
Sidewinder: An Energy Efficient and Developer Friendly
Heterogeneous Architecture for Continuous Mobile Sensing

Daniyal Liaqat
University of Toronto

dliaqat@cs.toronto.edu

Silviu Jingoi
University of Toronto
silviu@cs.toronto.edu

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

Ashvin Goel
University of Toronto

ashvin@eecg.toronto.edu

Wilson To
University of Toronto

wilson.to@mail.utoronto.ca

Kevin Lee
University of Toronto

kevinalexander.lee@mail.utoronto.ca

Italo De Moraes Garcia
University of Toronto

italo.demoraesgarcia@mail.utoronto.ca

Manuel Saldana
Huawei

manuel.saldana@huawei.com

Abstract
Applications that perform continuous sensing on mobile phones
have the potential to revolutionize everyday life. Examples range
from medical and health monitoring applications, such as pedome-
ters and fall detectors, to participatory sensing applications, such
as noise pollution, traffic and seismic activity monitoring. Unfor-
tunately, current mobile devices are a poor match for continuous
sensing applications as they require the device to remain awake for
extended periods of time, resulting in poor battery life. This pa-
per presents Sidewinder, a new approach towards offloading sensor
data processing to a low-power processor and waking up the main
processor when events of interest occur. This approach differs from
other heterogeneous architectures in that developers are presented
with a programming interface that lets them construct application
specific wake-up conditions by linking together and parameteriz-
ing predefined sensor data processing algorithms. Our experiments
indicate performance that is comparable to approaches that provide
fully programmable offloading, but do so with a much simpler pro-
gramming interface that facilitates deployment and portability.

Categories and Subject Descriptors C.1.3 [Processor Architec-
tures]: Heterogeneous (hybrid) systems

Keywords Mobile Computing, Continuous Sensing, Energy Effi-
ciency, Heterogeneous Architecture

1. Introduction
Modern smartphones are fitted with a wide assortment of sensors.
A typical smartphone, such as the LG Nexus 5, contains an ac-
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celerometer, barometer, compass, gyroscope, proximity sensor, am-
bient light sensor, hall effect sensor, geo-spatial positioning sensors
(GPS, GLONASS, Beidou), a microphone and two cameras. De-
spite having such a rich array of sensors, most of them go unused
most of the time. The way smartphones are typically used is that the
user will open an application such as a game, news or social me-
dia application, interact for a few minutes and then put their device
to sleep. Taking advantage of this usage pattern, mobile proces-
sors have been heavily optimized to rely on a low-power sleep state
when not in use in order to improve battery life.

While this approach has fared well with how devices are cur-
rently used, it falls short in the face of emerging continuous sens-
ing applications, examples of which range from context-aware ap-
plications [11, 16], such as medical applications that improve our
well-being [15, 26, 32] to applications that use participatory sens-
ing to get a better understanding of the physical world, such as
noise pollution monitoring [21, 22], traffic prediction [17] or earth-
quake early warning [23]. While the processing demands of these
applications are modest most of the time, they require continuous
collection of sensor data, which prevents the processor from en-
tering its’ low-power sleep state, resulting in poor battery life and
ultimately, a slow emergence of continuous sensing applications.

It is generally accepted that the solution to this problem lies
in a heterogeneous architecture where one or more low-power, pe-
ripheral processors (known as a sensor hub) collect and process
sensor data while the main processor is in its sleep state. When
the low-power sensor hub detects an event of interest, it wakes
up the main processor, allowing for further processing of sen-
sor data. The programming model for this heterogeneous architec-
tures remains, however, an open research question. On one end of
the spectrum, researchers have proposed a fully programmable
model [19, 27, 31] that allows application developers to write arbi-
trary code that runs on the low-power processor. While this would
provide potentially great flexibility and power savings, there are
many drawbacks. Application developers would not only have to
be familiar with programming the low-power processor, they would
have to account for hardware differences between devices. It is also
unclear how this model would support different applications that



are running concurrently. On the other end is predefined activity,
an approach where hardware manufacturers provide a low-power
processor which is hardwired to detect a few specific events. Both
Apple and Android provide frameworks for detecting predefined
activities such as significant motion and steps [2, 3]. Another ex-
ample is the Motorola Moto X smartphone [7, 10] that has a ded-
icated Natural Language Processor which is used to wake up the
device when the user says a certain phrase such as “OK Google
Now”. Such frameworks are very easy to use from a developer’s
point of view and provide significant energy savings, but they are
very limited because they only allow detection of events that have
been pre-programmed into the device by the manufacturer.

This paper presents Sidewinder, a new approach for continuous
mobile sensing that splits the work of energy-efficient event de-
tection between the platform and the application developer. With
Sidewinder, the platform implements common sensor data process-
ing algorithms (e.g., windowing, noise reduction, feature extrac-
tion, admission control) that execute on a low-power sensor hub,
and application developers construct custom wake-up conditions
by linking together and parameterizing these sensor data process-
ing algorithms. The custom wake-up conditions execute on the low-
power sensor hub and, when events of interest are detected, the
main processor is woken up and the rest of the application code is
invoked.

While heterogeneous architectures have been used previously,
the innovation in Sidewinder is the collaborative approach where
the platform provides sensor processing algorithms and developers
parameterize and chain these algorithms together to create wake-up
conditions. Processing algorithms are written natively for the low-
power sensor hub so application developers do not need to worry
about writing code for the underlying heterogeneous architecture.

To evaluate the benefits of Sidewinder, we developed applica-
tions that use accelerometer readings or audio data to detect several
events of interest. Additionally, we built a prototype implementa-
tion that extends a Nexus 4 phone with a low-power sensor hub.
To enable us to conduct controlled and repeatable experiments,
we mounted our prototype on a robot. Simulations conducted on
accelerometer and audio traces collected in various environments
show that Sidewinder can reduce the average energy required to
run continuous sensing applications by up to 96% compared to
keeping the phone awake at all times, while matching the detec-
tion recall and precision of the always on approach. Moreover, for
most of our usage scenarios, Sidewinder achieves over 90% of the
power savings achieved by a “perfect” wake-up mechanism, indi-
cating that an implementation that supports custom code offloading
will achieve only marginal additional improvements.

The rest of this paper is organized as follows. Section 2 de-
scribes the Design of Sidewinder and 3 describes how we imple-
mented the design. Sections 4 and 5 present our evaluation method
and results. Finally, Sections 6 and 7 describe our work in the con-
text of related work and conclude the paper.

2. Design
Continuous mobile sensing approaches have to address two main
constraints: maximizing detection accuracy and minimizing energy
consumption. Users expect high precision and recall and user ex-
perience is adversely affected when the application misses or over-
reports events of interest. Achieving both high recall and precision
requires highly specialized algorithms tuned to the event of interest.
Specifically, our experience suggests that getting the last few per-
centage points in precision and recall is difficult and requires com-
plex algorithms and fine parameter tuning. Additionally, these com-
plex algorithms typically run on a fully featured processor, which
is detrimental to battery life since a large portion of energy savings
comes from keeping the main processor in a sleep state.

Applications

Sidewinder Sensor Manager

Low-Power Sensor Hub

Runtime

Processing Algorithms

Processor/DSP/FPGA/Microcontroller

Sensors

Figure 1: Proposed system architecture. The sensor manager is part
of the OS, and the Sensor Hub and Sensors are hardware provided
by the manufacturer

We achieve our two main goals (energy efficiency and high pre-
cision/recall) by using a multi-stage pipeline of algorithms to create
a more complex classifier. Earlier stages are used to achieve the ma-
jority of available energy savings and later stages can then optimize
for high detection precision and recall. For example, a voice recog-
nition algorithm may have three stages, the first stage determines
if microphone data contains sound, the second stage determines if
the sound is human speech and the third stage converts the speech
to text. The first two stages are relatively simple and can be run on
a less powerful, more energy efficient processor. They have high
recall but may have low precision (i.e. they will let through a high
proportion of events that contain speech, but not all events passed
through will contain speech). Since the first two stages are run on
a low-power processor and reduce the amount of time the main
processor has to be awake, this will result in an overall saving of
energy.

Based on this observation, Sidewinder encourages continuous
mobile sensing applications to be structured as pipelines of pro-
cessing algorithms of increasing complexity: simple yet high re-
call, moderate precision algorithms that run continuously on a low-
power sensor hub, providing energy efficient wake-up mechanisms
for higher complexity algorithms that run on the main CPU and
provide both high recall and high precision.

To facilitate the creation of wake-up conditions capable of run-
ning on a low-power sensor hub, Sidewinder provides a set of com-
monly used sensor data processing algorithms that are ready to
run on the sensor hub. These algorithms can be parameterized and
chained together to create wake-up conditions.

We conjecture: 1) that it is possible to implement custom wake-
up conditions for a wide range of applications by configuring a
small set of common processing algorithms; and 2) that this ap-
proach will achieve comparable energy savings to an alternative
implementation that supports full programmability.

2.1 Sidewinder
Sidewinder is a new approach for continuous mobile sensing that
divides the responsibility of energy-efficient event detection be-
tween the manufacturer and the application developer. The man-
ufacturer provides a low-power sensor hub and implements com-
mon sensor data processing algorithms that execute on the sensor
hub. Applications construct custom wake-up conditions for events
of interest in their application code. These wake-up conditions are
then pushed to and executed continuously on the low-power sensor



hub and, when events of interest are detected, the main processor is
woken up and the application code is notified.

Figure 1 shows the architecture of a system that uses Sidewinder.
Applications interact with a sensor manager to define a custom
wake-up condition. The manager contains an API for parameter-
izing and chaining algorithms that are available on the low-power
sensor hub. Developers can use this API to create their wake-up
conditions. The low-power sensor hub contains commonly used
algorithms for windowing, filtering, transformations, feature ex-
traction and admission control. Once configured by the developer,
the wake-up condition is converted into an intermediate language
by the sensor manager and pushed to a runtime or interpreter on the
low-power sensor hub. When running on the sensor hub, the cus-
tom wake-up condition wakes the main CPU if an event of interest
occurs.

We next describe the components of Sidewinder based on
whether their implementation is the responsibility of the device
manufacturer, the operating system, or the application developer.

2.1.1 The Manufacturer
The manufacturer is responsible for providing the hardware and
software of the low-power sensor hub. The hardware could be a net-
work of one or more processors, Digital Signal Processors (DSP),
FPGAs or microcontrollers. For example, there could be one larger
processor to handle all sensors and algorithms or a DSP for the
microphone and an FPGA for each of the other sensors. The man-
ufacturer also needs to provide a runtime to manage this hardware
and an implementation of common sensor data processing algo-
rithms. The runtime needs to be able to receive wake-up condition
configurations from applications, configure the hardware and algo-
rithms, execute the resulting wake-up condition and notify applica-
tions when an event of interest occurs.

The runtime could use an interpreter approach where it exe-
cutes each algorithm, a compiler approach where it generates an
executable or it could reconfigure FPGAs according to the require-
ments of the wake-up condition and the hardware available. In the
case of FPGAs the algorithms will most likely be pre-compiled
and the runtime would need to reconfigure according to the spe-
cific configuration.

The runtime provides a decoupling layer between the mobile
platform (Android, iOS, etc.) and the hardware since the runtime
is responsible for managing the hardware. And since the manufac-
turer will be providing both the runtime and hardware, any archi-
tecture for the low-power sensor hub can be used.

2.1.2 The Application Developer
The application developer creates custom wake-up conditions for
their event(s) of interest. One important aspect of Sidewinder is
that common sensor data processing algorithms are provided to the
developer by the platform. This means for example, if the developer
needs to use an FFT, they do not need to implement it themselves
or find a library. Instead, they would use the system API to create a
wake-up condition that uses an FFT. The API allows developers to
parametrize the FFT and if needed, chain it with other algorithms
together to create more advanced wake-up conditions. They can
then use the API to push their wake-up condition to the low-power
sensor hub.

Because wake-up conditions are defined by configuring generic
algorithms designed to support a large set of applications, as op-
posed to writing custom code specific to any application, their per-
formance may be suboptimal by design. To ensure that user expe-
rience is not adversely affected when the application misses events
of interest, application developers should create conservative wake-
up conditions that provide for high recall at the expense of lower
precision. This approach will ensure that no events of interest are

overlooked, but will result in some unnecessary wake-ups, i.e., false
positives. Therefore, to ensure that the application does not ad-
versely affect user experience by over reporting, additional filtering
needs to be executed on the main processor on a wake-up event to
eliminate any false positives. In Section 5, we show that while the
moderate precision of wake-up conditions does result in additional
energy use, the approach is nevertheless able to achieve 90% of the
power savings achieved by an “ideal” wake-up mechanism.

2.1.3 The Operating System
The operating system needs to provide the API (part of the Sen-
sor Manager in Figure 1) that allows developers to create wake-
up conditions and push/receive data to/from the low-power sensor
hub. A wake-up condition is pushed to the sensor hub in the form
of an intermediate code to decouple the platform from the hub. The
operating system will also need to provide a driver to allow com-
munication with the hardware. Depending on the mobile platform
(Android, iOS, Windows 10 Mobile), it is likely that the manufac-
turer will provide the driver.

2.2 Advantages
Sidewinder has many benefits:

Lower programming complexity. Programming complexity is
decreased because application developers can use the predefined
processing algorithms, rather than implementing their own. The
intermediate language makes Sidewinder language independent so
that developers can write their classifier in the same language as
their application.

Better optimization. The hardware and software of the low-
power processor is implemented by the manufacturer, allowing for
much greater optimization by experts.

Better security. Providing access to these algorithms via an API
has significant security advantages over the fully programmable
offloading approach because application developers cannot execute
arbitrary code on the low-power processor.

Improved portability. Programmers do not have to be aware
of the specifics of the underlying hardware, nor create a version
for every type of platform. Manufacturers are free to use any type
of hardware they want (processor, DSP, FPGA or networks of
processors/DSPs/FPGAs) as long as it can interpret and execute
the intermediate language.

3. Implementation
In this section we outline our implementation of the components

mentioned in the design section. We also describe the applications
we developed to evaluate Sidewinder. We implemented Sidewinder
on the Android platform. It is important to note that there are
many different valid implementations of our design, ours is just
an example of a valid implementation.

3.1 Sensor Manager
The Sidewinder sensor manager is based off the Android sensor
manager [8]. It contains information about the available sensors
and processing algorithms and gives developers access to them via
the API.

3.2 API
The API allows developers to create wake-up conditions. It con-
tains four major components:

• ProcessingP ipeline. This represents the entire wake-up con-
dition from the input sensors to the final output. The pipeline
consists of one or more processing branches.
• ProcessingBranch. Branches represent the flow of data from

either a sensor to an algorithm or between two algorithms. At



(a) Java representation

ACC X ACC Y ACC Z

movingAvg movingAvg movingAvg

vectorMagnitude

threshold

OUT

(b) Conceptual representation

ACC_X -> movingAvg(id=1, params={10});
ACC_Y -> movingAvg(id=2, params={10});
ACC_Z -> movingAvg(id=3, params={10});
1,2,3 -> vectorMagnitude(id=4);
4 -> minThreshold(id=5, params={15});
5 -> OUT;

(c) Intermediate representation

Figure 2: Various representations of a Significant motion pipeline

the start of the classifier pipeline, there may be any number of
branches, each receiving data from any of the available sensor
channels. At the end of the pipeline, there must be only one
branch remaining. This means that if the pipeline contains mul-
tiple branches, aggregation algorithms need to be used to reduce
the number of branches until a single branch is left.
• Algorithm. An algorithm is some operation that accepts one or

more branches and produces one branch. For example, a mov-
ing average or admission control (threshold) algorithm accepts
one branch and produces one branch. A vector magnitude algo-
rithm accepts one or more branches and produces one. At the
API level, these algorithms are simply stubs that represent the
algorithm implantations at the low-power processor level.
• SensorEventListener. This is the Android SensorEventLis-

tener. It is a callback method that is registered with the sensor

manager that will be called when the custom wake-up condition
is satisfied.

An example of a significant motion wake-up condition is given
in Figure 2a. A conceptual diagram of the condition is given in
Figure 2b. First a ProcessingPipeline object is created. Next, three
branches, one for each axis of the accelerometer are created and
each branch is given one axis as its source. Then, three Movin-
gAverage algorithms are created, each with window size of 10, and
one MovingAverage is added to each of the branches. A Vector-
Magnitude object and MinThreshold object are also created. The
order in which these algorithms and branches are added to the Pro-
cessingPipeline specify how they are chained together. Since the
MinThreshold is the last algorithm in the pipeline, if it produces any
result, the callback method will be invoked. Now that the pipeline



is configured, it, along with a SensorEventListener, is pushed to the
SidewinderSensorManager.

3.3 Intermediate language
The intermediate language allows decoupling between the sensor
manager and the low-power processor implementation. Upon re-
ceiving a wake-up condition configuration, the sensor manager gen-
erates its associated intermediate code. The intermediate code for
the significant motion wake-up condition is shown in Figure 2c.
Having the intermediate code allows developers to write their con-
ditions in the same language as their application. In the interme-
diate code, each algorithm has a unique ID (generated by the sen-
sor manager). In the example, the moving average algorithms are
given IDs from 1, 2 and 3. Then the vector magnitude is setup to
receive data from algorithms 1, 2 and 3 and the result of the vector
magnitude is given to the admission control algorithm. Finally, the
admission control algorithm is fed to OUT. A value being sent to
OUT indicates that an event of interest has occurred and the main
processor should be woken up.

3.4 Hardware
Our prototype is built around a Google Nexus 4 phone running
Android 4.2.2. Since the Nexus 4 does not have an easily pro-
grammable sensor hub built in, we implemented our low-power
sensor hub using a Texas Instruments (TI) MSP430 or LM4F120
microcontroller attached to an accelerometer sensor and a micro-
phone. We chose to focus our efforts on these sensors because in
our experience they are the most commonly used.

The Nexus 4 and microcontroller communicate over the UART [9]
port made available by the Nexus 4 debugging interface via the au-
dio interface jack. The serial connection provides sufficient band-
width to support low bit-rate sensors, such as the accelerometer,
a microphone or GPS. However, extending the prototype to work
with higher bit-rate sensors like the camera would require a higher
bandwidth data bus, such as I2C [6].

3.5 Runtime
The main responsibility of the Sidewinder runtime is to execute the
intermediate language. In this regard, the implementation of the
runtime is very flexible. Our implementation of the runtime resem-
bles a simple interpreter (written in C). It contains implementations
of algorithms and a list of all available algorithms. Upon receiving
a new configuration, the runtime allocates memory for each algo-
rithm in the configuration. The interpreter then waits for sensor data
to be available and feeds the data into the appropriate algorithm. If
the algorithm produces a result, it sets a flag. The interpreter checks
the flag and if necessary sends the result to the next algorithm. The
flag is required because some algorithms may not always produce
a result. A moving average with a window size of N will not pro-
duce a result until it has received N data points and a threshold will
only produce a result when the threshold is met. The final algo-
rithm feeds into OUT, indicating that the main processor should be
woken up.

3.6 Processing Algorithms
Our algorithms are written in C and packaged with the runtime.
Each algorithm operates on its own instance of a data structure.
The data structure is created by the runtime and stores the algorithm
ID, type, size, data, whether a result is available and the result. It
can also contain any other data needed by the algorithm. Each time
the algorithm needs to be run, the interpreter invokes the algorithm
and passes it its data structure. The algorithm operates on the data
available in the structure and, if required, stores the result in the
structure and sets the hasResult flag. We implemented the following
algorithms:

• Windowing Partitioning sensor data into rectangular or Ham-
ming windows.
• Transform

Fast Fourier Transform (FFT) from time-domain to frequency-
domain

Inverse Fast Fourier Transform (IFFT) from frequency-
domain to time-domain.

• Data Filtering
Noise-reduction algorithms such as a moving average and
exponential moving average.

FFT-based low-pass filtering.

FFT-based high-pass filtering.
• Feature Extraction

Magnitude of acceleration vector computation.

Zero Crossing Rate computation.

A set of statistical functions.

Determination of magnitude of dominant frequency.
• Admission Control Configurable high or low thresholds.

3.7 Applications
We developed six applications to run on the mobile device and, for
each of the applications, we constructed a wake-up condition using
the algorithms presented in Section 3.6.

3.7.1 Accelerometer Applications
We decided to use a robotic dog to conduct controlled and repeat-
able experiments. We developed three applications that detect ac-
tivities that an AIBO ERA 210 robot can perform: walking, pos-
ture transitions, and headbutts. We chose these actions because they
have similar acceleration signatures to human activities. It should
be noted that, although classifiers to detect these activities will be
similar (i.e. similar sensors used, similar algorithms and order of
algorithms), each classifier requires its algorithms be parametrized
specifically to the activity. This reinforces that a small set of algo-
rithms can be used for numerous classifiers based on how they are
chained and parameterized.

A walking robot has a similar acceleration signature as a human,
though at a lower intensity. The headbutts are meant to represent
very infrequent human actions such as falling. We found that robot
stance transitions between the normal and sitting postures are very
similar in their acceleration signature to humans sitting down and
standing up. In Section 5 we show that the energy saving measured
in our experiments with the robot approximate closely the results
of experiments conducted on limited traces collected from human
subjects.

Steps Counts how many steps the robot takes when it walks.
The algorithm is based on the human step detection algorithm pro-
posed by Ryan Libby [18]. The application takes in raw accelerom-
eter readings and applies a low-pass filter on the x-axis accelera-
tion. It then searches for local maxima in the filtered x-axis acceler-
ation. Local maxima between 2.5m/s2 and 4.5m/s2 are detected
as steps.

Transitions Detects transitions between sitting and standing.
The application monitors changes in acceleration due to gravity
on the y and z axes to determine the orientation of the device. If
the z-axis (up-down relative to the dog) acceleration is between
9m/s2 and 11m/s2, and the acceleration on the y-axis (front-
back relative to the dog) is between −1m/s2 and 1m/s2, the
device is in a horizontal position and the robot is assumed to
be in a standing posture. Similarly, if the z-axis acceleration is



Steps

3-Axis Accelerometer

Feature Extraction
x = x-axis Acceleration

Noise Reduction

Admission Control
threshold <= x <= threshold

Headbutt

3-Axis Accelerometer

Feature Extraction
y = y-axis Acceleration

Noise Reduction

Admission Control
y <= threshold

Transitions

3-Axis Accelerometer

Feature Extraction
y = y-axis Acceleration

z = z-axis Acceleration

Noise Reduction

Admission Control
threshold <= y <= threshold

threshold <= z <= threshold

Sirens

Microphone

Windowing

High Pass Filter

FFT

Feature Extraction
f = dominant frequency

y = magnitude of f

n = mean magnitude of FFT bins

Admission Control
threshold <= f <= threshold

m/n >= threshold

Music and Speech

Microphone

Windowing

Stat Function
Vamp = Variance of Amplitude

Microphone

Windowing

Feature Extraction
zcr = Zero crossing rate

Stat Function
Vzcr = variance of zcr

Admission Control
threshold <= Vzcr <= threshold

threshold <= Vamp <= threshold

Figure 3: Wake-up conditions pipelines for each of the applications.

between 7.5m/s2 and 9.5m/s2, and the acceleration on the y-
axis is between 3.5m/s2 and 5.5m/s2, the device is in an angled
position and the robot is assumed to be in a sitting posture. The
application detects transitions by looking for posture changes.

Headbutts Detects a sudden forward head movement. The ap-
plication monitors the y-axis acceleration and searches for local
minima between −3.75m/s2 and −6.75m/s2.

3.7.2 Audio Applications
We developed the following three microphone based applications.

Siren Detector Detects sirens originating from emergency ve-
hicles. The application applies a 750 Hz high-pass filter in order to
remove a significant potion of sounds that aren’t sirens. The data in
each window is transformed to the frequency domain using a FFT
in order to extract the magnitude of the dominant frequency and
the mean magnitude of all frequency bins. The ratio of the magni-
tude of the dominant frequency and the mean frequency is used to
determine if the window contains pitched sounds. Pitched sounds
between 850 Hz and 1800 Hz that last longer 650 ms are classified
as sirens.

Music Journal Creates a list of all the songs heard during
the day using the web services provided by Echoprint.me [4].
Audio data is partitioned into windows and passed to two branches
for feature extraction. The first branch computes the variance of
the amplitude over the entire window. The second branch further
partitions the data into smaller windows and computes the zero
crossing rate (the rate at which the signal changes from positive
to negative or vice versa) for each sub-window. It then calculates
the variance in zero crossing rate across the set the sub-windows.
Finally, an admission control step uses thresholds (different for
music and speech detection) on the extracted features to determine
if an event of interest has occurred. Data is then passed to the
Echoprint.me web service to identify the song.

Phrase Detection Similar to Music Journal, except different
parameters are used in the wake-up condition and Google Speech
API was used for speech-to-text translation.

We created a wake-up condition for each of these six applica-
tions using the processing algorithms described in section 3.6. Fig-

ure 3 shows the conceptual pipeline representation for each con-
dition we constructed. Each one ends with an admission control
step with configurable thresholds. The wake-up condition is satis-
fied when the relevant data or extracted features meet the admission
control threshold.

3.8 Discussion
This section describes important questions that will need to be
answered by hardware vendors to implement Sidewinder.

Identifying processing algorithms. Defining the appropriate
set of common algorithms that should be included in the API and
executed on the low-power processor for each sensor is a key chal-
lenge. First, there is a trade-off between algorithm generality and
accuracy. Simple generic algorithms can support a large set of ap-
plications, albeit no specific application is likely to experience op-
timal performance. Conversely, a highly specialized algorithm may
provide optimal performance but is only applicable to a limited
set of applications. Second, there is also a trade-off between al-
gorithm complexity and power savings. More complex algorithms
can reduce energy consumption by preventing unnecessary wake-
ups due to increased accuracy. On the other hand, more complex
algorithms have higher computational demands, which require a
larger and hungrier peripheral processor.

While determining the complete set of algorithms to be included
as part of the runtime is beyond the scope of this paper, we antic-
ipate that it will include algorithms for windowing, data filtering,
feature extraction, admission control and transformations. Ideally,
this set of algorithms should be standardized by the platform (ex.
Android or iOS).

Access to sensor data. A related question is determining what
data the sensor hub should pass to the application following a wake-
up. Some applications may be interested in the raw sensor data,
while others may want to use the filtered data or extracted features.
Ideally, an API would allow developers to specify what data their
application should receive when an event of interest occurs. Our
current implementation passes a buffer of raw sensor data to the
application.

Sizing. When creating the sensor node of the prototype im-
plementation we evaluated two microcontrollers having different



power consumption levels. We noticed that the lower power mi-
crocontroller was not able to run some algorithms (such as Fast
Fourier Transforms) in real-time. Determining the optimal number,
type and size of processors to include in the sensor hub is an open
research question. Each sensor (or small group of related sensors)
may be supported by its own dedicated low-power processor. Al-
ternatively, a larger processor could be used to serve the entire sen-
sor hub. Identifying a sweet spot between the maximum number of
concurrent algorithm executions, energy budget, cost and physical
size of the sensor node is an open challenge and is a decision the
hardware manufacturer will have to make.

Sensor fusion. Fusing inputs from multiple sensors is a com-
mon technique used for improving the accuracy of sensing applica-
tions. Whether low power sensor hubs should include support for
sensor fusion, however, is not clear. On the one hand, such sup-
port could increase energy efficiency by reducing the occurrence
of unnecessary wake-ups. On the other, sensor fusion tends to be
application specific and the added complexity may negate any en-
ergy benefits. The current implementation allows sensor fusion at
the main processor level. Once a wake-up condition triggers and
passes raw data to the application, the application has the ability to
run sensor fusion algorithms on the data.

4. Evaluation
Our evaluation is based on a trace-driven simulation. We measured
power usage for our hardware to create a power model and col-
lected accelerometer and audio traces. This data was fed into our
simulator which modeled the behavior and power consumption of
our devices under various configurations and applications.

We power profiled the Google Nexus 4 in order to create a
model to estimate power consumption based on the outputs from
the simulator. The results of the power profile are summarized in
Table 1. During all the measurements, the devices’ screen, WiFi
and GPS were turned off. While the device is sleeping, its power us-
age is very low, consuming only 9.7 mW. While awake, the power
consumption is significantly higher, averaging 323 mW. During
our power measurements we noticed that additional energy is con-
sumed during transitions between the asleep and awake states. Each
transition takes about 1 second. During a wake-up transition, the
average power consumption goes up to 384 mW, while during an
awake-to-asleep transition the average power consumption is 341
mW.

We implemented the low-power processor on two different mi-
crocontrollers. One was a Texas Instruments (TI) MSP430 and the
other a TI LM4F120. The MSP430 has the advantage of requir-
ing very little power, consuming only 3.6 mW while awake. How-
ever, it has limited memory and cannot perform complex analysis
of sensor data in real-time. In our tests, it was unable to run the FFT-
based low-pass filter in real-time. The TI LM4F120 is powered by a
Cortex-M4 processor. It can batch a higher number of accelerome-
ter readings and can run all our filters in real time. However, this mi-
crocontroller has an energy footprint an order of magnitude greater
than the MSP430, consuming an average of 49.4 mW while awake.

4.1 Trace Collection
Audio traces We collected three half-hour audio traces in different
environments: an office, a coffee shop and outdoors. We used audio
mixing software to add audio events of interest to the collected
traces. The audio events of interest include music (5% of each
trace), speech (5% of each trace), and sirens (2% of each trace).
The events of interest were randomly selected from a library of
audio files.

Human accelerometer traces We collected six hours of ac-
celerometer traces from three different individuals while they per-
form routine daily activities: morning commute using public tran-

Figure 4: Aibo robotic dog used for data collection

sit, working in a retail store, and working in an office. Between
20% and 37% of each trace is spent walking.

Robotic accelerometer traces We collected synthetic traces by
having a robot perform multiple runs with a prototype smartphone
attached to its back. For each run, the robot logged the start and
end of each action, which we use as the ground truth for our ex-
periments. The smartphone ran an application that kept the device
always awake and continuously recorded accelerometer readings
for all three axes.

To enable us to conduct controlled and repeatable experiments,
we mounted the prototype smartphone on the back of an AIBO
ERA 210 robot dog (see Figure 4). Because the robot’s actions
can be scripted, this setup provides an efficient and reliable way
to determine ground truth. In contrast, labeling data collected from
human subjects with ground truth is error prone and labor intensive.

In each run, the robot performed five different actions: standing
idle, walking, sit-to-stand transitions, stand-to-sit transitions, and
headbutts. We created runs with three different levels of activity.
Runs in groups 1, 2 and 3 spent 90%, 50% and 10% of the time
standing idle, respectively. The reminder of the time was allocated
as follows: 73% for walking, 24% for transitions between sitting
and standing, and 3% for headbutts. This setup allows us to exper-
iment with detecting actions that are common, somewhat frequent,
and rare. In total, the robot executed 18 different runs: 9 for group 1,
6 for group 2 and 3 for group 3. We generated more runs for groups
1 and 2 because of the lower activity levels compared to group 3.
To eliminate bias, the list of actions was generated randomly for
each run, based on the expected probabilities of each action.

While our robotic testbed allows us to run live experiments,
we chose instead to use trace-based simulation for several reasons.
First, it took the robot close to an hour to complete a single exper-
iment. Secondly, a thorough exploration of the configuration space
of the various sensing approaches we consider would have required
months of continuous live experiments. Moreover, taking fine grain
power consumption measurements while the robot is in motion is
not trivial.

4.2 Configurations
We used the simulator to evaluate the recall and precision of our
applications under the following configurations.

• Duty Cycling The applications wake-up at fixed time intervals
to collect sensor data for 4 seconds and run the event detection



State Average Power Consumption (mW) Average Duration

Awake, running sensor-driven application 323 N/A

Asleep 9.7 N/A

Asleep-to-Awake Transition 384 1 second

Awake-to-Asleep Transition 341 1 second

Table 1: Google Nexus 4 power profile.

algorithms. If an action is detected, the phone is kept awake for
another 4 seconds, otherwise it goes to sleep for N seconds. N
is referred to as the sleep interval. For our experiments, we use
a sleep interval of 2, 5, 10, 20 and 30 seconds. As the sleep
interval increases, more power is saved but recall suffers.
• Batching Similar to Duty Cycling, except when the phone is

asleep sensor data is cached. When the device wakes, a batch
of data from the sleep cycle is given to the application. We use
the same sleep interval for Batching Cycling as we did for Duty
Cycling.
• Predefined Activity This configuration simulates the Android’s

built-in significant motion detector. We constructed simple clas-
sifiers to wake up the device and invoke the callback method in
the application when significant activity is detected (significant
acceleration or sound).
• Sidewinder based Classifier For each of the applications, we

constructed wake-up conditions to invoke the application when
events of interests are detected.
• Oracle A hypothetical ideal implementation that only wakes

up when the event of interest occurs. Such a wake-up condi-
tion would achieve perfect detection precision and recall, with
the lowest possible power consumption. The difference between
the power consumption of this method and the Sidewinder con-
figuration provides an upper bound on the potential additional
benefits of custom code offloading.

4.3 Metrics
For each sensing approach and trace, the simulator calculated the
amount of sleep and awake time, the total number of wake-up
events, and the recall and precision of the application. Using this
data and the energy model derived from measurements of our pro-
totype, we estimate the average power consumption. For the Duty
Cycling experiments, the power model accounts only for the energy
consumption of the Nexus 4. For Batching and Predefined Activ-
ity, the model also includes the cost of a low-power TI MSP430
microcontroller. Finally, experiments configured to use Sidewinder
include the cost of the TI MSP430, with the exception being the
siren detector which required the more powerful TI LM4F120 to
run FFT in real time.

5. Results
In this section we present the results of simulations conducted on
the accelerometer and audio traces described in Section 4.1. We
answer the following questions:

1. How much power can be saved with more energy efficient
sensing approaches?

2. How close to optimal is Sidewinder?

3. How does Sidewinder compare to Predefined Activities?

4. How well do Duty Cycling and Batching perform?

Wake-up Mechanism Sirens Music Phrase

Oracle 16.8 27.2 14.7

Predefined Activity 51.9 51.9 51.9

Sidewinder 63.1* 32.3 35.6

* Includes the more powerful TI LM4F120

Table 2: Average power consumption for the audio applications.
Values measured in milliwatts.

5. How representative are the accelerometer experiments on the
AIBO of expected performance with humans?

Figure 5 presents the power usage, relative to Oracle, of replay-
ing the synthetic accelerometer traces under the various sensing
configurations. For each configuration1, the graph presents power
consumption over Oracle. Results are averages across runs of the
same group. In order to make it easier to compare across ap-
proaches, we calibrated all approaches so that they all achieve
100% recall. Duty Cycling is the one approach that cannot achieve
100% recall with any reasonable sleep interval. Figure 6 shows
the recall for Duty Cycling at 90% idle. All sensing approaches
achieved similar average precision (Headbutts: 89%, Transitions:
91%, Walking: 93%).

Table 2 shows the average results from running the the simula-
tions on the collected audio traces. We omitted the results for Duty
Cycling and Batching because they are similar to the results from
the simulations on accelerometer traces.

5.1 How Much Power can be Saved?
The Oracle in our work is a hypothetical ideal which is in a sleep
state most of the time and only wakes up when events of interest
occur. It has perfect recall, precision and the best possible power us-
age. Always Awake, on the other hand, never sleeps and therefore,
and has the worst possible power usage. The difference in power us-
age between these two approaches represents the power that could
be saved by better sensing approaches. Always Awake consumed
on average 323mW of power. In our most demanding scenario, step
detection with 10% idle, the Oracle consumed on average 266mW.
For the least demanding, step detection with 10% idle, the Oracle
consumed on average 16.4mW. This means, depending on the sce-
nario, there is potential to reduce power consumption by 17.7% to
94.9%.

5.2 How Close to Optimal is Sidewinder?
By comparing the performance of the Sidewinder approach to Or-
acle we observe that the Sidewinder approach achieves between
92.7% and 95.7% of the of the possible power savings 2 for our

1 Results for Batching are shown with a 10s sleep interval as the other results
were similar to Duty Cycling
2 (AlwaysAwake− Sidewinder)/(AlwaysAwake−Oracle)
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Figure 5: Power usage of configurations: Always Awake (AA), Duty Cycling (DC) with various sleep intervals, Batching (Ba) with 10s sleep
interval, Predefined Activity (PA) and Sidewinder (Sw) relative to Oracle for synthetic accelerometer traces
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Figure 6: Recall for Duty Cycling on synthetic accelerometer traces
with 90% idle

accelerometer-based applications. Audio applications performed
similarly with saving between 85% and 98%.

The suboptimal nature of wake-up conditions is illustrated by
the phrase detection application. Whereas, the Oracle only wakes
up when the phrase of interest occurs (<1% of each trace), our
wake-up condition powers up the device every time it detects a
speech segment (approximately 5% of each trace). However, even
with this limitation, Sidewinder achieves 93% of the possible en-
ergy saving for this application.

We conclude it is possible to build a wide range of classifiers
based on a set of generic processing algorithms, and that the
resulting classifier achieves the large majority of available power
savings. Moreover any additional power saving that custom code
may achieve are likely to be very limited.

5.3 Sidewinder vs. Predefined Activity
To make the comparison to Predefined Activity as fair as possible,
we explored the parameter space to determine the best thresholds
for significant acceleration and sound intensity3. We chose values
that minimize power consumption, while maintaining 100% detec-
tion recall. Thus the parameters used in this scenario are over-fitted

to our test data and represent a best case scenario that skews the
results in favor of Predefined Activity.

As expected, the power consumption resulting from the use of
significant activity detectors (significant sound, significant motion)
are proportional to the amount of activity in the trace and the
popularity of the event of interest.

In the accelerometer experiments, Predefined Activity has sim-
ilar power consumption to Sidewinder for steps, which is a com-
mon event, but consumes 4.7 and 6.1 times more power to de-
tect headbuttss and transitions, which are less frequent events. In
the experiments performed on the audio traces, Predefined Activ-
ity consumed 18% less power for sirens than Sidewinder, but 45%
and 60% more power for music journal and phrase detection, re-
spectively. Due to the higher complexity of the wake-up condition
used for siren detection, the power consumption model had to ac-
count for the powerful TI LM4F120 microcontroller instead of the
MSP430, which consumes an additional 40 mW.

We conclude that a a small number of predefined activities are
unlikely to support efficiently a wide range of applications. This
is particularly the case for applications interested in infrequent
events.

5.4 Sidewinder vs. Duty Cycling and Batching
Duty Cycling performs poorly. Short sleep intervals actually result
in an increase in power consumption (339 mW compared to an av-
erage of 323 mW for Always Awake) due to frequent transitioning
between awake and asleep states. Longer sleep intervals are more
effective at saving energy, but they do so by sacrificing recall. For
example, a sleep interval of 10 seconds reduces the Headbutts and
Transitions recall bellow 30%.

Batching achieves perfect recall, but requires long batching in-
tervals to achieve large energy savings. Therefore, this approach is
not appropriate for applications with timeliness constrains. For ex-
ample, the user of a gesture recognition application [20, 29] would
not be satisfied if the application detects the performed gesture af-
ter a delay of more than a couple of seconds. We anticipate that in
practice realistic batching intervals are in the order of a few sec-
onds, depending on the sensor data acquisition rate and the size of

3 Two predefined activities supported by our hardware
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Figure 7: Power usage of configurations: Always Awake (AA),
Duty Cycling (DC), Batching (Ba), Predefined Activity (PA) and
Sidewinder (Sw) relative to Oracle for human traces

the data buffer. Additionally, the device often wakes up to find out
that no events occurred in the current batch.

In most cases Duty Cycling and Batching consumed 2.4 to 7.5
times more power than Sidewinder. To achieve significant power
saving, Duty Cycling and Batching have to either sacrifice recall
or timeliness.

5.5 Human Traces
Figure 7 shows the results from running the step detector appli-
cation on traces collected from three human subjects. Since these
traces are not annotated with ground truth, we use the steps detected
by an Always Awake configuration as the baseline for determining
recall. For Duty Cycling and Batching we show only a sleep inter-
val of 10 seconds. All approaches except Duty Cycling (82%) had
100% recall.

The results from these experiments show benefits very similar
to the synthetic experiments for runs with low and medium levels
of activity. The Sidewinder approach achieves at least 91% of the
available power saving in each of the traces.

Additionally, we note that the generic wake-up condition per-
forms poorly. We attribute the relatively high power consumption
to the fact the human subjects were performing a wide range of
activities. While most of the activities were not events of interest,
they resulted in unnecessary wake-ups.

6. Related Work
The idea of waking up a device when an event of interest occurs
has been around since the inception of mobile phones. The phone’s
radio transceiver wakes up the device when an incoming call or a
text message is received [5]. Wake on Wireless [30] extended this
idea by augmenting a PDA with a low-power radio that would send
a wake-up message when an incoming call is received. Similarly,
Wake on WLAN [24] allows remote wake-up of wireless network-
ing equipment.

Turducken [31] generalizes the “wake on event of interest” ap-
proach to several types of applications and to multiple components
operating at increasingly small power-levels. Little Rock [27] ap-
plies Turducken’s multi-tiered architecture to sensing on mobile de-
vices. Reflex [19] complements the idea proposed by Turducken by
providing a shared memory abstraction to be used by the different
processors. Little Rock and Reflex expose application developers
to the heterogeneous architecture. In contrast, Sidewinder hides the
heterogeneous nature of the system from the application developer.

Creating an application that makes use of Sidewinder does not re-
quire the developer to write low-level code for the low-power sen-
sor hub. Instead, developers create custom wake-up conditions by
configuring pipelines of commonly used algorithms. This approach
increase portability, while achieving the majority of the potential
power savings.

Smartphone manufacturers have started to incorporate low-
power processors into their architectures, but have only imple-
mented limited APIs that provide fixed functionality. Apple’s M7
and M8 motion co-processors are used to collect, process, and store
sensor data even while the main CPU is asleep and applications can
retrieve historical motion data via the CoreMotion API [3]. Some
recent Android devices allow batching of sensor readings [1], and
the Motorola Moto X provides recognition for a small number of
predefined activities that can be used as wake-up conditions [7, 10].
While these wake-up conditions work well for some applications,
they are inefficient for many other types of applications that are not
interested in the set of predefined activities. In contrast, Sidewinder
supports a wide variety of applications by providing developers an
easy mechanism to create custom wake-up conditions.

Most of the previously noted works focused on system archi-
tecture modification in order to lower the cost of sensing. Alterna-
tive approaches have also been explored. Ace [25] is a middleware
that supports continuous context-aware applications while mitigat-
ing sensing cost for acquisition of context attributes (such as AtH-
ome and IsDriving). It achieves power savings when multiple appli-
cations request strongly correlated context attributes. Additionally,
it can reduce power consumption when a “cheaper” sensor exists,
which can determine the value of a different context attribute that
has a strong correlation with the requested context attribute (e.g.
use the accelerometer to check if the user is jogging instead of us-
ing the GPS to determine if the user is at work). A middleware
such as Ace is a great example of a library that can run on top
of Sidewinder and achieve additional power savings. Sensor fusion
has also been an active focus of related research. Data from mul-
tiple sensors can be used to increase context-awareness in mobile
devices [12, 14].

While our focus was on power-efficient acquisition of sensor
data, next generation mobile perception applications face related
problems regarding partitioning of application code. MAUI [13]
enables fine-grained energy-aware offload of mobile application
code to remote servers. Similarly, Odessa [28] uses code-offloading
to address the issue of processing sensor data on resource con-
strained mobile devices.

7. Conclusion
In this paper we proposed Sidewinder, a new approach for con-
tinuous mobile sensing. In this approach, the platform implements
common sensor data processing algorithms that execute on a low-
power processor, and application developers construct wake-up
conditions for events of interest by selecting among the set of pre-
defined common processing algorithms and tuning their parame-
ters. We presented an extensive evaluation showing the benefits
of using Sidewinder as wake-up mechanisms for the multiple ac-
celerometer and audio-based applications.

Our immediate future work includes developing an FPGA-
based prototype, performing a thorough exploration of what al-
gorithms should be included as part of the platform and analyz-
ing their power and computational requirements. We would also
like to explore supporting multiple concurrent applications while
still maintaining predictable performance. When receiving mul-
tiple wake-up conditions, the sensor manager can attempt to im-
prove performance by combining the pipelines that use common
algorithms.



Another interesting extension includes adding “smartness” to
the low-power sensor hub. Application developers may face chal-
lenges in selecting the optimal algorithms and configuration pa-
rameters for their wake-up conditions. But given feedback from the
more complex algorithms running on the application level, self-
learning mechanisms may be able to tune the paramers used on
the wake-up conditions. It is easy to imagine an application noti-
fying the sensor hub about wake-ups when events of interest were
not actually detected (i.e. false positives). However, it will be more
difficult to automatically identify events of interest missed by the
wake-up condition running on the low-power node (i.e. false nega-
tives).
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