolutiontimer kernel,
which we demonstratethrough experimentsdescribed be-
low.

80

85

90

95

100

105

110

115

120

125

0 100 200 300 400 500 600 700 800 900 1000

In
te

r-
A

ct
iv

at
io

n
T

im
es

 (
us

ec
)

�

Activation Number

Figure 1. Inter -Activ ation times for a task that
is woken up by a periodic signal with period� �>�>��� on a high resolution timer Lin ux.

Figure1 shows theinter-activation timesmeasuredwith
period ��� � �N�.��� on the high-resolutiontimer kernel.
Notethatafter

� �>�N� activationsthemaximumdifferencebe-
tweentheperiod andtheactualinter-activationtime is less
that �>�.��� .

We repeated this experiment with different periods
whereeachexperiment wasrun for

� �>�N�>�N�>�>� activations.
Thesenew experimentsshowedthatthedifferencebetween
the period and the inter-activation time doesnot signifi-
cantly dependon the period � . Figure2 shows the Prob-
ability Distribution Function(PDF) of the inter-activation

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 400 600 800 1000 1200 1400 1600

D
is

tr
ib

ut
io

n�

Inter-Activation Times (usec)

Figure 2. PDF of the diff erence between inter -
activ ation times and period, when �p� � �>�N�.��� .

timeswhen ��� � �>�N�.��� . The maximum measuredinter-
activation time is about

�<� �>�>��� , whereasthe minimum is
about � � �.��� , and this distribution does not significantly
varywith increasingnumber of activations.

We hypothesizethat the maximum deviation between
inter-activation times(about

�7� �>���) is dueto theOS non-
preemptablesectionlatency �G�	� . However, wedonotknow
theprecisecauseof thislatency sincewedidnotspecifically
control thebackground taskset.

Hence,we performeda new setof experimentsto mea-
surelatenciesdueto the various activities that cantrigger
longnon-preemptablepaths.

4.2. OSNon-PreemptableSectionLatency

In this setof experiments,we usedtheusleep() test
programdescribedin Section3.2with ��� � �>�>��� to mea-
sureandidentify thecausesof OSnon-preemptablesection
latency. We performedtheseexperimentson four different
kernels describedin Section2.2.2: 1) the standardLinux
kernel, 2) the Low-Latency Linux kernel,3) the Preempt-
ableLinux kernel,and4) the Preemptable Lock-Breaking
Linux kernel.RecallthattheLow-Latency kernelusesAn-
drew Morton’s Low-Latency patch[14] and the Preempt-
ableLinux kernel andthePreemptable Lock-Breakingker-
nel use RobertLove’s kernel preemption patch [11]. In
the following, we will refer to thosespecificpatchesusing
thenamespresentedabove. Thenext sectiondescribesthe
initial setof experimentsthat we performedto understand
whichactivitiescauselargeOSnon-preemptablesectionla-
tencies.Section4.2.2describesadditional experimentsthat
we performedto testthesensitivity of thesystemto theor-
derandthelengthof experimentalruns.

4.2.1 Initial Analysis

Theusleep() testprogramis startedonanunloadedma-
chine. Then the load-generating tasksdescribedin Sec-
tion 3.2 are run in the background to trigger long non-
preemptablepaths. To easily represent the latency results
in a singleplot per Linux variant,we useda background
loadthatwasgeneratedasfollows:

1. Thememorystresstestallocatesa large integer array
with a total size of 128 MB andaccessesit sequen-
tially. This teststartsat �< N > .¡[¢ , andfinishesaround£ N > .¡[¢ .

2. Thecaps-lock stresstestruns a programthatswitches
thecaps-lock LED twice. This testturnson theLED
at ¤4 N > .¡[¢ andthenturnsit off at ¥N > > >¡¦¢ .

3. The console-switch stresstest runs a program that
switches virtual consoleson Linux twice, first at§ N > .¡[¢ andthenat �< N > > >¡¦¢ .

4. The I/O stresstest usesthe read() andwrite()
systemcallsandaccesses

£
MB of data.Thisteststarts

at �>�	 > > >¡¦¢ andfinishesaround �<¨> N > >¡¦¢ .
5. Theprocfsstresstestreadsa512MB file in the/proc

file system.It runsfrom �#¤4 N > >¡¦¢ toaround �<¥> N > >¡¦¢ .
6. The fork test forks 512 processes.This test startsat£ N > > >¡¦¢ .
We rantheexperimentson a standardLinux kerneland

verified that the timer resolutionlatency ©3ª�«�¬!�® is gener-
ally larger than ©!¯	° andhidestheeffectsof disablingpre-
emption for a long time. Hence,high resolution timersare
neededto investigate© ¯	° .

We repeatedtheexperimentusinghighresolutiontimers
in the usleep() implementation, and we obtained the
resultsshown in Table1. The tableshows that the Low-
Latency kernel canreduce the latency during the memory
stresstestand the I/O stresstest, but doesnot reduce the
latency generatedby consoleswitch, by caps-lockswitch,
andby the procfs stress.On the otherhand, the Preempt-
ablekernel canreducethe latency generated by theprocfs
stress,but re-introduceslargelatenciesduring thememory
stress.Finally, theLock-Breakingkernelseemsto provide
someof thebenefitsof theLow-Latency kernel(thelatency
during thememorystressis low) togetherwith someof the
benefitsof thePreemptablekernel (for instance,thelatency
causedby the consoleswitch testandby the procfs stress
test).In summary, thelargestlatency is causedby thecaps-
lock stresstestandall otherlatenciesarewithin �<¡¦¢ .

Figure3 shows a graphical representationof the results
for the monolithic kernelwith high resolution timers and
providesfurther insight into the causesof latency (for the

 1

 10

 100

 1000

 10000

 100000

 1
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

 1
10

00

 1
70

00

 2
00

00

La
te

nc
y

(u
se

c)±

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 3. OS non-preemptab le section latenc y
measured on a high- resolution timer Lin ux.
This test is perf ormed with heavy backgr ound
load.

sake of brevity, we omit the plots for otherkernels, which
aresimilar to this one). For instance,thefigureshows that
thebig latency in thememory stresstestthatweseein Table
1 occurs only at thetermination of theprogram. We found
thatthesourceof this latency is themunmap() systemcall
whichunmapslarge memory buffers duringprogramexit.

4.2.2 Sensitivity Analysis

For sensitivity analysis,we performed additional experi-
mentsby runningthestressprogramsin several differentor-
dersandfor a differentlengths of time. Theconsoleswitch
andcaps-lock testsdid notshow any differencewith respect
to thevaluesin Table1, thusconfirming that:1) noneof the
evaluatedpatchesreducesthecaps-lockswitchlatency, and
2) the Preemptable andLock-Breakingkernelscanreduce
the consoleswitch latency with respectto the standardor
Low-Latency kernel.

Table2 shows the maximum OS non-preemptablesec-
tion latency measuredwhenrunningthememory stresstest,
the I/O stresstest,theprocfsstresstestandthe fork stress
test for a long time. The testswererun for 10 hours and
36000000 sampleswerecollected.Although theworstcase
valuesshown in Table2 arehigherthanin Table1, there-
sults are qualitatively similar. Thus, 1) the Low-Latency
kernel reducesthelatency duringthememory stresstestbut
not duringtheprocfs stressor during consoleswitch tests,
2) the Preemptable kernel reducesthe latency during the
procfs stressandduring consoleswitchtestsbut not during
thememorytest,and3) theLock-Breakingkernelreduces
all theselatencies.

Figure 4 shows the Cumulative Distribution Function

Memory Caps-Lock Console I/O Procfs Fork
Stress Caps-Lock Switch Stress Stress Stress

Monolithic ²<³N´µ²	´ ¶.·N³¹¸ ¶º²z· ´N¸>».¼>¶ ½N¾>³.· ´.¼N»
Low-Latency ¶>½ ¶>³>½º² ¶N³>¶ ½>³ ´>¼>¾.· ½>½N´
Preemptable ²#¸#·7¶7¸ ¶>¼µ²#´ ´µ²<½ ²<³¹¸ ½º² ½N´.¼
PreemptableLock-Breaking »4· ¶N»>´N» ´>¾7¸ ²<¶7´ ´.· ½µ²z·

Table 1. OS non-preemptab le section latencies (in ¿�À) for diff erent kernels under diff erent loads (test
run for 25 seconds).

MemoryStress I/O Stress ProcFSStress Fork Stress

Monolithic ²	³>¼N»>¶ ´>³>½µ²<· ½N»>¶>½ ¶µ²#¸
Low-Latency ´>¼>½ ´>¼N´ ½>½¹¸4¼ ».¼>¶
Preemptable ²	³>³.·7³ ½N¼N´ ´>´.· ¶.·7»
Preemptable Lock-Breaking ´>½>¼ ½7´>´ ´.½º² ».½7¸

Table 2. OS non-preemptab le section latencies (in ¿�À) for diff erent kernels under diff erent loads (tests
run for 10 hour s).

(CDF) ÁsÂ#Ã6Ä	Å8ÆÈÇ�É of theOSnon-preemptablesectionla-
tenciesmeasured during the I/O stresstest. Note that for
all thesethreekernelsthe probability of measuringlaten-
cieshigherthan ´.¾>¿�À	Ê	Ë is lessthan ¾µÌ ¾µ² . Thegraphshows
that that the PreemptableandLock-Breaking kernels have
lower latency with higher probability (the CDF increases
faster).For example, ÁsÂ	Ã Ä	Å ÆÍ²<¾>¿�À.É is ¾ºÌ ¼N¼.·N¶N¶ onaPre-
emptable kernel, ¾ºÌ ¼N¼N»4·0² on a Lock-Breakingkernel,and
¾µÌ ·>·º²4¸4¼N³ ona low-latency kernel.However, while notvisi-
blein Figure4, thesekernelshavelatency distributionswith
longer tails: for example, ÁsÂ#ÃGÄ	Å8ÆÎ·7¾.¿�À>É is ¾µÌ ¼>¼¹¸4¾>¼N¼ on
a Preemptable kernel, ¾ºÌ ¾ºÌ ¼N¼>³º²<¶N» on a Lock-Breakingker-
nel,and ¾µÌ ¼>¼N¼>³¹¸#· onalow-latency kernel.In thissense,the
Low-Latency kernelprovidesbetterreal-timeperformance.

5. Effectson a RealApplication

In this section,we examine theeffectsof theOSlatency
on a real Linux application. As a testapplication, we se-
lectedmplayer[1], an audio/video player that canhandle
several differentmediaformats.

Mplayer synchronizesaudio and video streamsby us-
ing timestampsthatareassociatedwith theaudioandvideo
frames. The audio card is usedas a timing source,i.e.,
audio samplesareput in the audio cardbuffer, andwhen
a video frameis decoded,its timestampis compared with
the timestampof thecurrently played audiosample.If the
video timestampis smallerthanthe audiotimestampthen
theprogramis late(i.e., a videodeadline hasbeenmissed)
andthevideois immediatelydisplayed.Otherwise,thesys-
tem sleepsuntil the video timestampandthe audiotimes-

tampareequalandthendisplaysthevideo.
Assumingno OS latency and a fast enough CPU, au-

dio/videosynchronizationcanbeachieved by simplysleep-
ing for the correct amount of time (and in fact mplayer
sleepsusingtheLinux usleep() call). Unfortunately, if
the OS latency is high, mplayerwill not be able to sleep
for thecorrectamount of time leadingto poor audio/video
synchronization.

To verify this hypothesis,we instrumented mplayerto
measurethe time whena videoframe is displayedandthe
differencebetweentheaudioandvideotimestampsat dis-
play time. Usingthis instrumentedversionof mplayer, we
performed someexperimentson a standard Linux kernel
(high latency) andon a lock-breaking preemptableLinux
kernel with high resolutiontimers (reduced latency). To
show theeffectsof theOSlatency, werantheI/O stresstest
asa competing load while running mplayer at the highest
real-timepriority. This testspendsabout ¼>¾¹Ï of its execu-
tion time in kernelmode.As describedin Section4.2, the
I/O stresstestperforms intensive file systemaccessesand
exacerbatesthekernel preemptability problem.

Figure5 shows thedifferencebetweentheaudio andthe
video timestampswhen the video frame is displayedfor
mplayerrunning onstandardLinux. OnstandardLinux, the
maximum differencebetweenaudio andvideotimestamps
is more than ³>¾N¾>¾N¾.ÐÑÀ , and the figure qualitatively shows
thereis a largevariancein this difference.Notethattheau-
dio/videoskew in mplayer canbenegative (by asmuchas
»4Ò[À) dueto the ²<¾>Ò¦À resolutionof thekerneltimers.

Figure 6 presentsthe resultsobtained using the lock-
breaking preemptableLinux kernel with high resolution

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Ó

Latency (usec)

OS Latency Distribution

Low-Latency
Preemptable

Preemptable Lock-Breaking
Standard

Figure 4. CDF of the latenc y measured on diff erent versions of Lin ux (with high resolution timer s).
This test is perf ormed with the I/O stress in backgr ound.

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

�

Video Frame Number

Audio/Video Synchronization

Firm Timers

Figure 5. Audio/Video Skew on standar d
Lin ux. Heavy kernel load is run in the back-
ground.

timers.In thiscase,thedifferencebetweenaudioandvideo
timestampsis significantlylower andthemaximum differ-
enceis lessthan ÔNÕNÕ.Ö�× .

Thesecondsetof resultsshow the inter-frametimes, i.e.
the differencebetweenthe displaytimesof a video frame
andthe previous frame. The expectedinter-frametime is
the process period Ø4Ù4Ú where Ú is the video frame rate.

In our experiments,we usedanMPEGmovie with a video
framerateof 30framespersecond. Thustheexpectedinter-
frametimeis Û>ÛºÜ Û>Ý¦× . Figure7 showstheinter-frametimes
obtainedusingstandardLinux. Since ÞBß�à�á!â�ã canbeup to
Ø<Õ>Ý¦× , we expect the inter-frame times to clusteraround
Û>Õ>Ý¦× and ÔNÕ>Ý¦× . However, the Þ�ä#å componentdueto the
background loadintroducesadditional variationin theinter-
frametimesandincreasesthesetimesto morethan Ø	Õ>Õ.Ý[×
(or Ø<ÕNÕ>Õ>ÕNÕ.Ö�×).

In contrast,Figure 8 shows the inter-frame times ob-
tained using the lock-breaking preemptable kernel with
high resolutiontimers. Theinter-frametimesareclustered
around the correct valueof Û>ÛºÜ Û>Ý¦× and their variation is
very low.

6. RelatedWork

Although we arenot awareof any previous systematic
studyof theLinux latency, someof theissueshighlightedin
thispaperhavebeenaddressedin thepastduringthedesign
of real-timeoperating systemsandreal-timeextensionsto
Linux.

In particular, many different real-timealgorithms have
beenimplemented in Linux and in other general purpose
kernels. For example, Linux/RK [15] implementsResource
Reservations in the Linux kernel, and RED Linux [26]
provides a generic scheduling framework for implement-

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

D
iff

er
en

ce
 B

et
w

ee
n

V
id

eo
 a

nd
 A

ud
io

 T
im

es
ta

m
ps

 (
us

ec
)

�

Video Frame Number

Audio/Video Synchronization

Firm Timers

Figure 6. Audio /Video Skew for loc k-breaking
preemptab le Lin ux with high resolution
timer s. Heavy kernel load is run in the back-
ground. The Audio/Video skew is clustered
around æ , and the maxim um skew is less thanç æ>æ>è?é (note that the scale is diff erent from Fig-
ure 5).

ing different real-timescheduling algorithms. Several pro-
portional sharescheduling mechanismshave beenimple-
mented[20, 22, 7, 25] in the FreeBSD,Linux, or Solaris
kernelsandDSRT [8] is auser-level schedulingsolution.

While implementingreal-timescheduling in general pur-
posekernels,the authors of the previous work noticedthe
latency problems, and someof the previous systemsad-
dressthem. For example, RED Linux insertspreemption
points in thekernel (transforming it to a Low-Latency ker-
nel),andTimesysLinux/RT (basedonRK technology)uses
full kernel preemptability for reducingtheOSlatency. Ker-
nel preemptability is alsousedby MontaVista Linux [23]
whosepreemptablekernel patchhasbeenrecentlyaccepted
in the2.5.4 kernel. It is worthnotingthattheadvantagesof
a preemptablekernel werealreadywell known in thereal-
time community [13]. Recently, therehasbeenrenewed
interestin the evaluation of theselatency-reduction tech-
niques. Concurrent with our work (and unknown to us),
ClarkWilliams fromRedHat[24] evaluatedLinux schedul-
ing latency in a mannersimilar to theonepresentedin this
paper. The main difference is that Williams usesa de-
composition of the OS latency that is different from ours
andhedoesnotexplicitly consider timer resolution latency.
Williams comesto similar conclusionsasus although his
numericalresultsareslightlydifferentfromourresults.One
probablereasonfor thisdiscrepancy is thatheusesadiffer-
entversionof thekernelpatchesandhedidnotusethelock-
breaking patch.We arestill investigatinghow his numbers
relateto our results.

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000

In
te

r
F

ra
m

e
T

im
e

(u
se

c)

Video Frame Number

Video Inter Frame Times

Standard Linux

Figure 7. Inter -Frame times for standar d
Lin ux. Heavy kernel load is run in the back-
ground.

A different approachfor reducing theOSlatency is used
by other systems,such as RTLinux [5], RTAI [12], and
KURT [19], which decreasethe latency by running Linux
asa background processover a small real-timeexecutive.
In this case,real-timetasksare not Linux processes,but
run on the lower-level real-timeexecutive, and the Linux
kernel runsasa nonreal-timetask. This solutionprovides
good real-timeperformanceto thereal-timetasksexecuting
in kernel space,butdoesnotprovideit tostandardLinux ap-
plications. Linux processesarestill nonreal-time,hencewe
believe thatRTLinux-like solutions arenot usablefor sup-
porting time-sensitiveapplicationsrunning in userspace.

As shown in Section4, the latency ê�ë�ì�í!î�ï due to the
timer resolutioncanbeeliminatedby usinghigh resolution
timers. For this reason, mostof theexisting real-timeker-
nelsor real-time extensions to Linux provide high resolu-
tion timers. The high resolution timers conceptwas pro-
posedby RT-Mach[17] andhassubsequentlybeenusedby
Rialto [10], RED Linux [26], RTLinux [5], andLinux/RK
[15] just to citesomeexamples.Moreover, MontaVistapro-
videsa patchfor the standardLinux kernel implementing
highresolutiontimers[4].

7. Conclusionsand Futur e Work

In thispaper, wehaveevaluatedthereal-timebehavior of
Linux by measuringthe latencyof variouskernelvariants.
This evaluationis important becauseit enablesthe appli-
cationof real-timeguaranteesto the Linux system,where
latenciesaremodeledasblocking times.

In the future, we plan on using preemptable lock-
breaking Linux (with a high resolutiontimersmechanism)
to implementa reservation-basedsystemthatprovidespre-

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000 2500 3000

In
te

r
F

ra
m

e
T

im
e

(u
se

c)

Video Frame Number

Video Inter Frame Times

Firm Timers

Figure 8. Inter -Frame times for loc k-breaking
preemptab le Lin ux with high resolution
timer s. Heavy kernel load is run in the back-
ground.

dictablescheduling. In addition, weplantoextendouranal-
ysis of OS latency to separatethe kernel non-preemptable
sectionslatency frominterrupt processingoverhead.Forex-
ample,in Linux, anintensive interrupt loadcancauselong
OS latenciesdueto the designof the interrupt processing
mechanism(ISRs, tasklets,and bottom halves). Prelimi-
naryresultsshow thattheeffectsof interrupt processingcan
be mitigated by using resource reservations together with
someadaptationstrategy [16, 3, 2].

References

[1] Mplayer- movie playerfor linux. http://www.mplayerhq.hu.
[2] L. Abeni. Coping with interrupt execution time in real-

time kernels: a non-intrusive approach. In Proceedingsof
theIEEE Real-TimeSystemsSymposiumWork-In-Progress,
London, UK, December 2001.

[3] L. Abeni andG. Lipari. Compensatingfor interruptprocess
timesin real-timemultimediasystems.In Third Real-Time
Linux Workshop, Milano, Italy, November2001.

[4] G. Anzinger. High resolutiontimersproject.http://high-res-
timers.sourceforge.net/.

[5] M. Barabanov and V. Yodaiken. Real-timelinux. Linux
Journal, March1996.

[6] F. S. Foundation. About free software.
http://www.gnu.org/philosophy/.

[7] P. Goyal, X. Guo,andH. M. Vin. A hierarchicalcpusched-
uler for multimediaoperatingsystems. In Proceedingsof
the2ndOSDISymposium, October1996.

[8] H. huaChuandK. Nahrstedt.CPUserviceclassesfor mul-
timediaapplications. In Proceedingsof the IEEE Interna-
tional Conferenceon MutimediaComputingand Systems,
Florence,Italy, June1999.

[9] T. Inc. Timesyslinux. http://www.timesys.com.

[10] M. B. Jones,J.S.B. III, A. Forin, P. J.Leach,D. Rosu,and
M.-C.Rosu.An overview of therialto real-timearchitecture.
In In Proceedingsof the SeventhACM SIGOPSEuropean
Workshop, Connemara,Ireland,September1996.

[11] R. Love. The linux kernel preemption project.
http://kpreempt.sourceforge.net/.

[12] P. Mantegazza, E. Bianchi,L. Dozio, andS.Papacharalam-
bous.RTAI: Realtime applicationinterface.LinuxJournal,
72,2000.

[13] C. W. Mercer and H. Tokuda. Preemptibilityin real-time
operatingsystems.In In Proceedingsof the13thIEEEReal-
TimeSystemsSymposium, December1992.

[14] A. Morton. Linux scheduling latency.
http://www.zip.com.au/akpm/linux/schedlat.html.

[15] S.OikawaandR.Rajkumar. Linux/RK: A portableresource
kernel in Linux. In Proceedingsof the IEEE Real-Time
SystemsSymposium Work-In-Progress, Madrid, December
1998.

[16] J. Regehr and J. A. Stankovic. Augmented CPU reserva-
tions:Towardspredictableexecutionongeneral-purposeop-
eratingsystems.In Proceedingsof the7th Real-TimeTech-
nology and ApplicationsSymposium (RTAS2001), Taipei,
Taiwan,May 2001.

[17] S. SavageandH. Tokuda. Rt-machtimers: Exportingtime
to theuser. In In Proceedingsof USENIX3rd Mach Sympo-
sium, April 1993.

[18] B. Senoner. Audio latency benchmark.
http://www.gardena.net/benno/linux/audio/.

[19] B. Srinivasan,S.Pather, R. Hill, F. Ansari,andD. Niehaus.
A firm real-timesystemimplementationusingcommercial
off-the-shelfhardwareandfreesoftware. In Proceedingsof
the IEEE Real-Time Technology and ApplicationsSympo-
sium, 1998.

[20] I. Stoica,H. Abdel-Wahab,K. Jeffay, S. K. Baruah,J. E.
Gehrke, andC. G. Plaxton. A proportional shareresource
allocationalgorithmfor real-time,time-sharedsystems.In
Proceedingsof the IEEE Real-Time SystemsSymposium,
December1996.

[21] L. Torvaldset al. Thelinux kernel. http://www.kernel.org.
[22] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:

Flexible proportional-shareresourcemanagement. In First
Symposiumon Operating SystemDesignand Implementa-
tion, pages1–12, November1994.

[23] B. Weinberg and C. Lundholm. Embeddedlinux - ready
for real-time. In Third Real-TimeLinux Workshop, Milano,
Italy, November2001.

[24] C. Williams. Linux scheduler latency.
http://www.linuxdevices.com/files/article027/rh-
rtpaper.pdf, Mar 2002.

[25] D. K. Y. Yau and S. S. Lam. Adaptive rate controlled
schedulingfor multimediaapplications.IEEE/ACM Trans-
actionson Networking, August1997.

[26] Yu-ChungandK.-J. Lin. Enhancing the Real-Time Capa-
bility of the Linux Kernel. In Proceedingsof the IEEE
RealTimeComputingSystemsandApplications, Hiroshima,
Japan,October1998.

