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SUMMARY

This research proposes and tests an approach to engineering distributed �le systems that
are aimed at wide-scale, Internet-based use. The premise is that replication is essential to
deliver performance and availability, yet the traditional conservative replica consistency
algorithms do not scale to this environment.
Our Ficus replicated �le system uses a single-copy availability, optimistic update policy

with reconciliation algorithms that reliably detect concurrent updates and automatically
restore the consistency of directory replicas. The system uses the peer-to-peer model in
which all machines are architectural equals but still permits con�guration in a client-
server arrangement where appropriate. Ficus has been used for six years at several
geographically scattered installations.
This paper details and evaluates the use of optimistic replica consistency, automatic

update conict detection and repair, the peer-to-peer (as opposed to client-server) inter-
action model, and the stackable �le system architecture in the design and construction
of Ficus. The paper concludes with a number of lessons learned from the experience of
designing, building, measuring, and living with an optimistcally replicated �le system.
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INTRODUCTION

Despite the publicity generated by theWorld-Wide Web, the primary computer network-
based tool for geographically distributed cooperative work is still electronic mail. Bob
in Atlanta might write a new piece of a joint document, and then e-mail it to his
colleague Alice in Seattle, who then integrates it with her copy. Perhaps she makes
some changes and mails them back. Alice and Bob may elect to impose some protocol
on themselves to avoid conicting updates. If the other party could not be contacted,
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however, chances are they would be optimistic and relax their protocol; they would
update the document anyway, making a mental note that those changes may need
later re-integration. In many situations, the need to \get the work done" outweighs
the desire to avoid conicting updates.
What is actually going on in this example is a form of data replication without

any system support. This familiar mode of operation often works out relatively well
in practice. Concurrent changes are seldom a problem, and performance is excellent
as data is always local (whether composing, receiving, or modifying, e-mail is always
local). However, a real distributed replicated �le system could surely provide far better
support. For example, relying on \mental notes" to propagate changes and check for
conicts risks losing updates and often results in the creation of di�ering versions of a
document whose relationship must be reconstructed from memory. Neither does this
informal approach scale in the number of �le users. This vignette illustrates the value
of an optimistic replicated �le system with an automated service to detect and repair
conicts. Ficus represents our e�orts to address the software engineering of such a
system. This paper reports our experiences designing, implementing, measuring and
using an optimistic replicated �le system.

Goals of the research

The purpose of this research is to test the practicality of optimistic �ling. The
following frames our intent in building a replicated �le system:

� Enable a shared, network-transparent �le hierarchy which scales both to large
geographic distances and very large numbers of �les.

� Provide high availability and performance.
� Demonstrate a design and implementation capable of providing realistic, general-
purpose use, including permitting all machines to operate as peers rather than
limiting them to restricted functionality.

� Produce a real, usable system that others can run and build upon, not simply a
proof of concept.

� Test the use of the stackable layers approach to structuring software for a large
�ling project.

� Avoid building large portions of �le systems to which we have little to contribute.
� Retain as much compatibility with the existing environment as possible.

Optimistic replicated �ling

Ficus is a general purpose replicated �le system intended to facilitate distributed
collaboration in a highly reliable and scalable fashion. It has been implemented as
an addition to Unix, although little of the architecture is speci�c to that system.
Replication o�ers the potential for improved performance by locating a copy of data
\near" where it is needed, even when it is needed simultaneously at geographically
dispersed locations. Replication is critical to reliability in networks where site and
communications failures are the rule rather than the exception. Mobile computing
represents an important example of this situation.
A replicated �le system must have both mechanism and policy to keep multiple

replicas consistent in the face of updates. A pessimistic approach prevents inconsis-
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tency by restricting updates that could lead to a conict. The optimistic approach, on
the other hand, takes the view that it is expensive in terms of performance to obtain
locks and unacceptably costly in terms of availability to restrict updates, particularly
when conicts are rare anyway. Hence optimistic policies allow conicts to occur, but
detect and deal with them afterwards. While there are certainly environments and ap-
plications which call for the pessimistic policy, we argue that the optimistic approach
is essential in the general purpose distributed setting.
Unlike most replicated �le and database systems, Ficus allows updates so long as

at least one replica of a data object is available; this is termed single-copy availabil-
ity. Experience with Ficus, data reported in this paper, and previous results in the
literature (summarized later) indicate that conicting updates seldom occur in prac-
tice, for many classes of �les. When conicts do occur, Ficus reliably detects them.
For directories and replica location information, the system uses its knowledge of the
semantics of updates to resolve most conicts automatically. If the system does not
understand the update semantics, as is the case with an arbitrary �le, it reports the
conict to a resolver which understands its semantics; if no such software is known,
the system informs the �le owner (via e-mail), who resolves it manually. In practice,
conict resolution has not been di�cult for users, and there is an expanding set of
automatic resolvers for known �le types.
The Ficus algorithms are based on the view that each machine, including worksta-

tions, portable computers, and servers should be empowered with full function so far
as replication, �le service, and reconciliation are concerned. In this sense, all machines
are peers. We believe that peer models are particuarly important with portable and
geographically distributed computing. For example, if several professionals travel with
their notebook computers, at their destination they may connect their machines and
have the full bene�ts of optimistic replication without contacting a \home server."
This situation applies to inherently mobile workers, the military, as well as to any
situation where remote access can be slow or periodically unavailable. Thus a peer ar-
chitecture provides a more robust operational solution than one in which a server must
be present to share or reconcile. However, it demands more sophisticated algorithms
to provide a normally transparent level of service.
The robustness presented to the user by single-copy availability is also apparent in

the underlying distributed mechanisms that propagate update activity to all replicas
and resolve conicts. These mechanisms are designed around pairwise \gossip" strate-
gies that idempotently \pull" replica (and meta-data) state from a remote replica, and
then merge, update, or resolve as appropriate with the local state, possibly resulting
in a new local replica state. Such \lazy" strategies place minimal requirements on the
communications environment for fundamental correctness:

� no more than two parties are ever required to be alive and communicating at the
same time;

� \all pairs" direct communication is never required, although information must
be able to ow indirectly among all pairs in �nite time;

� correctness relies only on a \pull" of information, although a \push" may provide
signi�cantly improved performance;�

� For example, Ficus uses an \update noti�cation" daemon to asynchronously tell other replicas of a new �le

version which this typically results in a much faster propagation than relying on periodic volume-wide �le

reconciliation.
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� network partitions neither jeopardize correctness, nor unduly delay progress within
a partition;

� a permanently incommunicado node (either dead or forever partitioned{declared
such by an oracle) does not delay progress after an oracular declaration;

� messages may be lost, delayed a large (but �nite) time, duplicated or delivered
out of order.

The family of algorithms that lies at the heart of Ficus replication typically operates
in two phases, using bit or scalar vectors to record progress. Their local space require-
ments are always linear in the number of replicas or better (and thus, quadratic or
better overall). The global message complexity is quadratic in the worst case of patho-
logical network partitioning and linear in the best case (a well-connected LAN). Care-
ful piggybacking of related algorithm executions is employed to keep constant factors
small, and all ancillary algorithm state is discarded upon algorithm termination.
The combination of single-copy availability, lazy strategies, and two-phase algo-

rithms yields a remarkably robust, fault-tolerant, and highly available �ling service.
Further, the various overhead costs of managing replicas are largely incurred in the
background, and not in-line to user �le activity: update propagation, reconciliation,
and conict resolution are all normally asynchronous with respect to routine �le access.
The next section introduces our approach to optimistic replica management.

REPLICATED DATA CONSISTENCY

The single-copy availability update policy for �les and directories rules out guaran-
teeing one-copy serializability, the traditional de�nition of correct operation inherited
from distributed database theory. However, even in the local case Unix �le systems
do not provide transactional semantics, so abandoning one-copy serializability for the
distributed case is acceptable. Ficus instead provides a no lost updates guarantee,
which we argue is often preferred. Ficus data is organized around volumes (modeled
after AFS, Ficus volumes are sub-trees of the �le naming hierarchy with a granularity
smaller than a conventional �le system but larger than (or equal to) a single directory).
It is then the task of the reconciliation algorithms to take two replicas in a way that
guarantees no lost updates.
Selective replication control within Ficus allows each volume replica to physically

store an essentially arbitrary subset of the entire volume. That is, the set of sites which
store a volume replica forms the maximal (but not minimal) set of physical storage sites
for any given �le within that volume. The selective replication mechanism additionally
preserves transparent remote access to those objects within the volume that are not
locally stored. Due to selective replication, two communicating volume replicas may
not store exactly the same set of objects. The reconciliation algorithms dynamically
adapt to the current replication patterns and adjust communication topologies to
ensure consistency in such cases.1

Unsynchronized update

Since Ficus does not guarantee propagation of updates to all replicas at the instant
they occur, Ficus must reconcile replicas periodically, detecting mutual inconsistency,
causing strictly more recent replicas to propagate to out-of-date replicas, and ag-
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ging conicts if neither replica is more recent than the other (each contains updates
unknown to the other). Each replica has a version vector2 which summarizes the com-
plete set of updates known to that replica. If one replica is strictly newer than the
other, its version vector will dominate the other. The data and version vector from
dominant versions can replace those of dominated versions. If two version vectors are
not equal and neither dominates, an update/update conict is detected and a resolver
invoked, since propagating either version over the other would violate the no lost
updates guarantee.

Directories

Unlike user �les, directories are managed solely by the �le system, and have simple,
well understood semantics. Thus the system itself supplies the resolver for directories.
A directory contains a set of entries, each of which associates a name with a pointer to

a �le or subdirectory. Ficus adds a unique identi�er to this pair for reasons described in
the next section. The only modi�cation operations applicable to a directory are adding
new entries and deleting existing ones. Hence it is feasible to take two directory replicas
that have been updated independently (normally an update/update conict), merge
the changes and automatically form a single correct version that reects the e�ect of
all updates applied to both replicas.
Intuitively, the correct reconciliation of two directory replicas is the union of all

entries in both, less those that have been deleted. The algorithm must compare the
entries in the two directory replicas. One replica may show newly created entries that
have yet to propagate to the other. Entries may exist in one copy that have been
deleted in the other. Missing operations must be applied to each replica to rectify
these inconsistencies. Replaying all operations at each replica is not su�cient because
the connection history of sites is arbitrary, rendering the decision of what logs to play
at what sites in what order distinctly non-trivial,2 and because reconciliation must
be incremental (and hence not atomic) for the volume to be highly accessible. Note
that while results may not be serializable (for example, concurrent deletes to a single
replica results in an error while independent, concurrent deletes to di�erent replicas is
acceptable), they are acceptable given the semantics of directory updates.
Several issues must be addressed to accurately reconcile replicas; we next discuss

these issues and their treatment in Ficus.

Insert/delete ambiguity

Consider two copies of a directory: the �rst has an entry for �le F and the second
does not. Has the entry for F been newly created and thus should propagate to the
second directory replica, or has it been deleted in the second replica and thus should
be deleted in the �rst as well? This is the insert/delete ambiguity.3

Ficus addresses this di�culty by initially logically deleting a directory entry (chang-
ing a ag from Live to Deleted) rather than physically removing it. Logically deleted
entries are ignored, except for purposes of reconciliation. Deleted entries can now be
distinguished from inserted ones by the delete mark. This resolves the insert/delete
ambiguity at the cost of creating a garbage-collection problem: when is it safe to
discard a logically deleted directory entry?
A correct solution must retain a logically deleted entry at least until all directory
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replicas know that the entry is deleted. Otherwise, a replica which discards a logically
deleted entry might later reconcile with a replica whose directory entry had not yet
been marked deleted, and conclude that the entry is new and should be propagated,
thereby reintroducing the insert/delete ambiguity.
However, simply ensuring \all replicas know" is, surprisingly, not su�cient. Suppose

that when a directory replica learns (via reconciliation) that the entry of interest is
marked logically deleted in all replicas, it discards its own logically deleted entry. If this
directory replica later reconciles with another replica (which doesn't yet know that all
entry replicas have been marked logically deleted), the question arises, is the logically
deleted entry to be propagated to the \ignorant" replica? The insert/delete ambigu-
ity emerges yet again. Successfully eliminating insert/delete ambiguities requires that
prior to discarding a logically deleted directory entry, a directory replica must not
only know that all replicas are marked deleted, but further must know that all other
replicas are also aware of this fact.
Hence, Ficus employs a garbage-collection algorithm to detect the \all replicas know

that all replicas know" condition.4 This algorithm has two important properties: mono-
tonicity and low-cost indirect communication. Monotonicity insures that the algorithm
always makes progress, guaranteeing eventual termination and preventing repeated se-
quences of deallocation/allocation of deleted directory entries. Indirect communication
is necessary in networks in which all-pairs connectivity is not guaranteed. Information
needed for the algorithm to progress to termination spreads between all data-storing
replicas in a gossip-like fashion. Volume replicas that do not store a given object (via
the selective replication mechanism) need not participate in its garbage collection.
The Ficus algorithm proceeds in two phases. Phase one of the algorithm compiles

the list of replicas that know the entry is deleted. Phase one ends and phase two begins
at a replica when its list is complete, i.e., includes all replicas of the entry. Phase two
compiles the list of replicas that are known to have �nished phase one, and concludes
when this second list contains all replicas. When phase two completes at a node, that
node knows that all replicas know that all replicas have marked the entry deleted, and
therefore it is safe to garbage collect the deleted entry. Any other node that ever asks
about the status of that entry will get the response \entry unknown" from which it
can correctly conclude that garbage collection has �nished at that site, and hence can
�nish at the inquirer as well. There is no ambiguity since the inquirer knows, by virtue
of being in phase two, that the other site once knew about the entry and its deletion.
Further discussion of these algorithms is available elsewhere.1, 4

Global inaccessibility

In Unix-like �le systems, the remove operation does not remove a �le, only a name
for a �le. Freeing the storage for a �le occurs only as a side-e�ect of removing its
last name; when it is no longer accessible it may be garbage collected.5 However, with
optimistic replication, local inaccessibility does not imply global inaccessibility. Other
names may exist in remote replicas, names that have yet to propagate to the local site.
The system must not garbage collect �le data until it determines that no new name
exists for the �le anywhere, lest new updates to (or even the last copy of) a �le be lost.
An important task of reconciliation is therefore to provide an acceptable solution to
the problem of garbage collection of a partially replicated, distributed graph structure
during concurrent changes to that graph structure.
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Global zero name count is a stable state, as new names can only be created for
objects that have at least one name, and multiple alternative stable state detection
algorithms may be employed depending on the network communications assumptions.6

The speci�c algorithm used for our environment is analogous to and runs in parallel
with the above two-phase algorithm.4 Briey, we detect global inaccessibility with
another two-phased gossip algorithm. Phase one compiles the set of sites that believe
the �le to have no names. Phase two permits garbage collection by determining that
all sites know that all sites know the �le has no more names. Here too, only the
data-storing replicas need participate in the algorithm.

Remove/update conicts

A remove/update conict occurs when the last name of a �le is removed in one
partition while the �le is concurrently updated in another. Remove/update conicts
are detected by recording the version vector of a �le whose name is removed and
checking that the removed version is not dominated by, or in conict with, any other
replica. Again, this runs in parallel with the two-phase garbage collection.
There are two policies one might adopt when a remove and an update occur concur-

rently: favor the remove and discard the update; or prefer the update and ignore the
name deletion. In accordance with our no lost updates policy, we must not discard the
new data, but neither is it acceptable for a deleted name to reappear. Our policy is to
remove the �le name, but to save the data in an orphanage,� and inform the owner.

Name conicts

Reconciliation must detect when two entries have been created concurrently which have
the same name pointing to di�erent objects. This violates normal directory semantics,
which specify that names be unique within a directory. Ficus detects name conicts,
gives each conicting entry a disambiguating su�x, and invokes a resolver or informs
the �les owner. Details of the Ficus resolver architecture are found elsewhere.7

Algorithm discussion

These two-phase algorithms are quite di�erent from conventional two-phase commit
protocols. In two-phase commit, forward progress is denied whenever a few sites cannot
communicate. Here, there is no central coordinator, as all participants are peers. Both
phases of the algorithms can be in progress at the same time, since one site may become
aware that all sites know of a deletion well before other sites do so. No underlying
connectivity is assumed other than the requirement that information can propagate
between any two sites in �nite time.
A minimum of o(3n) messages is required for reconciliation to complete if informa-

tion travels around a virtual ring of the n storage sites. Three trips around the ring
assure that every site has heard the state of every other site at least twice, allowing
both phases to complete everywhere.
We have described a simpli�ed version of the reconciliation algorithms here. In prac-

tice, a number of optimizations are quite bene�cial, especially in environments where

� The orphanage is similar to the Unix lost+found directory; it is a location for otherwise unnamed �les.
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network bandwidth or latency are a consideration. For example, this basic approach
adapts well to replicas connected only by a 28.8kb/s modem.8

FICUS ARCHITECTURE

The Ficus replication services are added to the Unix kernel using an extensible layered
VFS interface.9� A �le system layer is a software module that conforms to the layer
interface with respect to calls to it from above and calls to the layer below. Each layer
in a �le system stack adds a speci�c piece of functionality.
Ficus consists primarily of three of layers: the replica selection layer, the logical

layer, and the physical layer. The replica selection layer implements a data consistency
policy for clients, providing the abstraction of a single-copy, highly available �le, built
from the multiple replicas available to it. The logical layer coordinates updates across
multiple replicas and other functionality common to di�erent replica selection policies.
The physical layer implements the extended attributes needed for replication and maps
�le storage to a standard Unix �le-system (UFS). These layers use a transport layer
to map the layer interface across a network, and are stacked above a unmodi�ed,
standard �le-system for persistent storage.
Figure 1 shows a layer con�guration for a �le with two replicas stored on sites 1

and 3. Each replica has a physical layer supporting it. Each client has a logical layer.
Logical layers are connected directly to local physical layers, and to remote replicas
via transport layers.

The replica selection layer

Optimistic concurrency control and lazy update propagation can yield a number of
�le versions, including the possibility of conicting versions. The volatility and scale of
a large geographically distributed environment can make it infeasible even to determine
the range of accessible versions. A separate replica selection layer allows di�erent clients
to have appropriate version selection policies. (Early Ficus implementations merged
the functionality of the replica selection layer and the logical layer.)
The default replica selection layer provides only a very simple replica selection policy,

choosing by default a local replica if one exists, and falling back to a randomly chosen
replica otherwise. Once a client has selected a replica, future requests are also directed
to that replica, insuring that the client sees consistent data unless the replica becomes
inaccessible.
While the default model is suitable for general use, some situations require stronger

consistency guarantees. View consistency provides each \entity" a conservative consis-
tency model while allowing optimistic consistency between entities. Entities can vary
in size (a process, a user's process, a machine, or a group of machines); our sample
implementation uses machine-granularity entities. The cost of stronger consistency
guarantees of view consistency is additional record keeping (what versions of �les does
the entity expect) and some performance overhead. A detailed analysis of view consis-
tency, including garbage collection and its e�ects on performance and availability can
be found elsewhere.12

� Similar stackable layered �le system architectures were independently developed and simultaneously reported

at UCLA10 and Sun Microsystems.11
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Figure 1. A typical Ficus layer con�guration with two storage sites and a third site
mounting both replicas.

Replica selection layers also allow knowledgeble clients to explicitly access speci�c
replicas. This service is useful (for example) in programs which repair conicts.

The Ficus logical layer

The logical layer cooperates with the replica selection layer to provide the illusion
that each �le is highly available and has single-copy semantics. The logical layer pro-
vides update propgation and other services which are common to all replica selection
layers.
To inform other replicas of an update, a logical layer places a summary of the

update on an outgoing update noti�cation queue, and then returns control to the
client.� A client is assured that an update has been applied to at least one replica,
which is su�cient for the no lost updates guarantee. A daemon periodically services
the queue, sending out noti�cation messages containing the version vector of the new
version, and a hint about the site known to have stored that version. Noti�cation is
a best-e�ort, one-shot attempt; inaccessible replicas are not guaranteed to receive an
update noti�cation later. Optimism releases the system from the burden of ensuring
that an update noti�cation is successfully delivered and processed by the receiver. If
any replica fails to receive or apply the update for whatever reason, it will eventually

� Since a �le written once tends to be written again very shortly,13 placing the update on a queue gives the

potential to batch the update noti�cations for many updates with a single message, reducing the number of

messages that synchronous noti�cation would require. This batching optimization would be bene�cial but

has not yet been implemented.
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learn of the update via reconciliation. This is an example of how optimism permits
considerable simpli�cation throughout the architecture. As so much of a system's
actual implementation is often concerned with error handling, this improvement is
considerable.
File propagation itself occurs atomically. A commit mechanism, using a shadow copy,

ensures that a replica's version vector always reects the replica's data, even in the
face of crashes and concurrent operation during propagation.

The physical and persistent storage layers

The Ficus physical layer extends the basic �le storage capabilities of a base �le
system to provide the additional features required for replication. In carrying out
this role, the physical layer performs three main functions: storing extended attribute
information connected with each replica, creating and managing aUnix �le to store the
data for each �le replica, and implementing the additional naming hierarchy semantics
required by Ficus.
The �rst function of the physical layer is to manage the extended attribute informa-

tion that must be stored with each replica. Note that this information is not replicated;
it applies to each replica individually. In the current implementation, the physical layer
stores extended attributes in a look-aside \auxiliary" �le. There is a single auxiliary �le
per directory, with a record in it for each �le in that directory, an organization which
clusters information to take advantage of the expected locality of reference between
�les in the same directory. When a �le is accessed, the data page with its auxiliary
information is likely to be cached already and not require an additional disk I/O. In
keeping with our layered philosophy we have recently experimented with an extended
attributes layer that may replace this mechanism.
The second role of the physical layer, that of storing �le data in the underlying �le

system, consists primarily of locating the correct Unix �le, and forwarding the various
read, write, create, etc. operations to that �le. From the point of view of the logical
layer, a �le replica is uniquely named by a h�le-ID, replica-IDi pair. The underlying
UFS uniquely identi�es �les by inode number within a �le system. So the physical
layer must map h�le-ID, replica-IDi tuples to inodes in a Unix �le system. In the case
of selective replication, when an object within the volume is not stored locally, the
physical layer instead provides information back to the logical layer with respect to
probable remote locations for the object in question. Ideally we could bypass Unix �le
naming and access these �les directly via references to their inodes. Although we hope
that future layers will provide this interface, currently we map h�le-ID, replica-IDi to
a two-level directory structure.
The third function of the physical layer is to implement richer naming semantics than

o�ered by standard Unix directories. To permit directory renames during a network
partition, the Ficus name space must relax the traditional strict tree of the Unix name
space, allowing instead a more general graph. Further, the directory reconciliation
mechanisms require keeping some additional state information with each directory
entry. This additional richness inherent in the Ficus model requires that we implement
a full name storage mechanism in the physical layer with the additional capabilities
that are needed.
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Volume location and autografting

In a distributed �le system that spans the Internet, there may be hundreds of thou-
sands or millions of volumes to which one may wish transparent access whenever de-
sired. Any one machine will only access a very small fraction of the available volumes,
yet one cannot predict in advance which volumes will be needed. Therefore, Ficus, like
Sprite14 and AFS15 locates and \grafts" (mounts) volume replicas on demand, rather
than a priori, and periodically ungrafts remote volumes that are unused for some time,
permitting access to an enormous virtual name space while consuming only minimal
local resources. Ficus di�ers, however, in how it manages the data necessary to locate
remote volumes.
Volume location data is critical to availability; the data in a �le system is of little use

if it cannot be named. To keep the site storing volume location data from representing
a single point of failure that could render the entire subtree beneath it inaccessible,
the location information must be replicated. Further, it is essential that these replicas
be managed with an optimistic consistency policy.
While updating the information in a graft point is a relatively rare event, it is

generally quite important when it does occur. Graft points are updated only when
volume replicas are added, deleted, or moved to another host. The importance of
updating a graft point may be at its greatest precisely when the system is unstable or
partitioned. Perhaps the reason for updating the graft point is to add an additional
replica of a volume when, due to instability, only a single replica remains accessible;
this update must be permitted even though it cannot immediately propagate to all
replicas of the graft point. Hence it is not reasonable to require that all, or even a
majority, of the replicas of the graft point be accessible for an update to be permitted.
Unlike AFS, a separate volume location database is not necessary in Ficus. Instead,

we exploit the same optimistic replication and reconciliation mechanism that manages
the directory name mapping function. The format of a graft point is compatible with
that of a directory, with a single bit indicating that it contains volume location in-
formation. Like directory entries, volumes may be moved, created or deleted, so long
as any replica of the graft point and volume is accessible in the partition (single-copy
availability). Without building any additional mechanism, updates are propagated to
accessible replicas and all conicting updates are automatically resolved, providing
name transparency and high update availability while scaling to very large networks.
Complete details of the Ficus grafting approach are available elsewhere.16

EVALUATION

This section evaluates Ficus from three perspectives. First, we examine performance in
various environments. We next reect on the appropriateness of the choice of optimistic
replica management. Finally, we consider broader lessons learned from our experiences
developing and using Ficus.

Performance evaluation

We want to answer the question, \What is the cost of replication as provided by
Ficus?" This evaluation employs three benchmarks which are intended to capture the
range of operations on a �le system.
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The �rst test is a recursive \grep" which reads every �le in a large subtree. The tree
used is the /usr/include hierarchy, which on our system contains 4.2 MB of data
and 1191 �les, of which 60 are directories. To the extent that one believes that the
frequency of read operations greatly dominates writes in a typical �ling environment,
read performance is a critical measure of �le system performance. The second bench-
mark is a recursive copy (over NFS) of a large subtree, from a UFS �le system into
a Ficus volume. This benchmark is chosen to show a worst case performance for Fi-
cus, since creating �les is the highest overhead operation. Finally, we use the modi�ed
Andrew Benchmark (MAB)15, 17 which is intended to model a normal mix of �ling
operations, and hence be representative of performance in actual use.
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Figure 2. System time overhead for three benchmarks as the number of replicas vary from zero
(un-replicated Unix) to four replicas under Ficus.

Figures 2 and 3 display the system time overhead and elapsed time overhead re-
spectively for the three benchmarks described above, as the number of replicas varies
from zero to four (within a local area network). The 0-replica case represents standard
SunOS without Ficus. One replica means that the �les are stored in Ficus, but there
is only a single copy. Thus the di�erence between zero and one replica represents the
pure overhead of running Ficus without any of the bene�ts of additional replicas. The
results are normalized so that the di�erence between the mean time for each bench-
mark and the mean time for the same benchmark on SunOS without Ficus is expressed
as a percentage of the SunOS-only benchmark. All �les were replicated in all volume
replicas (no selective replication was used). All measurements were conducted on Sun
3/60s with 8 MB of RAM connected by a 10 Mb Ethernet running a version of Ficus
based on SunOS 4.1.1. Each benchmark was repeated seven times for each number
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Figure 3. Elapsed time overhead for the same three benchmarks.

of replicas; Table I shows the unnormalized means and the 95% con�dence intervals
(expressed as the width on either side of the mean).

Discussion

The shapes of the curves for both elapsed and system time are as one would expect.
The grep benchmark is read-only, and so its performance is independent of the number
of replicas. It shows a constant 10-12% overhead compared to Unix.

Benchmark UFS 1 replica 2 replicas 3 replicas 4 replicas
mean conf. mean conf. mean conf. mean conf. mean conf.

cp elapsed 178.9 15.4 201.9 17.3 222.4 32.3 216.0 14.3 255.1 14.0
cp system 22.8 0.49 30.6 .32 33.5 1.2 34.9 1.6 37.5 0.53
grep elapsed 59.8 .76 64.1 0.69 67.4 7.9 64.2 0.73 64.0 0.59
grep system 18.9 0.21 22.2 0.33 23.1 1.3 22.3 0.21 22.1 0.50
MAB elapsed 150.9 2.3 166.1 3.5 169.6 1.9 172.1 5.4 176.3 2.6
MAB system 36.5 .31 41.2 0.41 42.4 0.50 42.6 0.89 44.1 0.48

Table I. Unnormalized benchmark data. All measurements were repeated at least 6 times. The
con�dence interval is expressed as as the width (+ -) on either side of the mean.
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The cp benchmark has a workload that is heavily dependent on the number of
replicas, as the site performing the copy must do the extra work both of informing
each remote replica of each �le creation, and of serving the requests from the remote
replicas to propagate the data. Clearly, the performance for this benchmark could be
improved by being even more lazy about propagation, or by propagating initially to
only a few sites, and allowing remaining propagations to get the data from any of
several secondary sites. However, since the elapsed time overhead remains below 25%
through three replicas, there has been little motivation in practice to implement these
optimizations.�

The Modi�ed Andrew Benchmark shows a slight upward slope, reecting the cost of
additional replicas in the update portions of the benchmark. The overhead compared
to Unix varies from approximately 10% to 25%. This leads us to conclude that the
overhead for a normal mix of �ling operations is quite reasonable.
These benchmarks do not tell the entire story. Because of the lack of an inode inter-

face to �les in the underlying UFS, the physical layer maps �les to the UFS through
an internal mechanism which uses an extra layer of UFS directories, to take advantage
of locality. Unfortunately, the current implementation of this mapping exhibits signi�-
cant internal fragmentation, leading to a 100{200% overhead in benchmarks such as a
recursive stat. This overhead does not represent a cost of replication, but rather of the
design decision to build Ficus on top of an unmodi�ed UFS. While the measurements
presented here are unable to separate this source of overhead accurately, it is believed
that its e�ect would be to lower and atten the curves dramatically. Were we to follow
AFS and add an inode-level interface to our underlying Unix, allowing the removal of
the extra layer of mapping, we expect the attendant I/O overhead would be largely
eliminated.
Another early design decision which also resulted from the desire to avoid changing

the underlying UFS has further negative performance implications. The method by
which Ficus maintains extended �le attributes (such as version vectors) causes an
additional �le open to access the extended attribute data (unless the attribute data is
found in the cache). Better extended attribute maintenance is clearly possible.

Cost of hosting a replica

The measurements described in this section are aimed at answering the question,
\What does it cost to host a replica?" The components of this cost include the storage
(media) cost, the cost of update propagation, and the cost of running the reconciliation
daemons. Ficus' optimistic approach to consistency pushes some of the work of achiev-
ing consistency into the background in the form of asynchronous update propagation
and reconciliation. Of these mechanisms, update propagation is a best-e�ort approach
to update other replicas soon after a �le has been updated, while reconciliation is a
periodic mechanism to ensure consistency.
Reconciliation runs infrequently (once per hour) at low priority so it should have

limited e�ect on system performance. Our experience is that the cost of reconcilation
on workstations can be minimized by scheduling to run most frequently during \o�-
hours" and less frequently for volumes with low update rates. For servers hosting

� We have rarely found it necessary to store more than three replicas of frequently updated volumes. Widely

replicated volumes tend to be read-mostly.
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No # Interfering
Interference 1 2 3

rcp mean 266 459 442 441
con�dence (+ -) 18.1 34.6 37.4 13.8

MAB mean 151 188 244 261
con�dence (+ -) 2.3 6.1 5.5 7.0

Table II. Elapsed time (seconds) for UFS rcp and MAB benchmark while the number of
\interfering" Ficus volume replicas varies from 0 to 3.

many volumes, the costs of background reconciliation can be noticable. A complete
examination of reconcilation's e�ects on performance is the subject of future work.
Update propagation runs (in the background) on all machines at all times. This

section examines the e�ect of update propagation on workstation performance with
the following indirect measurement. A benchmark suite was run on a standard Unix
�le system (UFS) on a target machine. Then the benchmark was repeated with a
replica of a Ficus volume stored on the same disk as the UFS �le system. An update-
intensive workload was run on a second machine that also hosted a replica of the
same Ficus volume. Hence the target machine received a large number of update
propagation requests and was \pulling over" updated copies of its local �le replicas.
The local UFS benchmark was run with 0, 1, 2, and 3 Ficus volumes replicated on the
same disk, each Ficus volume experiencing heavy update propagation from di�erent
sites. Table II shows the extent to which the local UFS activity was slowed by hosting
the Ficus replicas under heavy load.
The results of the experiments shown in Table II demonstrate that heavy update

activity on a remote volume replica can seriously a�ect a storage host. It should be
pointed out that most of the slow-down here is likely due to disk contention. Both
the local UFS benchmark and the remotely generated Ficus load are very disk I/O
intensive. These results may lead us to rethink the whole-�le-propagation nature of
Ficus replication. Currently, for every write operation to a replicated �le, an update
noti�cation is sent to all replica hosts. Those hosts, in turn, pull over a complete new
copy of the �le, an architecture chosen for its simplicity rather than its performance.
Possible changes to address this performance might include either page-level propa-
gation or batching or delay of update noti�cations such that a urry of updates to a
single �le cause only a single update noti�cation and subsequent pull of the contents.
These optimizations should reduce the load on volume replica storage hosts.

Other network environments

The previous measurements examined performance in the local area network en-
vironment. Ficus is also in use at sites connected via telephone modems, and over
the Internet. Table III shows the results of experiments designed to show the perfor-
mance of Ficus for sharing data across slow links as compared to the current primary
alternative, NFS.
These measurements validate the experience of many, that using NFS to share data
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mab cp grep
UFS 169.1 216.8 149.1
NFS (Internet) 628.3 344.8 243.0
Ficus (Internet) 204.5 259.2 182.2

Table III. Elapsed time (seconds) of several benchmarks comparing UFS, NFS, and two-replica Ficus
over the Internet within Los Angeles. The Internet connection (between beverly.cs.ucla.edu and
earvin.isi.edu) has four gateways and a mean round trip time of 10 ms. By comparison, a local

Ethernet round trip averages 2 ms.

over the Internet is only marginally feasible (600 seconds for the MAB, about 4�
slower than local). However, keeping a replica at all locations where access is required
gives all participants performance almost equivalent to local Unix (204 seconds for
Ficus versus 169 for Unix). One should not be misled by these measurements: very few
people would expect to run NFS across a slow link; NFS is not designed for wide-area,
low-bandwidth �le sharing as shown by its performance. This comparison illustrates
that when access to a �le is needed in multiple places connected only by the Internet or
a modem, replication is the key to giving users in both locations local-quality access.

Experiences with optimistic replication

We have argued that the environments targeted by this work mandate the optimistic
replication strategy adopted. However, if inconsistency frequently renders data un-
available, or if the conicts prove di�cult to resolve, then the costs of optimism might
outweigh the bene�ts. Here, we report on the �le system usage studies that led us to
believe that optimistic strategies would seldom lead to conicting updates. Then we
present results of empirical studies measuring the number of conicts actually experi-
enced in our working environment. Finally, we address the cost of conicts both when
automated conict resolvers are employed and by examining the steps taken to resolve
a typical conict manually.

File system usage studies

Analyses of �le usage in existing systems suggest that both concurrent read and write
sharing is quite rare.18 In the referenced examination of an academic Unix system,
of all �les read during a seven-day study period, under 7% were read by more than
one user during the next week (and the vast majority of the �les read by multiple
users were news articles and hence read-only; only 1.3% of �les owned by normal
users were read by multiple readers). Update sharing was even rarer. Just 2.4% of all
�les written (and less than 1% of user-owned �les) were updated by multiple writers.
Similar results were found for directories. To the extent that concurrent sharing is
rare, conicts should be minimal.
Analysis of commercial systems suggests similar conclusions. The re-analysis of trace

data collected in the 1970's19 from three commercial IBM timesharing environments
found that from 3% to 12% of the �les accessed are updated by multiple users.20 A
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more recent study looked at traces taken in three di�erent commercial environments.
Conict rates of 0.11 and 0.02 conicts per user per week were found in the pro-
gramming and "personal productivity" environments, respectively, after adjusting for
easily resolved conicts caused by the mail system. In the third environment, a shared
accounting database generated a mean of 8.57 conicts per user per week, indicating
that either application-speci�c conict resolution would be needed or the database
should be separated into units of smaller granularity.21

Kistler22 found that in a distributed AFS environment, over 99% of all updates are
by the same user that made the previous update, and that the likelihood of di�erent
users modifying a �le less than one day apart was less than 0.75%. Excluding system
�les, the chance of di�erent users modifying the same object within a week dropped to
less than 0.4%. Despite the collaborative nature of the work going on in the measured
environment, concurrent write sharing was not common. Again, conicts should be
rare if optimistic replication were employed in this environment.
Together, these studies form the basis of the argument that �le access sharing is

rare in the target environment, and shared update is even rarer. This led us to adopt
the optimistic approach to concurrency control.

Experimental evidence

While these results guided the design of Ficus, with a working optimistically repli-
cated �le system in use we are now in position to measure the occurrence of conicts in
practice.7 The �rst column of Table IV shows the conict rate observed in an academic
environment running Ficus during a nine month period. The experimental environment
consists of 15 workstations, one �le server, and 12 users doing software development
and word processing. All user �les and the system source code base are replicated be-
tween 2 and 12 times. Most machines are on the same local Ethernet. Three machines
operate in a primarily disconnected mode, connecting via modem nightly or weekly to
reconcile. As the table shows, in the face of over fourteen million �le updates over nine
months of actual use, 489 update-update conicts occurred. Of these, 338 could have
been automatically resolved. (162 of those 338 actually were resolved automatically,
but since we added more resolvers to our suite frequently during this period, some con-
icts that could have been resolved automatically at the end of the period were not
automatically resolved at the beginning. We report both the number actually resolved
and the number that could have been resolved, as the latter is a better indication of
how the system currently operates.) Over 700,000 name creations produced only 128
name conicts. During the measured period, no name conict resolvers were in use, so
all 128 name conicts required manual intervention. Since then, several name conict
resolvers have been written and exercised.
Table IV contains three lines without values, those for disconnected operation re-

move/update conicts, total name creates for disconnected operation, and name con-
ict rate for disconnected operation. These values are not available for the nine month
data set. For a four month subset of the nine month data set, 10% of all remove/update
conicts occurred on disconnected volumes. For the same four month period, approxi-
mately 15% of all name creates occurred in disconnected volumes. For that period, the
name conict rate in the disconnected volumes was around 3 times as high as the rate
for all volumes. We cannot guarantee that the same trends occurred throughout the
rest of the nine month period, but very likely they did. Even with fairly conservative



18 T. W. PAGE, JR. ET AL.

all disconnected

volumes volumes

total non-directory updates 14,142,241 1,502,378

update/update conicts 489 379

automatically resolvable 338 316

not automatically resolvable 151 63

update conict rate 0.0035% 0.0252%

unresolvable rate 0.0012% 0.0041%

remove/update conicts 98 see text

total name creates 708,780 see text

name conicts 128 71

name conict rate 0.0181% see text

Table IV. Conict statistics for UCLA Ficus volumes and disconnected-use volumes. This data was
collected over a nine month period.

assumptions, the disconnected volumes' remove/update conicts and name conict
rate would not be unacceptably high.
Conicts are the result of unsynchronized concurrent updates to multiple replicas.

In our environment, updates of a single �le by multiple users in a short period are
quite uncommon. Hence most conicts are the result of the failure of updates to
propagate in a timely manner. Because we operate in an experimental environment,
machines frequently crash or are rebooted for software changes, temporarily preventing
propagation. There is reason to believe that production environments would experience
dramatically fewer of this type of conict.
Propagation is also typically not possible for replicas stored on disconnected sites.

The second column of Table IV shows conict statistics for volumes involved in discon-
nected operation. Though such volumes receive only about 10% of all updates, they
are responsible for over three quarters of the observed update/update conicts.
Despite the lack of update propagation, the conict rate in disconnected volumes

is still quite low. Since most �les are the responsibility of a single individual, we can
match the movement of the user with the pattern of reconciliation. For example, when
the user moves from home to o�ce, reconciliation synchronizes the two environments.
In e�ect, the user functions as a \human write token."8

Most conicts on disconnected sites result from automated programs (such as mail
sorting or data collection), or from the number of simple shared databases present in
a typical Unix system. Examples of the latter include various game score �les com-
monly found in academic computing environments. Since these databases are common
to multiple users, they experience more frequent concurrent update. Fortunately, their
particularly simple semantics make these types of �les excellent candidates for auto-
matic resolvers. This observation is reected by the proportion of conicts that were
automatically resolvable for disconnected volumes being extraordinarily high.
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Impact of conicts

Although Table IV suggests that conicts are rare (less than two per user per week,
counting name conicts and update/remove conicts), even those might prove disrup-
tive if they are di�cult to resolve. Our experience suggests that resolution is generally
easy, for several reasons: many conicts can easily be resolved automatically; when
required, manual resolution of conicts has not proved di�cult; and �nally, conicts
on shared �les are often avoided by higher-level agreements (even in the unreplicated
case). However, it should be noted that our environment is dominated by experienced
users. We cannot assert with con�dence that naive users would not be troubled by
even rare conicts.
Experience with conicts indicates that a large number occur on �les with very

simple, regular semantics. Based on this observation, we constructed a number of
simple automated conict resolvers. For example, �les are frequently employed to store
processed forms of other data; if this form can be regenerated, a resolver can simply
discard the processed form. Examples of this class of �le include pre-formatted manual
pages, compiled object �les (if source code is present), and XMH .xmhcache �les.
With slight semantic relaxation, a larger class of �les can be automatically handled.
For example, at the cost of occasionally seeing a message twice, conicts on MH
.mh sequences �les can be resolved by simply taking the largest possible sequence
number. Similarly, any concurrent updates to .newsrc �les can be reconciled almost
perfectly. The use of a few simple resolvers such as these automates handling of the
majority of update/update conicts, reducing user intervention by two thirds. On
average, the users in this study responded to less than one conict per week, counting
update/remove and name conicts. Adding name conict resolvers (as we have done)
would further lower this rate.
When Ficus detects a conict on a �le for which no resolver is registered, it blocks

normal access to the �le and sends a mail message concerning the conict to the �le
owner. Conicting updates of a general text �le are usually easy to identify by simply
comparing the two replicas. In these cases, it is easy to select the missing update from
one version, apply it to the other, and then cause the version vector of the repaired
copy to become dominant using tools provided with /�cus.
In our environment, �les that are subject to frequent update by multiple users are

typically already protected from multiple updates by higher-level protocols such as
revision control systems. Note that the case of shared databases is not addressed here,
and is the subject of further research.

Lessons learned

Building and using a large software system in a research setting generates a number
of important lessons that might not be apparent from a paper design. Here we reect
upon what was learned from our experiences in this e�ort.

Lessons concerning replication

Optimism works: A most important conclusion is that optimism works well for
our type of use. The laissez faire approach to update propagation with periodic recon-
ciliation maintains su�cient consistency, so that conicts are rare and not a problem.
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Subtle Details: While the basic reconciliation algorithms are relatively straight-
forward, getting the details right is subtle. These are details which one would tend to
overlook unless building a real system for near-production use. An example is han-
dling hard failures of media which failure irretrievably loses. Some of the state of the
two-phase garbage collection. While the data stored in a damaged replica is generally
replicated or available on dump tapes, the state of the garbage collection algorithms
with respect to that replica is available nowhere else. In practice, a mechanism is re-
quired to enable the other replicas to \forget" about the replica which has been lost.
Other examples include dealing with replicas in �le systems that are full; concurrent
creation, deletion, and moving of replicas; replica switch-over on machine failure; etc.
These are example of the type of complexity that may be missed without use of a
working �le system.
Naming model: The semantics of Unix �le naming are very close to being suitable

for the distributed replicated �ling application. Unix largely treats the management
of the name space separately from the �les those names point to, so the user model of
naming does not need to change radically. However, optimistic directory management
requires that the system tolerate name conicts and multiple names for directories.
The ability to support a DAG as opposed to a strict tree-structured name space
necessitated re-implementing the directory service for use in Ficus.
Leveraging reconciliation: Directories are one example of a rather common type

of data structure, a sequence of records mapping a name to a value, whose update
semantics consist only of creation and deletion. Ficus uses the same management and
reconciliation code both for normal directories and for graft points (volume location
information). As a result, user-interface programs (such as touch, mv, and ls) can
manipulate graft points, again resulting in saving of e�ort. In hindsight, we would like
to have have packaged the directory reconciliation algorithms in an even more general
and abstract form so that any similar data structure could utilize them.
Software replication: Ficus demonstrates that a software solution to high reliabil-

ity and availability is feasible. A software solution (as opposed to hardware-based mir-
ror disks, for example) admits use of commodity hardware at great price/performance
bene�t. It permits greater exibility and the changing of replication details without
adding or moving hardware, eases incremental growth, and provides the ability to
maintain replicas at widely separated geographic locations. Packaged as a module,
software reconciliation can easily slide in or out of a con�guration on a per-volume
basis. The primary cost in the case of software is in the initial development and in
simply storing and propagating the extra copies of data.
Bene�ts of simple resolvers: A small number of very simple resolvers (in addition

to the directory resolver) take care of most of the conicts that do occur. With the ad-
dition of a few additional trivial resolvers, users will be shielded from the vast majority
of conicts, and the statistics reported in Table IV can be expected to improve.
Selective Replication: Volume-granularity replication is only part of the solution.

Selective control, the ability to control what objects from the volume are locally repli-
cated at each volume replica, is required for performance, functionality, and scalability.
However, it further complicates the algorithms and control structures, which must now
be robust to changing replication patterns and properly respond to inaccurate data
with regard where speci�c objects are stored. The added complexity, however, provides
bene�ts to the user in terms of functionality, performance, and usability.
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Administrative costs: The administrative costs associated with replication are a
potential concern. To the extent that replication is transparent, it leaves all of the
other administrative tasks intact; yet it adds more degrees of freedom in deciding how
to con�gure a volume. Which sites should store it? Where should each site store it?
How often should they reconcile? How should �le system backup dumps be set up?
Fortunately, these are largely one-time initial costs, and add little ongoing burden.
Although replica setup requires administrative planning, it can ease other tasks.

Parts of a network �le system that need to be stored on each machine may be placed
in replicated volumes. Then updating one of these �les requires changing the �le only
once, rather than going to each machine. Existing tools such as rdist also allow repli-
cation, but in a limited manner (master-slave with updates to the master only). Ficus
supports full peer-to-peer, update anywhere replication.
Backups: The existence of �le replicas on machines with relatively independent

failure modes largely alleviates the recovery-from-hardware-failure motivation for do-
ing nightly backups. Backups serve primarily to recover from accidental removal or
overwriting of data by users. Note that a �le versioning mechanism (which has been
prototyped as a stackable layer), almost completely removes this latter motivation for
backups. Perhaps only occasional tape dumps will su�ce for recovery from catastro-
phes that would wipe out all replicas. In our working environment, we do not directly
backup disconnected machines and instead rely entirely on replication for their pro-
tection from hardware failure.

Lessons concerning layering

Cache consistency: Inter-layer cache consistency was implemented very late in
Ficus' life cycle.23 Ficus replication does not currently use this mechanism. In some
cases, Ficus uses data optimistically, although this can cause problems in some situa-
tions (one example involves �le removal). In other cases Ficus avoids caching data to
make inconstencies impossible (for example, in handling memory mapped �les) or we
have constructed ad hoc mechanisms to access cached data (in replica selection). Over-
all, while Ficus works adequately in practice without inter-layer cache coherence, the
structure and in some cases the performance of Ficus would bene�t from coherence.
The situation with cross-machine cache consistency is somewhat di�erent. Ficus op-

erates with an identical cross-machine caching policy to NFS. While it is possible to
exercise the lack of cache coordination, problems rarely occur in practice. Optimism
appears justi�ed in this arena as well. However, in those rare times when the cache
consistency assumptions are not justi�ed, problems result which are confusing and not
repeatable. While a usable system can be built ignoring cross-machine cache consis-
tency, the lack of it will be an occasional source of obscure problems.� Our experiences
suggest that applications which are suitable to optimsitic replication are less likely to
need stronger than NFS-quality cross-machine cache consistency, although we have
not tried to verify this hypothesis.
Layer division: In hindsight, we did not fully appreciate the power of the layered

�ling technology when we initially designed Ficus. Much of the physical layer is devoted

� Baker24 reports simulations and instrumentations of the Sprite Operating System which lead to the conclusion

that lack of cache consistency is a problem. Either there is considerably more shared �le activity in the Sprite

environment, or the vast majority of accesses to stale data in NFS-derived systems go unnoticed; both are

probably the case.
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to dealing with the fact that Unix does not present inode-level access. Ficus simulates
the inode-level interface using the underlying UFS as a at �le service, at considerable
performance penalty. We should have built a separate layer to simulate such a service;
that layer could simply be removed when a storage layer with an inode interface became
available. We would also expect and recommend that a commercial implementation of
a layered �le system support inode-level access.
Sharing �les across administrative domains: Ficus as originally implemented,

operated within a single administrative domain. That is, the �le ownership and per-
missions model was as in Unix, with a coordinated space of user identi�ers and a fully
shared �le hierarchy. This was a clear limitation to scaling Ficus across the Internet.
We have relaxed this restriction with a user-id mapping layer. Other extensions to im-
prove security and support cross-domain sharing over a public network are described
elsewhere.25, 26

RELATION TO OTHER WORK

Ficus is related to, or draws from, a variety of other work. Ficus is the intellectual de-
scendant of Locus27 in that both have the goal of providing a network-transparent �le
system that supports partitioned update with automatic recovery. While experimental
versions of Locus permitted partitioned update of �les, no optimistic update of direc-
tories was allowed, and no automatic reconciliation of any object was ever supported.
Commercial versions of Locus used only primary-site reconciliation. Ficus avoids the
design choices (the need for all sites to agree on the current network topology) that
fundamentally prevented the Locus approach from scaling beyond a relatively small
number of sites. Further, Ficus is a modular extension to the Unix �le system, where
Locus was a full distributed operating system.
The weakly consistent replication protocol in which updates are performed syn-

chronously to a single replica and propagated asynchronously to the others is similar
to that used in the Grapevine's electronic mail system.28 The scaling requirements
and failure characteristics of a wide scale Internet environment led Grapevine to this
class of solutions just as it led Ficus in this direction.
The Bayou system29 is also a replicated storage system based on the peer-to-peer

architecture. Like Ficus, Bayou provides support for application-dependent resolution
of conicts. However, unlike Ficus, Bayou does not attempt to provide transparent
conict detection. Applications must specify a condition that determines when a con-
icting access has been made, and must themselves specify the particular resolution
process. Bayou provides session guarantees30 to improve the perceived consistency by
users. Additionally, Bayou establishes strong guarantees about its data|writes can be
classi�ed either as committed or tentative. Bayou does not support any form of selec-
tive replication, so the databases (the Bayou replication unit) must be fully replicated
at all storage sites.
Ficus derives its notion of \volume as a granularity of sub-tree management" from

the Andrew File System (AFS).31 It shares many of the same goals as AFS for scale,
and Coda32 for reliability and availability via optimistic replica management. Ficus
di�ers fundamentally in its peer-to-peer model of machine interaction as opposed to
the client-server model employed in AFS and Coda. Coda allows replication among a
backbone of closely coupled servers while clients on workstations or mobile machines
check out whole �les. Where any Ficus machine may also be fully functioning server,
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Coda clients cannot exchange locally stored data with other clients. Coda clients utilize
on-disk caches that allow them to operate while disconnected from servers to the extent
that needed �les are present in the local cache, whereas Ficus users require a local
replica if a mobile machine is to be able to continue access while disconnected. Finally,
Coda's client/server and consistency models assume geographically co-located servers
for good performance; Ficus' peer model works well with geographically distributed
and weakly connected servers.
The ISIS environment's Deceit �le system,33 like Ficus, utilizes NFS. Deceit has a

mode that permits partitioned update, but it does not support automatic directory
reconciliation.
The Harp �le system34 implements replication for a Unix client-server environment

using primary-copy concurrency control. Harp achieves high performance and relia-
bility by combining write-behind logging techniques with an uninterruptible power
supply that allows logs to be forced to non-volatile storage after a power failure.
The stackable layers architecture in Ficus builds on several areas of related work.

It is in many ways the �le system analog of Ritchie's System V streams,35 and of
the x-Kernel's notion of protocol stacks.36, 37 It is compatible with and motivated by
micro-kernel philosophy growing out of the Mach work,38 but it provides modular-
ity through software structuring conventions rather than with servers in independent
address spaces. Several e�orts at Sun Microsystems have independently explored stack-
able �ling with approaches similar to ours.11, 39, 40

STATUS AND CONCLUSIONS

The system as described in this paper, including reconciliation, is operational and in
daily use since the middle of 1990. Ficus is constructed from modi�ed SunOS 4.1.1
source code, the modi�cations currently consisting of approximately 42; 000 lines of
C-language kernel source code and 26; 000 lines of user-level utility code. Within the
laboratory of its developers, all source code development, user �les and shared system
binaries, etc., are replicated under Ficus. Given an average project size of 12 people, we
have accumulated approximately 720 person-months of user experience. While most
of this experience is with its use within an o�ce, Ficus has also been used to share
data over the Internet, and over phone lines in primarily-disconnected mode.
We have gained considerable experience from building and working in an optimisti-

cally replicated system. All of our experience supports the view that optimistic rep-
lication is very attractive. Providing high performance, high availability, scalable dis-
tributed computing service demands an optimistic approach, an approach that has
proven feasible. It is our hope that the facilities described in this paper will make that
high quality service commonplace, as they require no special hardware and can easily
be added to many existing systems. Many applications should bene�t from the ease
with which the basic reconciliation service can be re-targeted beyond its initial use for
directory management, as shown by our success in using it to manage Ficus' replicated
volume location tables.
All indications are that these conclusions become \all the more so" as scale increases

in terms of geographic distance and numbers of �les. The alternative, pessimistic rep-
lica coordination, becomes increasingly expensive in terms of both delay and avail-
ability. Further, the kind of unstructured shared update that could lead to conicts
becomes even less common. Since stronger consistency guarantees can be provided on
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top of an optimistic base (and the reverse is not the case), we conclude that optimism
is the preferred policy at the lowest level.
It has also been our experience that the lack of portability and exibility in hardware

choices that has resulted from the use of a proprietary operating system source code
base has been an on-going source of frustration. Partially as a result of the restric-
tions on wide-spread distribution of a kernel-based implementation, an out-of-kernel
implementation of many of the ideas within Ficus for use on mobile laptop computers
is underway. Were we to begin the research again, we would strongly consider using a
more widely available operating system source code base such as Linux or BSD Unix,
or remain entirely at the user level.
Finally, this work opens up a number of relevant research directions where one can

expect to make rapid progress, and provides the tools to investigate them. For exam-
ple, individual researchers can explore a variety of synchronization and consistency
policies in a replicated �ling environment, easily adding their own implementations
to experiment with functionality. The use of the stackable �le system technology has
been a boon to this research, and should contribute to the future leverage of the Ficus
system.
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