
Tesseract: Distributed, General Graph Pattern Mining
on Evolving Graphs

Laurent Bindschaedler
bindscha@mit.edu

Massachusetts Institute of Technology

Jasmina Malicevic
jasmina.malicevic@swisscom.com

Swisscom

Baptiste Lepers
baptiste.lepers@sydney.edu.au

University of Sydney

Ashvin Goel
ashvin@eecg.toronto.edu
University of Toronto

Willy Zwaenepoel
willy.zwaenepoel@sydney.edu.au

University of Sydney

Abstract
Tesseract is the first distributed system for executing general
graphmining algorithms on evolving graphs. Tesseract scales
out by decomposing a stream of graph updates into per-
update mining tasks and dynamically assigning these tasks
to a set of distributed workers. We present a novel approach
to change detection that efficiently determines the exact
modifications to the algorithm’s output for each update to the
input graph. We use a disaggregated, multiversioned graph
store to allow workers to process updates independently,
without producing duplicates. Moreover, Tesseract provides
interactive mining insights for complex applications using
an incremental aggregation API. Finally, we implement and
evaluate Tesseract and demonstrate that it achieves orders-
of-magnitude improvements over state-of-the-art systems.

CCSConcepts: •Computer systems organization→Dis-
tributed architectures; Data flow architectures; • The-
ory of computation→ Dynamic graph algorithms; •Math-
ematics of computing→Graph algorithms;Graph enu-
meration; • Information systems → Graph-based data-
base models.
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1 Introduction

Graph pattern mining has wide-ranging applications, such
as discovering chemical interactions or 3D protein struc-
tures [22, 55], analyzing communities in social networks [26],
mining frequent motifs in networks [48], analyzing seman-
tic data [50], or detecting suspicious credit card transac-
tions [54]. Examples of algorithms includemotif counting [9],
frequent subgraph mining [32], graph keyword search [36,
66], and clique or diamond mining [19, 30].
This paper focuses on distributed graph mining of large

evolving graphs. Mining a graph involves enumerating all
its subgraphs that match a pattern of interest, calledmatches.
Mining an evolving graph requires continuously updating
the set of matches that have been mined, as vertices, edges,
and labels are added, deleted, or modified. Efficiently com-
puting these changes in the match set is challenging because
a single graph update can create new and delete existing
matches. Simply recomputing all matches in the entire graph
on every update is prohibitively expensive.

Table 1 presents recent, state-of-the-art graph mining sys-
tems and compares their features. Most graph mining sys-
tems focus on processing static graphs [24, 64] or run on
single nodes [31, 34, 39, 46, 67]. Delta-BigJoin [10] is the only
distributed system to support evolving graphs. However, it is
not a general mining system and only supports a subclass of
problems where the pattern is expressed as a fixed subgraph.

System Evolving Distributed General
TurboISO [31]
Turboflux [39]
BigJoin [10]
RStream [67]
AutoMine [46]
Peregrine [34]
Pangolin [21]
Delta-BigJoin [10]
Arabesque [64]
Fractal [24]
Tesseract

Table 1. A comparison of state-of-the-art graph mining systems
in terms of support for evolving graphs, distributed execution, and
generality of the programming model.

https://doi.org/10.1145/3447786.3456253
https://doi.org/10.1145/3447786.3456253
https://doi.org/10.1145/3447786.3456253
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We present Tesseract, the first distributed streaming sys-
tem designed for general pattern mining on large evolving
graphs. Tesseract supports general graph mining by allowing
patterns to be expressed as arbitrary code. Furthermore, de-
velopers write the same code as they would for static graph
mining, without worrying about the graph evolving. Then,
Tesseract executes the mining algorithms incrementally on a
stream of graph updates and streams out the corresponding
changes in the match set. Finally, Tesseract offers a novel
streaming aggregation API that makes it easy for program-
mers to incrementally post-process matches.
The key innovation in Tesseract is the notion of update-

based exploration: we explore the neighborhood of a graph
update, starting from a subgraph rooted at the update and ex-
pand the subgraph using neighboring vertices to enumerate
all changes in the match set. Update-based exploration relies
on the observation that changes in the match set must nec-
essarily contain the graph update. Furthermore, since graph
mining problems are localizable and bounded [25], a graph
update only affects a limited subset of matches in its neigh-
borhood, unlike graph analytics problems [53, 65] where a
single graph update may affect the entire result. This tar-
geted exploration is much more efficient than recomputing
all matches in the entire updated graph.
Update-based exploration raises a number of challenges.

The first challenge is to accurately and efficiently determine
any new matches resulting from the update and any pre-
update matches that are invalidated by the update. Tesseract
uses a multiversioned graph store in which, roughly speak-
ing, each update produces a new version of the graph. We
present an efficient differential processing technique that
uses the pre- and post-update graph versions to determine
for each match whether it exists before and/or after the
graph update. The second challenge is to prevent duplicate
exploration, which leads to redundant work and duplicate
outputs. Tesseract avoids duplicate exploration by using a
combination of a canonical exploration order and clever use
of the multiversioned store.

Besides its incremental nature, anothermajor advantage of
Tesseract’s update-based exploration is that it can be scaled
out efficiently, because Tesseract’s differential processing
and duplicate elimination ensure that each update can be
processed in any order independently. Tesseract distributes
updates dynamically across workers in order to achieve
good load balance. Superficially, it would seem that this
requires the entire graph to be replicated. However, we do
not replicate the graph across all workers, nor do we attempt
to partition the graph. Instead our multiversioned graph
store is sharded but fully accessible to all workers. This ap-
proach entirely avoids communication and synchronization
between workers — a major bottleneck prevalent in existing
distributed graph mining systems [10, 64, 67].

We have implemented the above-mentioned techniques in
Tesseract and integrated our system with Apache Spark [71]

and Apache Kafka [37] to provide a complete software so-
lution for mining evolving graphs. The resulting system
achieves good scalability and has a small memory footprint
as workers need not keep any update-related state in mem-
ory beyond their useful life cycle.

We show that Tesseract can output changes in the match
set at a rate of millions per second on large input graphs and
with low latency.We demonstrate the benefits of incremental
computation over full computation by comparing Tesseract
with Fractal [24], the fastest static distributed graph mining
system. For instance, for a clique mining application on the
LiveJournal dataset [1], Tesseract maintains the match set
51× faster for a change of 1% to the input graph and 483×
faster for a change of 0.1%. On the same dataset with a fre-
quent subgraph mining application, Tesseract is 110× faster
for a change of 1% and 1,067× faster for a change of 0.1%.
Thanks to Tesseract’s lowmemory requirements and commu-
nication, we outperform static mining systems on the entire
graph. We also compare Tesseract against Delta-BigJoin [10],
which supports evolving graphs but is specialized for fixed
relational subgraph queries, a subclass of graph mining prob-
lems. Tesseract mines cliques 1.1× faster and counts motifs
26× faster than BigJoin. Finally, Tesseract offers comparable
performance to Peregrine [34], the fastest general mining
system for a single node.

We make the following contributions in this paper:
• We present Tesseract, the first distributed, streaming gen-
eral graph mining system for large evolving graphs.
• We propose an incremental mining approach to enumerate
the exact set of changes in the match set resulting from
each graph update.
• We show how our multiversioned graph store allows work-
ers to operate independently and avoid duplicates.
• We outline how Tesseract supports aggregation in the
presence of graph updates.
• We show that Tesseract incrementally maintains the min-
ing result at a fraction of the full recomputation cost and
is capable of emitting changes in the match set at a rate of
millions per second and with low latency.

2 Background

Graph mining problems aim to discover instances of inter-
esting patterns in an input data graph. The input graph can
be either directed or undirected, with labels attached to ver-
tices and edges. Labels include identifiers (usually integers)
as well as user-defined properties. Patterns are arbitrarily
connected subgraphs. Mining a graph is done via subgraph
matching, i.e., enumerating all subgraphs that match some
criteria of interest, such as a specific pattern or certain graph
properties (e.g., frequent occurrences in the graph). A match
is a subgraph of the graph that corresponds to a given pat-
tern, i.e., the match and the pattern have the same number
of vertices, the edge structures, and labels.
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The pattern can either be defined as a fixed graph (e.g., a
cycle), as a property (e.g., frequent occurrence in the graph),
or as arbitrary code. A graph mining system is general if it
supports arbitrary code definitions of the patterns of inter-
est. Similarly, a system that only supports matching fixed
patterns, defined as pattern graphs, is a subgraph query sys-
tem [10, 31, 39]. For example, a general graph mining system
can match cliques of any size based on the property that
"all vertices in the subgraph must be connected to all other
vertices in the subgraph". A subgraph query system requires
a separate pattern graph for every clique size. Some recent
systems can also support arbitrary patterns by generating
programs that can match multiple patterns in a single exe-
cution [34, 46].

Matches can either be vertex-induced, where the subgraph
contains all edges connecting the vertices in the data graph,
or edge-induced, where the subgraphs need not contain all
edges present in the data graph. Most graph mining algo-
rithms use vertex-induced matches. However, some graph
mining algorithms [32] require enumerating edge-induced
subgraphs instead.

Motivating example Consider, for example, the popu-
lar problem of graph keyword search illustrated in Figure 1.
Given a set of labels, graph keyword search finds all sub-
graphs of the input graph whose vertices contain all the
labels of interest. These subgraphs must be minimal, i.e., not
contain any unnecessary vertices. This problem has many
practical applications in social networks, recommender sys-
tems, and the semantic web [66].
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Figure 1. Graph keyword search example.

In the example in Figure 1, the pattern consists of three
labels that are represented as colors (orange, green, or blue).
The pattern matches any subgraph that contains exactly one
vertex of each label. Subgraphs may contain other vertices

(represented in white), but must remain minimal. On the left,
we show an input graph and its matches: (1, 2, 3, 4), (2, 3, 6,
8), and (2, 6, 7, 8).
In Figure 1, on the right, we apply three graph updates:

(+(1, 2), +(2, 5), −(6, 7)) and show the changes in the match
set. Visually, it is easy to see that these updates invalidate
two matches, (1, 2, 3, 4) and (2, 6, 7, 8), and create three more:
(1, 2, 3), (1, 2, 5, 7), and (2, 5, 6, 7, 8).

3 Programming Model
We first describe the core API and show how to implement
two common graph mining applications in Tesseract. Next,
we present the output processing and aggregation API and
demonstrate its use in two other applications.

By convention, in the following algorithms and text, API
functions (implemented by developers) are represented in
typewriter font and internal functions (implemented in the
system) are represented in small caps.
3.1 Core Mining API
Tesseract allows programmers to express algorithms as static
graph mining programs without worrying about graph up-
dates. The additional complexity of incremental computation
is hidden from the user. In fact, most algorithms written for
static systems can be directly ported to Tesseract or require
only minimal modifications.

Tesseract applications are specified using two programmer-
defined API functions: filter that determines whether to
stop exploring (or prune) a subgraph and its extensions, and
match that decides whether a subgraph is a match. This filter-
match model is expressive enough to implement a wide vari-
ety of algorithms and is not limited to subgraph queries [10].
With these two functions, Tesseract automatically executes
the algorithm on the input graph and derives the changes
in the match set as graph updates arrive. The execution of
a mining algorithm is conceptually an exhaustive search
for all matching patterns that prunes (filters) subgraphs
that cannot lead to matches. As in many existing graph min-
ing systems, Tesseract requires that applications satisfy two
standard properties for completeness and correctness:
• Anti-monotonicity [64]: if filter(𝑠) is false for a subgraph
𝑠 , then filter(𝑠 ′) must be false for any expansion 𝑠 ′ of 𝑠 .
• Boundedness [25]: filter returns false after exploring
a bounded set of neighbors around the update. This is
typically achieved using a maximum subgraph size.
Tesseract supports two execution modes: vertex-induced

and edge-induced. The following description assumes vertex-
induced subgraphs unless otherwise stated.

Tesseract receives timestamped graph updates in a stream-
ing fashion and emits matches corresponding to these up-
dates. Internally, Tesseract uses the filter and match func-
tions in its exploration algorithm, which takes the graph
updates as input and outputs a 3-tuple for each change to
the match set: (timestamp, status, subgraph). Tesseract
identifies each emitted match by the timestamp of the graph
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update that produced it. The second tuple element is a differ-
ential match status which can be NEW (new match) or REM
(removed match). The final element is the subgraph that
matched the pattern, including vertices, edges, and labels.
Tesseract supports two output stream modes: unordered

and ordered. The unordered stream emits matches immedi-
ately, irrespective of the timestamp order. This stream pro-
vides lower latency and is useful for applications that can
handle an eventually consistent result, e.g., graph keyword
search. In ordered mode, matches are emitted in timestamp
order. This mode is used by applications such as frequent sub-
graph mining [32] that cannot handle out-of-order matches.
The programmer specifies the output mode to use.
3.2 Graph Mining Applications
Algorithm 1 shows two applications implemented using our
programmingmodel: graph keyword search with three labels
(see Figure 1) and a clique mining algorithm. The implemen-
tation of these two algorithms in the Arabesque [64] static
graph mining system is identical, barring function names.

Algorithm 1: Examples of graph mining applications

1 algorithm graph_keyword_search
2 function filter(𝑠)
3 return len(𝑠) <= MAX and

num_orange(𝑠) <= 1 and num_green(𝑠) <= 1
and num_blue(𝑠) <= 1

4 function match(𝑠)
5 if num_green(𝑠) !=1 or num_orange(𝑠) != 1

or num_blue(𝑠) != 1 then return false
6 foreach vertex 𝑣 in 𝑠 if color(𝑣) == white do
7 if is_connected(𝑠 \ 𝑣) then return false

8 return true

9 algorithm clique_mining
10 function filter(𝑠)
11 return len(𝑠) <= MAX and
12 num_edges(𝑠) == len(𝑠)∗(len(𝑠)-1)/2
13 function match(𝑠)
14 return true

In the graph keyword search example, the filter func-
tion prunes subgraphs with more than one vertex of a given
color since these can never match. We limit the maximum
subgraph size for bounded execution. The match function
checks that a subgraph has exactly one vertex of each color,
and that it is minimal, i.e., it does not contain any unneces-
sary vertices with other labels (represented as white here).
It does so by checking for each white vertex whether the
subgraph remains connected if that vertex is removed.
A clique is a subgraph where each vertex is connected

to all other vertices. In this example, the filter function
checks that the number of edges in the subgraph is equal to

the number of edges that should be present in a clique of the
same size (a clique with 𝑛 vertices must have exactly 𝑛 (𝑛−1)

2
edges). The len function returns the number of vertices in
the subgraph. The filter function checks for cliques of any
size, thus allowing mining patterns of varying sizes. We set
a maximum clique size for bounded execution. The match
function returns true since every filtered subgraph is a match.
3.3 Output Processing & Aggregation API
A common task in graph mining algorithms involves process-
ing the output, such as transforming, filtering, or aggregating
matches. For example, in the graph keyword search example
(Figure 1), we may want to count the number of matches.
Another popular algorithm is frequent subgraph mining [32]
that enumerates all subgraphs that appear more times than
a threshold value, requiring post-processing and aggregat-
ing matches to provide a feedback loop to the exploration
process.
Many existing systems [10, 39] do not support output

processing and aggregation and leave it to the user, while oth-
ers [64, 67] perform aggregation as a separate post-processing
step once the entire match set is available. However, with an
evolving graph, it is desirable to perform output processing
and aggregation in a streaming manner. The incremental
nature of the computation presents several challenges, par-
ticularly for maintaining the aggregation state as matches
are updated.

Operations
map Transform each match
filter Keep matches satisfying the predicate
flatMap Transform each match and flatten
join Join with table or other stream
groupBy Group matches
count Sum matches
agg Custom aggregation

...
Helpers

motif Identify the motif for a match
Table 2. Subset of the Output Processing and Aggregation API.
Tesseract uses and extends the Spark Structured Streaming API [2].

Tesseract makes it easy for programmers to express the
desired processing and aggregation operations using the API
presented in Table 2. Tesseract uses the Spark Structured
Streaming API [2] to process output tuples continuously.
Thus we support common operators such asmap and filter1,
as well as count and agg (custom aggregation). Moreover,
these functions can be combined with specific graph mining
helpers such as motif that identifies the motif2 for a given
match. Tesseract automatically maintains aggregation state.

For most simple aggregation tasks, the programmer need
not worry about the incremental nature of the computation

1Not to be confused with the user-defined filter function.
2Each match is isomorphic to a single fixed subgraph called a motif.
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and merely writes code for static aggregation. Tesseract han-
dles differential counting using the NEW and REM status
emitted along with matches. Programmers must provide the
appropriate differential semantics for custom aggregations
as the system cannot automatically determine them.

Examples Counting the number of matches in our graph
keyword search example (Figure 1) is easily implemented by
calling stream.count() on the output stream.
Similarly, implementing motif counting in Tesseract is

fairly straightforward. We use filter to keep subgraphs
and match every subgraph to enumerate all subgraphs as
matches. As the matched tuples are emitted in a stream, we
first group (groupBy) them by the motif of the match and
count the tuples in each group. This is implemented in a
single line of code for tuple t as shown below:

stream.groupBy(t→motif(t.subgraph)).count()
We conclude this section by looking at a more compli-

cated example: frequent subgraph mining (FSM). We imple-
ment FSM using the minimum image-based support met-
ric [18]. FSM differs from motif counting because it emits
the matches for frequent motifs whose support is above a
user-defined threshold value instead of only maintaining a
per-motif count. Tesseract executes FSM using edge-induced
subgraphs. We implement FSM using a custom aggregation
operator (agg) that computes the support for the pattern and
outputs the matches if the support is above the threshold.
Otherwise, the matches are filtered out, but we still update
and maintain the support value for the associated pattern.
Discarding non-frequent subgraphs saves storage space and
is generally done by static systems as well. However, unlike
static systems that can safely discard these subgraphs since
the input graph does not change, we may end up in a sit-
uation where a pattern becomes frequent after the graph
changes and these previously discarded matches should then
be output. Our FSM implementation automatically handles
this case by recomputing all the subgraphs matching the pat-
tern in question, and emits them when the pattern’s support
value crosses the threshold. Note that computing all sub-
graphs for a single pattern can be done significantly faster
than computing all subgraphs (i.e., all patterns) for the entire
graph, especially since the number of such subgraphs corre-
sponds to the value of the support threshold. When a pattern
becomes infrequent (due to removed matches), we do not
recompute all associated subgraphs in order to invalidate
them but simply indicate that the pattern has lost support.

4 The Tesseract System
We first provide an overview of the system (§4.1). Then, we
introduce the single-worker version of Tesseract, including
its exploration algorithm (§4.2), its differential processing
technique (§4.3) and its duplicate elimination mechanisms
(§4.4). Finally, we consider parallel exploration across dis-
tributed workers (§4.5).

4.1 Overview
Tesseract incrementally mines patterns in evolving graphs by
decomposing the stream of graph updates into independent
exploration tasks that are dynamically assigned across a
set of distributed workers in a cluster. Tesseract supports
the following updates: 1) addition and deletion of edges, 2)
addition and deletion of vertices, 3) addition, deletion, and
modification of labels. In the following discussion, we assume
that updates are expressed as edge updates: vertex updates
add or delete the associated edges, label updates delete the
associated vertex or edge before adding it with the new label.

Figure 2 presents the architecture and the different compo-
nents of Tesseract as the system executes the graph keyword
search example from Figure 1. Updates are streamed from
one or multiple data sources and are received by an ingress
node that assigns timestamps to them in increasing order
before applying them to a timestamp-based, multiversioned
graph store. Then, it inserts the updates into the work queue.

A worker executes the graph mining application (such as
described in Algorithm 1) using an exploration algorithm
that operates on each update in the work queue (§4.2) and
uses graph snapshots to compute the differences (§4.3) before
emitting them to a publish-subscribe system. These differ-
ences are processed using the aggregation API (Table 2) to
produce live mining results.

The graph store is sharded across all cluster nodes where
workers are executing. Each worker has read-only access to
any part of the graph and can process any update, which
simplifies load balancing. Our approach does not require
replicating the entire input graph [24, 64], which limits the
size of the graph that can be mined to the memory available
on a singlemachine.We also do not partition the graph across
workers [10], thus avoiding synchronization and shuffling
of candidate subgraphs that cross partition boundaries.

At first glance, the introduction of a total order for updates
based on timestamps appears counter-intuitive as it may
introduce an unnecessary scaling bottleneck. However, as
we show later (§6.5.5), the exploration of updates makes
graph mining overwhelmingly CPU-bound and, therefore
this ordering is not a bottleneck. Moreover, by imposing
a total order on updates, we remove all synchronization
requirements for update exploration, allowing explorations
to run in isolation with good scalability.

4.2 Update-Based Exploration
Our approach is based on the observation that most graph
mining algorithms are localizable or bounded [25]. Unlike
graph analytics algorithms such as PageRank [53] or Single
Source Shortest Path [65], each match is a small subgraph of
the input graph, so a single update to the input graph only
impacts the matches in the neighborhood of the update. As a
result, computing only the changes in the match set is much
faster than computing all matches in the updated graph from
scratch.
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Figure 2. Tesseract architecture and graph keyword search example from Figure 1.

Algorithm 2 shows the incremental exploration strategy
used by Tesseract to compute the changes in the match set
resulting from a graph update for vertex-induced subgraphs.
We discuss edge-induced subgraphs at the end of this section.

At a high level, Tesseract recursively explores the neigh-
borhood of the graph update, using depth-first expansion
and backtracking. In more detail, Tesseract invokes the func-
tion explore for each edge update, with as arguments the
initial subgraph 𝑠 , containing this edge and its two endpoint
vertices, the timestamp 𝑡𝑠 of the update, and𝐺 , the snapshot
of the graph at 𝑡𝑠3. This function also uses two continuation
variables (𝑐𝑝𝑟𝑒 and 𝑐𝑝𝑜𝑠𝑡 ) to determine when to stop explor-
ing. For the purposes of exploration, we treat both added
and deleted edges in the same way.
explore starts by considering one neighboring vertex 𝑣

of 𝑠 in 𝐺 . The can_expand function filters out redundant
exploration and duplicate matches (§4.4). The expand func-
tion expands 𝑠 to 𝑠 ′ by adding 𝑣 and all edges that connect
𝑣 to 𝑠 . Next, we use the detect_changes function to deter-
mine whether the expanded subgraph 𝑠 ′ results in a change
to the match set and whether further expansions of 𝑠 ′ may
still contain matches (𝑐 ′𝑝𝑟𝑒 or 𝑐 ′𝑝𝑜𝑠𝑡 is true). If the latter con-
dition holds, we invoke explore recursively. Otherwise, we
backtrack and try another neighbor.

explore completes once all neighbors of the updated edge,
up to a maximum subgraph size, have been explored. This
guarantees that all subgraphs that include the graph update
and match the pattern have been explored.
Tesseract supports edge-induced subgraph enumeration

by converting each vertex expansion into the equivalent
edge-induced expansions. To do so, the system expands one
edge-induced subgraph for each permutation of edges con-
necting the expansion vertex by adding a loop over these
permutations before line 5 of Algorithm 2.
4.3 Change Detection
Our incremental model aims to ensure that after each update,
thematch set is the same as if a static algorithm had produced
all the matches on the entire updated graph. The detect_-
changes function achieves this correctness goal by ensuring
that the changes in the match set after each graph update
correspond exactly to the difference between the match sets

3The use of the timestamp and the snapshot is discussed in Section 4.4.2

Algorithm 2: The explore Algorithm
input :𝐺 data graph snapshot at timestamp 𝑡𝑠
input :𝑡𝑠 update timestamp
input :𝑠 subgraph (initialized to the edge update)
input :𝑐𝑝𝑟𝑒 continue pre-update (initialized to true)
input :𝑐𝑝𝑜𝑠𝑡 continue post-update (initialized to true)

1 function explore(𝐺 , 𝑡𝑠 , 𝑠 , 𝑐𝑝𝑟𝑒 , 𝑐𝑝𝑜𝑠𝑡 ) is
2 foreach neighbor 𝑣 of 𝑠 in 𝐺 do
3 if can_expand(𝐺 , 𝑡𝑠 , 𝑠 , 𝑣) then
4 𝑠 ′← expand(𝐺 , 𝑠 , 𝑣)
5 (𝑐 ′𝑝𝑟𝑒 , 𝑐 ′𝑝𝑜𝑠𝑡 ) ←

detect_changes(𝐺 , 𝑡𝑠 , 𝑠 ′, 𝑐𝑝𝑟𝑒 , 𝑐𝑝𝑜𝑠𝑡 )
6 if 𝑐 ′𝑝𝑟𝑒 or 𝑐 ′𝑝𝑜𝑠𝑡 then
7 explore(𝐺 , 𝑡𝑠 , 𝑠 ′, 𝑐 ′𝑝𝑟𝑒 , 𝑐 ′𝑝𝑜𝑠𝑡 )

8 function detect_changes(𝐺 , 𝑡𝑠 , 𝑠 ′, 𝑐 ′𝑝𝑟𝑒 , 𝑐 ′𝑝𝑜𝑠𝑡 ) is
9 𝑠 ′𝑝𝑟𝑒 ← subgraph_at_previous_snapshot(𝐺 , 𝑠 ′)

10 if 𝑐 ′𝑝𝑟𝑒 and filter(𝑠 ′𝑝𝑟𝑒) then
11 if is_connected(𝑠 ′𝑝𝑟𝑒 ) and match(𝑠 ′𝑝𝑟𝑒) then
12 emit (𝑡𝑠 , REM, 𝑠 ′𝑝𝑟𝑒 )

13 else 𝑐 ′𝑝𝑟𝑒 ← false
14 if 𝑐 ′𝑝𝑜𝑠𝑡 and filter(𝑠 ′) then
15 if is_connected(𝑠 ′) and match(𝑠 ′) then
16 emit (𝑡𝑠 , NEW, 𝑠 ′)

17 else 𝑐 ′𝑝𝑜𝑠𝑡 ← false
18 return (𝑐 ′𝑝𝑟𝑒 , 𝑐 ′𝑝𝑜𝑠𝑡 )

before and after applying the update. This difference may
contain additions, deletions, or both.
detect_changes implements a differential processing

technique that finds all the changes caused by an update to
the graph by exploring the graph in two states: before the up-
date (𝑠 ′𝑝𝑟𝑒 ) and after the update (𝑠 ′). In doing so, it determines
for each candidate subgraph under consideration whether
it is a match and, if so, whether it is newly created (NEW)
or removed (REM). detect_changes obtains the previous
version of the subgraph 𝑠 ′𝑝𝑟𝑒 by calling the subgraph_at_-
previous_snapshot function which computes the subgraph
corresponding to the vertices in 𝑠 ′ in the graph snapshot
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immediately preceding 𝑡𝑠 . Computing 𝑠 ′𝑝𝑟𝑒 can be done effi-
ciently from 𝐺 by simply excluding the update (removing
an added edge or adding a deleted edge).

For each pre-update and post-update subgraph, we check
whether further expansions of that subgraph are needed
using the 𝑐 ′𝑝𝑟𝑒 and 𝑐 ′𝑝𝑜𝑠𝑡 variables, and whether the subgraph
passes filter. If so, we then check that it is connected and
passes the match function, as shown in Algorithm 2. If not,
we set the respective continuation variable (𝑐 ′𝑝𝑟𝑒 or 𝑐 ′𝑝𝑜𝑠𝑡 ) to
false (line 13 or 17) to stop further exploration as per anti-
monotonicity of filter. If the pre-update subgraph passes
all tests, it corresponds to a match that was present in the
graph prior to the update, and is no longer present due to the
graph update, and, therefore, must be emitted as a removed
match (REM). Similarly, if a post-update subgraph passes
all tests, the corresponding match is present in the graph
after applying the graph update and is emitted as a newly
created match (NEW). Note that in vertex-based exploration,
it is possible for both 𝑠 ′𝑝𝑟𝑒 and 𝑠 ′ to match the pattern. For
example, consider a path mining application (looking for
sequences of connected vertices) and a graph consisting
of two edges connecting three vertices (1, 2, 3). Initially,
there are edges connecting (1, 2) and (2, 3) but not (1, 3). An
edge update for (1, 3) causes both 𝑠 ′𝑝𝑟𝑒 and 𝑠 ′ to match the
pattern. In this case, the function simply emits both matches
(one REM and one NEW). Furthermore, if either the pre-
or the post-update subgraph passes filter, at least one of
𝑐 ′𝑝𝑟𝑒 or 𝑐 ′𝑝𝑜𝑠𝑡 remains true (line 18) and explore is invoked
recursively. To satisfy our correctness criterion, we must
continue expanding as long as at least one version of the
subgraph can be expanded since it can still yield matches.
Otherwise, 𝑐 ′𝑝𝑟𝑒 and 𝑐 ′𝑝𝑜𝑠𝑡 are false, and explore backtracks.

Example In Figure 1, consider match (1, 2, 3, 4) in the
original graph and consider adding edge (1, 2). detect_-
changes first expands (1, 2) with vertex 3. 𝑠 ′𝑝𝑟𝑒 = ((1), (2, 3))
passes filter, but is disconnected due to the absence of
edge (1, 2) (the condition at line 11 fails). 𝑠 ′ = ((1, 2), (2, 3))
also passes the filter (the condition at line 14 succeeds). 𝑠 ′ is
connected and also passes the match function (line 15) and,
therefore Tesseract emits this match as NEW (line 16). 𝑐 ′𝑝𝑟𝑒
and 𝑐 ′𝑝𝑜𝑠𝑡 are true, and the exploration continues. Tesseract
invokes explore recursively (line 7), now expanding the
subgraph with vertex 4 to (1, 2, 3, 4). The subsequent call
to detect_changes finds that 𝑠 ′𝑝𝑟𝑒 = ((1, 4), (4, 3), (3, 2)),
i.e., the subgraph without edge (1, 2), passes the filter, is
connected and is a match. Therefore, Tesseract emits the
match as REM (line 12). 𝑠 ′ = ((1, 2), (1, 4), (4, 3), (3, 2)), i.e., the
subgraph with edge (1, 2), passes the filter, is connected but
is not a match, since it is not minimal ((1, 2, 3) is minimal).
𝑐 ′𝑝𝑟𝑒 and 𝑐 ′𝑝𝑜𝑠𝑡 are true, and the exploration continues. The
subsequent recursive calls to explore consider expansions
where ultimately detect_changes always returns with 𝑐 ′𝑝𝑟𝑒
and 𝑐 ′𝑝𝑜𝑠𝑡 false, ending this branch of the exploration.

Correctness We make an informal argument that change
detection is correct, i.e., it finds all the changes caused by a
graph update. First, by exploring both pre- and post-update
subgraphs, it follows that any matching pre-update subgraph
is invalidated, and any matching post-update subgraph is
a new match. Second, detect_changes only stops explor-
ing when neither pre- nor post-update subgraphs can yield
further matches, and, therefore, by anti-monotonicity, all
changes are detected. To avoid the cost of expanding the
graph twice, Algorithm 2 interleaves the inspection of the
pre- and post-update subgraphs using a single expansion
and uses 𝑐𝑝𝑟𝑒 and 𝑐𝑝𝑜𝑠𝑡 to avoid unnecessary calls to filter.

4.4 Avoiding Duplicate Exploration

We now describe how Tesseract prevents exploration of du-
plicates by a single worker thread. Duplicates (also known
as automorphisms) are identical matches (same vertices and
edges) up to the order inwhich the subgraphwas constructed.
Avoiding duplicates is necessary to ensure the correctness of
graph mining algorithms. These duplicate matches should
not be exposed to the user, and there is no benefit to explor-
ing a subgraph multiple times. At a single worker thread,
duplicates can occur for two reasons. The first reason is
pattern symmetry, i.e., finding the same match twice by ex-
ploring the subgraph in different orders. The second reason
is that the same match can be explored from two different
updates, i.e., the match contains two updated edges and each
call to explore finds it.
Besides finding and emitting duplicates, a single worker

may also explore the same subgraph multiple times unsuc-
cessfully due to the close proximity of updates in the graph.
Although this issue does not affect correctness, since the
worker only explores the same subgraph repeatedly without
emitting a match, it is desirable to minimize its occurrence
for performance reasons.
In the following subsections, we present Tesseract’s ap-

proach to avoid duplicates in the case of pattern symmetry
(§4.4.1) and in the presence of multiple updates to the same
match (§4.4.2). We next present a snapshot-based exploration
technique that reduces duplicate unsuccessful explorations
(§4.4.3). Finally, implement can_expand (§4.4.4).
4.4.1 Breaking Symmetry
Static systems often rely on symmetry breaking tech-

niques [23] or post-processing to remove duplicates. Tesser-
act solves this problem for evolving graphs by enforcing
a single expansion order that we call the update canonical
order when exploring the graph. The can_expand check
in Algorithm 2 rejects all non-canonical expansion orders,
thereby avoiding automorphic (duplicate) subgraph explo-
ration. Given a subgraph 𝑠 = (𝑣1 ... 𝑣𝑘 ) and an expansion
vertex 𝑣 , can_expand ensures that the expansion follows
the following two update canonicality rules:
Rule 1: (𝑣1, 𝑣2) is the updated edge, with (𝑣1 < 𝑣2).
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Rule 2: The vertex 𝑣 is added if, ignoring 𝑣1 and 𝑣2, it has
the smallest id among all neighbors of 𝑠 and has
not been considered for expansion yet.

Example In Figure 1, the (1, 2) edge can be expanded using
vertices 3, 4, or 5. If we expand using vertex 3, then we
can expand further using vertices 4 or 5. However, if we
first expand using 4, then we can expand using vertex 5,
but we cannot expand using vertex 3 as this would violate
the second canonicality rule. As a result, there is only one
valid expansion order for the subgraph (1, 2, 3, 4). Therefore,
each match is only explored once (in the same canonical
order). Update canonicality is similar to techniques found
in existing static mining systems [24, 34, 35, 64], but unlike
those systems, supports updates to the graph.
Correctness We make an informal argument that update
canonicality is correct, i.e. it does not prune any matches
that should be explored and does not lead to duplicates. Our
update canonicality rules cannot prune any match candi-
dates because they only enforce the expansion order of the
subgraphs to explore. Then the question is whether update
canonicality can lead to duplicate matches. Such matches
can be found in two ways: by executing exploration from
different starting points or by choosing expansion vertices
in different orders from the same exploration. Clearly, the
former does not apply since we are considering a single ex-
ploration rooted at the updated edge. The latter also cannot
happen sincewe are enforcing canonicality on any expansion
vertices, guaranteeing that two vertices in the neighborhood
can only both be added to the subgraph in the same order.
4.4.2 Avoiding Overlapping Explorations

Tesseract prevents overlapping exploration and the output
of duplicate matches using a multiversioning strategy that
orders updates in the graph store to ensure future updates
are not visible to workers. A worker exploring an edge up-
date only sees expansions involving edges with a timestamp
lower than the update timestamp because the graph 𝐺 in
Algorithm 2 is a snapshot taken at the timestamp of the up-
date. This graph snapshot prevents workers from including
updated edges from the future in matches, guaranteeing that
duplicate matches are not produced. Moreover, this approach
removes exploration overlap for updates with different times-
tamps involving the same match since only the exploration
with the highest timestamp is discovered. For example, in
a triangle mining application with two edge additions that
form a triangle, only the exploration task processing the
second update finds a matching triangle.
Correctness We provide an argument that overlapping
explorations starting from different edges cannot find du-
plicate matches. Consider a match discovered by starting
exploration from an edge update. Given that the snapshot
of the graph at the timestamp corresponding to the edge up-
date cannot include any future edges, all other edge updates
that are part of the same subgraph must, therefore, have

a lower timestamp. Since each exploration is rooted at the
edge update. It follows that any new match found during the
exploration could not have been discovered previously from
an update with a lower timestamp. Similarly, any removed
match could not have been removed previously.

4.4.3 Snapshot-Based Exploration

We now describe how Tesseract improves performance by
assigning multiple consecutive updates the same timestamp.
This approach is particularly beneficial when updates are
close to each other (localized) because it reduces repeated
unsuccessful explorations.
Tesseract applies all updates with the same timestamp

atomically to create a graph snapshot. Then, we explore
the graph and emit matches at snapshot granularity, which
allows skipping work for intermediate matches between
snapshots. To do so, the input graph snapshot in the explore
Algorithm 2 contains all the updates at timestamp 𝑡𝑠 , while
the previous graph snapshot excludes all these updates.
For each snapshot, a worker still explores each update

separately while ensuring that matches overlapping more
than one update in the same graph snapshot are only found
from one of the updates. This is achieved by imposing a
strict total order on the graph’s edges (in addition to the
total order on update timestamps), thus ensuring that one
starting edge in a match takes precedence over the others.
The can_expand function in Algorithm 2 checks whether
an expansion edge is in the same snapshot by comparing
the timestamps and returns false if that edge is lower than
the starting (update) edge. The total order can be assigned
in different ways, e.g., based on the vertex ids of the edges.

Example Consider triangle mining (Algorithm 1) and an
input graph to which we add a triangle (1, 2, 3). We first
examine the case where we add the three edges making up
the triangle one at a time. We start by adding (1, 2), which
cannot be expanded as there is no edge to vertex 3. We then
add (1, 3) and expand to the subgraph (1, 2, 3). This subgraph
does not pass filter because it is missing an edge between
vertices 2 and 3. Finally, we add (2, 3) and expand again to the
subgraph (1, 2, 3). This time, the subgraph passes the filter
and is emitted. Next, we consider adding all three edges in
the same snapshot. In this case, we assume that the total
edge ordering is such that (1, 2) < (1, 3) < (2, 3). Tesseract
executes exploration from each edge, similar towhen updates
arrive one at a time. We start exploring from the edge (1, 2).
The subgraph (1, 2, 3) passes the filter and is emitted.
Exploring from (1, 3) cannot expand with vertex 2 since
edge (1, 2) is lower. Similarly, exploring from (2, 3) cannot
expand with vertex 1 since both edges (1, 2) and (1, 3) are
lower. Comparing the two executions, we find that snapshot-
based exploration invokes expand and detect_changes
once while adding edges one at a time incurs this cost twice.
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4.4.4 Subgraph Expansion Rules

Algorithm 3 implements the can_expand function used
in Algorithm 2 and eliminates duplicates using the tech-
niques described above. Executing can_expand before ex-
pand avoids paying the cost of expanding duplicates.

Algorithm 3: can_expand
input :𝐺 data graph snapshot at timestamp 𝑡𝑠
input :𝑠 subgraph
input :𝑡𝑠 update timestamp
input :𝑣 new vertex to expand 𝑠

1 foreach edge (𝑣,𝑢) in 𝐺 with 𝑢 ∈ 𝑠 do
2 if timestamp(𝑣,𝑢) == 𝑡𝑠 and (𝑣,𝑢) < (𝑠 [0], 𝑠 [1])

then return false

3 found ← is_neighbor(𝐺 , 𝑣 , 𝑠 [0]) or
is_neighbor(𝐺 , 𝑣 , 𝑠 [1])

4 foreach 𝑢 in 𝑠 [2 :] do
// s[2:] excludes the update endpoints

5 if not found and is_neighbor(𝐺 , 𝑣 , 𝑢) then
6 found ← true

7 else if found and 𝑢 > 𝑣 then return false

8 return true

The first loop rejects expansions along an edge that is
part of the same snapshot as the initial edge (and therefore
has the same timestamp) if that edge is lower according to
the strict ordering (§4.4.3). The second loop implements the
second update canonicality rule by checking if the vertex
considered for addition has a larger identifier than the pre-
ceding expansion vertices (§4.4.1). This check is achieved by
looking for the first neighbor of vertex 𝑣 in the subgraph 𝑠

(lines 3 and 5) and, when found, ensuring that no subsequent
vertex in 𝑠 has a larger identifier (line 7). The first update
canonicality rule is ensured by always starting exploration
from the updated edge. Finally, duplicate elimination for sev-
eral updates involving the same match (§4.4.2) is guaranteed
because this algorithm executes on a snapshot of the graph
at the timestamp of the updated edge.

4.5 Parallel Exploration

So far, we have focused on exploration running on a single
threaded worker. The techniques presented in the previous
section allow parallel exploration across multiple distributed
workers to execute with no other changes because Tesser-
act ensures that the exploration task (Algorithm 2) for each
update is independent of others and can be executed in any
order. This independence property is achieved by the combi-
nation of our mechanisms for change detection and duplicate
elimination (via timestamps and the multiversioned store).
This property enables multiple workers to execute explore
on disjoint updates, even updates in the same snapshot, while
getting the same behavior as if this algorithm was executed

sequentially at a single worker. Therefore, in Tesseract, paral-
lel exploration is achieved for free because each exploration
task for a given graph update is completely independent
from the others.

5 Implementation
Tesseract leverages Apache Spark Structured Streaming [71],
a stream processing engine, to provision nodes and provide
an execution environment for workers. Tesseract comple-
ments Spark with a graph processing engine designed specif-
ically for graph pattern mining. Since Tesseract only relies
on commonly available operators, it can be implemented on
any streaming or dataflow engine.
Each Tesseract worker executes Algorithm 2 indepen-

dently. An idle worker picks the next update in the work
queue and processes it to output the corresponding changes
in the match set. Workers access the graph store to obtain
the necessary structure and labels to perform the exploration
algorithm. Tesseract is implemented in about 8k lines of C++
library code for the graphmining engine and 1k lines of Scala
code for distributed execution and interfacing to Spark.

In the rest of this section, we describe the implementation
of the individual components of Tesseract as seen in Figure 2.
5.1 Ingress Node
The ingress node sanitizes incoming graph updates and ap-
plies them to the graph store in timestamp order. Timestamp
assignment is user-customizable: each update can be times-
tamped with an increasing integer value or a window of
several updates with the same timestamp can be created,
either based on time intervals or number of updates. The
ingress node also garbage collection of old deleted edges.
5.2 Graph Store
Tesseract’s graph store is based on MongoDB [3], a popular
key-value store, and uses an adjacency list format. Each
vertex record maintains a list of outgoing edges, identified by
the destination endpoint of the edge, and the edge timestamp
and associated labels. Deleted edges are kept butmarkedwith
a special flag. We validate experimentally that MongoDB can
ingest updates at a sufficient rate, so it is not a bottleneck.

Since workers operate on an in-memory graph representa-
tion, Tesseract could also be deployed over other distributed
databases [4, 5, 11] or graph databases [6, 69, 74] by using
their storage interface. However, graph stores designed for
analytics that do not support transactions [40, 59] are un-
suitable for our purposes.
5.3 Work Queue
We implement the work queue using Apache Kafka [37]
to ensure durability of updates and exactly-once delivery
to workers. The work queue offers first-in-first-out (FIFO)
semantics and updates are ordered by timestamps, i.e., any
pull operation from the queue is guaranteed to receive an
update with a timestamp lower or equal to the timestamp of
all other updates in the queue. The single work queue is not
a bottleneck as the work per update is significant.



EuroSys ’21, April 26–28, 2021, Online, United Kingdom Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lepers, Ashvin Goel, and Willy Zwaenepoel

Dynamic Work Assignment In Tesseract, any worker
can process any update because each worker can access any
part of the input graph from the graph store. Therefore, it is
unnecessary to partition the updates in the queue. Provided
that there are sufficientlymany updates, our scheme keeps all
workers busy while ensuring that the load remains balanced
across workers.
5.4 Output Processing
The output processing and aggregation API (Table 2) is im-
plemented using Spark Structured Streaming. We leverage
Kafka on the output side to store emitted matches and pro-
vide a durable publish-subscribe platform to users.
Output Ordering Since the work queue is ordered by
timestamps, each worker also outputs graph updates in FIFO
order. However, processing different graph updates may re-
quire different amounts of time and changes in the match set
may be emitted out-of-order across workers. The publish-
subscribe platform supports reordering of matches by times-
tamps. Reordering is used, for instance, in the FSM algorithm
(§3.3) to maintain consistent support values across updates.
Tesseract supports low watermarks to provide a synchroniza-
tion point guaranteeing that all updates with a timestamp
lower or equal to a target timestamp have been emitted.
5.5 Fault Tolerance
Fault tolerance is an essential concern for high-throughput
evolving graph mining systems that may execute for long
periods of time. Tesseract maintains state in the graph store,
as well as soft state in the workers. The graph store is repli-
cated and sharded on worker machines and can be recovered
in case of failures. The graphs cached at workers can be lost
without affecting correctness. Tesseract relies on Spark to
handle worker crashes and to restart and redistribute work.
We ensure exactly-once semantics for updates using Kafka.
5.6 Optimizations
Tesseract optimizes operations on subgraphs and their mem-
ory footprint by storing the edges connecting vertices in the
subgraph in a bitset representing that subgraph’s adjacency
matrix. Our exploration uses a fixed-size bitset. Many oper-
ations on subgraphs such as counting the number of edges
or computing the degree of a vertex are implemented using
bitwise operators. Bitwise operations also make it cheap to
expand subgraphs and backtrack row-by-row.
Tesseract implements its own optimized motif library to

identify motifs (e.g., for motif counting), but also supports
other implementations such as bliss [35].

6 Evaluation
We compare Tesseract to existing graph mining systems on
various input graphs and algorithms. As Tesseract is the first
distributed general graph mining system for evolving graphs
(See Table 1), a direct comparison is not possible. There-
fore, we compare it with three types of systems. First, we
compare with recent static, distributed, general mining sys-
tems (Arabesque [64] and Fractal [24]) that require periodic

full computation on the entire graph (§6.2). We show that
Tesseract outperforms these systems on static graphs and
provides orders-of-magnitude performance improvements
compared to periodic full computation. Second, we compare
with Delta-BigJoin [10], the closest system that supports
evolving graphs for distributed subgraph queries (§6.3). We
show that Tesseract is faster and more expressive than Delta-
BigJoin. Third, we compare with Peregrine [34], a recent,
single node, static mining system (§6.4) and demonstrate that
Tesseract outperforms Peregrine’s performance in a fair com-
parison when both systems materialize the output. Fourth,
we show how Tesseract incrementally mines large graphs
with trillions of matches. Finally, we perform a scalability
and sensitivity analysis (§6.5).
6.1 Experimental Setup
We use the following four common mining applications:
k-clique enumeration (𝑘-C): Find all cliques (fully con-
nected subgraphs) of a given size 𝑘 within a graph. We also
consider an extended version of this algorithm in which all
vertices in the clique must have distinct labels (𝑘-CL).
Graph keyword search (𝑘-GKS-𝑛): Enumerate all minimal
subgraphs whose vertices contain all 𝑛 labels of interest.
We refer to GKS with subgraphs of size ≤ 𝑘 as 𝑘-GKS-𝑛.
Motif counting (𝑘-MC): Count the number of times each
motif appears in a graph. We refer to motif counting with
motifs of size ≤ 𝑘 as 𝑘-MC.
Frequent subgraph mining (𝑘-FSM-𝑠): Enumerate all fre-
quent subgraphs in a graph. A frequent subgraph has a
minimum image-based support [18] larger than a threshold
𝑠 . We refer to FSM with subgraphs of size ≤ 𝑘 as 𝑘-FSM-𝑠 .
𝑘-C is implemented as per Algorithm 1. 𝑘-GKS-𝑛 is also

implemented as per Algorithm 1, and an example of 5-GKS-3
is shown in Figure 1. 𝑘-MC and 𝑘-FSM-𝑠 are described in
Section 3.3. 𝑘-FSM-𝑠 uses edge-induced subgraphs.
These algorithms cover a wide spectrum of workloads,

including varying selectivity (𝑘-C vs. 𝑘-CL), graph querying
(𝑘-GKS-𝑛), counting (𝑘-MC), and aggregation (𝑘-FSM-𝑠).
Datasets Table 3 lists the graph datasets we used in the
experiments. We use graphs with various sizes and charac-
teristics representing different real-world use cases. Many
of these datasets are used by other graph mining systems
to evaluate their performance [10, 24, 34, 46, 64, 67]. Note
that given the exponential search nature of graph mining,
even relatively small datasets can contain a large number of
matches. For example, LiveJournal has ∼148 billion 5-cliques.
Dataset Vertices Edges Domain
LiveJournal (LJ) [1] 4.8M 68.9M social network
UK-2007 (UK) [16, 17] 106M 3.7B web hyperlinks
DC-2012 (DC) [7] 3.5B 128B web hyperlinks

Table 3. Datasets.
For 𝑘-GKS-𝑛, we assign labels to nodes randomly, uni-

formly across all k so that 1/8th of the nodes are labeled. We
simulate a dynamic graph by loading and applying a shuffled
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subset of the edges (and associated vertices) of a static graph
iteratively until the entire graph is constructed. We simulate
deletions in a similar way by deleting a shuffled subset of
edges already present in the graph.
Hardware and Configuration We evaluate Tesseract us-
ing 8 16-core machines (2 Xeon E5-2630), each equipped
with 128 GB of DDR3 ECC main memory and two 500GB
SSDs. All components of Tesseract, including the graph store,
ingress, work queue, and output processing, run on the same
8 machines. We do not run anything else on these machines.
By default, we create snapshots with a window size of 100K
updates. For reproducibility, we assign increasing timestamp
values to snapshots.
6.2 Static, General, Distributed Graph Mining
We first evaluate the performance benefits of Tesseract’s
incremental computation approach by comparing it with pe-
riodic full computation by static systems. To this end, we con-
sider two state-of-the-art general distributed graph mining
systems for static graphs: Fractal [24] and Arabesque [64].
6.2.1 Distributed Static Graph Baseline
Table 4 shows the time taken by each system to fully

process the LJ dataset for the 4-C, 4-MC, and 4-FSM-2K al-
gorithms using 8 machines. We do not show the CL or GKS
algorithms as they are not implemented in Arabesque and
Fractal. Tesseract runs static graphs by loading all edges as
edge addition updates into an initially empty graph.

Algorithm Arabesque Fractal Tesseract
4-C 4.9h 310s 174s
4-MC — † 12.3h 1.9h

4-FSM-2K — † 23.7h 10.3h
Table 4. Arabesque, Fractal, and Tesseract runtime for 4-C, 4-MC,
and 4-FSM-2K on the LJ dataset, using 8 machines. Arabesque runs
out of memory on LJ for 4-MC and 4-FSM-2K (†).
Despite being designed specifically for evolving graphs,

Tesseract is faster on static graphs than Arabesque and Frac-
tal because its workers run explorations independently. Un-
like Arabesque, Fractal uses a depth-first exploration strategy
that avoids storing and shuffling large amounts of interme-
diate state. However, Fractal workers coordinate with each
other via an application master, resulting in high network
traffic and introducing a bottleneck on the master.
6.2.2 Benefits of Incremental Computation

We now demonstrate the benefits of Tesseract’s incremen-
tal computation approach over static mining for evolving
graphs. We select Fractal for our comparison since it is faster
than Arabesque.We first create 90% of the LJ graph. Then, we
simulate an evolving graph by adding the remaining edges
to the graph in 0.1%, 1%, or 10% increments. A 1% increment
corresponds to 689K updates. Figure 3 shows the time for
each system to process a single increment on a log scale for
4-C and 4-FSM-2K on the LJ dataset. Since Fractal is a static
mining system, it must fully compute the result on the entire
graph from scratch after every increment.
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Figure 3. Fractal and Tesseract runtime for 4-C and 4-FSM-2K
on the LJ dataset using 8 machines. We show the average time to
process increments of 0.1%, 1%, and 10%. For Tesseract, we also plot
the range over all increments (min to max).
These results demonstrate the benefits of Tesseract’s in-

cremental computation over periodic full computation. The
time to process a single increment in Tesseract is low com-
pared to full computation and does not vary significantly. For
4-C, incremental computation improves runtime by 11.5× for
a single increment of 10%, by over 110× for a 1% increment,
and by 1,067× for a 0.1% increment. For 4-FSM-2K, Tesseract
requires 4.4h instead of 23.7h (5.3× faster) to process the
remaining 10%, 27 minutes for 1% (51×), and 172s for 0.1%
(483×). In the latter case, our incremental approach involves
more work to maintain the matches due to certain motifs
crossing above the support threshold and requiring that we
mine and emit all corresponding matches. Mining a single
motif can be done much more efficiently than mining all
motifs. For example, enumerating all cliques of 4 vertices on
the LJ graph takes ∼5 minutes.

6.3 Evolving, Distributed Subgraph Queries

We compare Tesseract with Delta-BigJoin [10], a state-of-the-
art subgraph query system based on Timely Dataflow [49].
Unlike Tesseract where patterns are defined with arbitrary
code, BigJoin is a fixed subgraph query system that matches
a single isomorphic subgraph. For example, counting all 4-
motifs in a graph requires six separate subgraph queries,
one for each (undirected) motif shown in Figure 4. A query
for motif A would be q𝐴 := e(a,b), e(b,c), e(c,d)
while a query for motif F would be q𝐹 := e(a,b), e(a,c),
e(a,d), e(b,c), e(b,d), e(c,d), assuming e(x,y) de-
fines an edge relation. Moreover, to support evolving graphs,
each subgraph query is decomposed into multiple delta-
queries, one for each edge relation. As a result, BigJoin re-
quires 6 separate subgraph queries for 4-motif counting and
executes 25 delta-queries (one for each edge in Figure 4)
to support updates. The situation worsens for mining al-
gorithms with labels. For instance, finding all matches of
5-GKS-3 requires 98 subgraph queries and 743 delta-queries.

A B C D E F

Figure 4. All 6 possible 4-motifs.

Figure 5 compares the runtimes of various algorithms
for Delta-BigJoin and Tesseract on the LJ dataset using 8
machines. We use Delta-BigJoin’s existing 4-C implementa-
tion, and implement optimized versions of 4-CL, 4-MC, and
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5-GKS-3. BigJoin does not provide native support for FSM-
style aggregation, so we do not consider the FSM algorithm
in this comparison. We fully replicate the input graph on all
machines for Delta-BigJoin. With BigJoin, we need to issue
separate queries for each possible isomorphic combination
(6 for 4-MC and 98 for 5-GKS-3). Although BigJoin currently
does not support running multiple queries in parallel, the
system could theoretically factor out some subqueries. There-
fore, we opt to report the runtime of the slowest query (best
case) for algorithms where multiple queries are needed.
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Figure 5. Delta-BigJoin and Tesseract runtime for different al-
gorithms on the LJ dataset using 8 machines. For Delta-BigJoin
in 4-MC and 5-GKS-3, we show the runtime of the slowest query
when it needs to run 6 and 98 respectively.

Tesseract is faster than Delta-BigJoin for 4-C by 1.1× and
6.5× for 4-CL. Our performance gains on 4-CL come from the
general programming model that reduces the search space
significantly when mining algorithms are not looking for
purely structural patterns. In 4-CL, when expanding sub-
graphs by candidate vertices, Tesseract checks immediately
using filter whether the vertex label matches a label al-
ready in the subgraph, and, if so, backtracks. In contrast,
Delta-BigJoin must materialize all matching subgraphs be-
fore checking in a second, post-processing step that the labels
are all distinct. Tesseract fares even better than 4-C and 4-CL
for larger 𝑘-C and 𝑘-CL (not shown). For 4-MC, Tesseract,
when executing an algorithm equivalent to all 6 queries, is
over 7× faster than Delta-BigJoin’s slowest query and only
18% slower than the fastest query. When considering all 6
queries executed sequentially for 4-MC, Tesseract is 26×
faster. For 5-GKS-3, Tesseract outperforms Delta-BigJoin,
mining all 98 matches over 12× than Delta-BigJoin executes
its slowest query and 2× faster for the fastest query.

Impact of Data Shuffle Tesseract workers operate with-
out coordination, while Delta-BigJoin has significant com-
munication requirements. We confirm this intuition by pro-
filing Delta-BigJoin’s network usage and observe that the
system runs almost constantly at high network bandwidth.
In the 4-C experiment on LJ, Delta-BigJoin workers exchange
280 GB of data across the network, and in the 5-GKS-3 ex-
periment, over 15 TB of data are exchanged. Despite Delta-
BigJoin’s ability to overlap computation and communication,
such large data shuffles result in significant overhead. In com-
parison, Tesseract workers only synchronize to pull graph
updates from the work queue, requiring data exchanges in
the order of the graph size (a few gigabytes). This data shuffle

overhead is the reason why Delta-BigJoin is unable to finish
executing larger graphs than LJ in our environment.
6.4 Static, Single-Node, General Graph Mining
We compare Tesseract running on a single node with Pere-
grine [34], a recent, high-performance, static, general graph
mining system. Peregrine is currently the fastest single-node
mining system whose source code is available, and it consis-
tently outperforms AutoMine [46] (source code unavailable).

Table 5 shows the time taken by each system to process the
entire static LJ dataset for 4-C and 4-MC on a single machine.
Peregrine crashes on 4-FSM-2K. We also do not show CL or
GKS as they are not implemented in Peregrine, and the com-
parison would likely be unfair to Peregrine due to its limited
label support. We also compare with PeregrineMat, a mod-
ified version of Peregrine that materializes and outputs all
matches. PeregrineMat offers a more apples-to-apples com-
parison with Tesseract as Peregrine only counts the number
of matches for a given pattern, which is significantly faster.

Algorithm Peregrine PeregrineMat Tesseract
4-C 473s 1855s 1015s
4-MC 2.6h >24h 12.3h

Table 5. Peregrine, PeregrineMat, and Tesseract runtime for 4-C
and 4-MC on the LJ dataset using a single machine.

Tesseract is only ∼2.1× and ∼4.7× slower than Peregrine
for 4-C and 4-MC, respectively, despite materializing and
outputting all matches, supporting evolving graphs, and dis-
tributed execution. In comparison, PeregrineMat is slower in
both cases. We also report Tesseract’s COST metric, defined
as the number of threads at which a system outperforms an
efficient single-threaded implementation [47]. When com-
pared with PeregrineMat, Tesseract achieves a COST of 3 for
4-C and 5 for 4-MC.
6.5 Scalability and Sensitivity Analysis
This section evaluates the scalability, the overhead of sup-
porting dynamic updates, the throughput-latency tradeoff,
the ingress overhead, and the deletion performance.
6.5.1 Incrementally Mining Large Graphs

We evaluate Tesseract’s ability to maintain the match set
in large evolving graphs by only generating the changes in
the match set for graph updates. We consider the UK and DC
datasets that contain trillions or quadrillions of matches for
simple patterns such as 3-cliques or 4-cliques. A complete
enumeration of these matches could require days. Therefore,
we do not aim to enumerate all the matches in such large
graphs, but rather maintain the mining result under updates.
We first load all but 10M edges of the graph in the graph

store, without computing the associated matches. Next, we
apply the remaining edges as updates to the graph and pro-
duce the associated changes in the match set. Table 6 shows
the average time to process 1M edge updates and the corre-
sponding output rate on the UK and DC datasets for 4-C and
5-GKS-3. We perform these experiments both using a single
machine and a distributed deployment with 8 machines.
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# Metric UK DC
4-C 5-GKS-3 4-C 5-GKS-3

1 Time 1,428s 2,905s 2.7h 8.5h
Out. rate 726K/s 1.52M/s 486K/s 985K/s

8 Time 168s 372s 993s 1.5h
Out. rate 5.61M/s 11.4M/s 4.73M/s 7.57M/s

Table 6. Average time and output rate when processing 1M up-
dates on UK and DC for 4-C and 5-GKS-3 using 1 and 8 machines.

Tesseract outputs matches at a rate of millions per second
with 8 machines and over half a million using a single ma-
chine. The output rates scale almost linearly (7.7× and 7.5×)
with the number of machines for the UK dataset. We ob-
serve superlinear scaling (9.7× and 8.9×) for the DC dataset
as workers collectively have more memory capacity, which
reduces the number of times a worker fetches data from the
graph store. The average processing time increases signifi-
cantly for DC compared to UK as expected since each update
involves significantly more matches and requires more pro-
cessing. While the difference in size between both datasets is
34×, the average processing time per window only increases
by 10-14×. Finally, we execute the 4-CL algorithm on the
same datasets to evaluate the performance of an algorithm
with higher selectivity. 4-CL runs 8.2× (UK) and 7.9× (DC)
faster than 4-C while maintaining a comparable output rate.
In conclusion, Tesseract provides a practical solution for
maintaining mining results for large evolving graphs.

6.5.2 Scalability and Breakdown of Operations

We run Tesseract in our cluster using the LJ dataset and
4-C and 5-GKS-3 to show how the system scales as we in-
crease the number of nodes from 1 to 2, 4, and 8. Figure 6
shows the runtime for each experiment, broken down into
the different operations described in Algorithm 2.
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Figure 6. Tesseract runtime for 4-C and 5-GKS-3 on LJ dataset
with increasing number of machines.

Tesseract processes 4-C 7.3× faster and 5-GKS-3 7.6×
faster on 8 machines than on a single one. We conclude that
Tesseract scales almost linearly with an increasing number of
machines. The scalability is not perfectly linear due to over-
head from accessing and constructing the set of neighbors
for a subgraph, emitting matches, and dequeuing updates.
This overhead is partially reflected in the breakdown per op-
eration as the time spent executing other operations (other).
While match, filter, and can_expand are on average 7.5×
faster for 4-C and 8.2× faster for 5-GKS-3 on 8 machines

compared to one, the other operations are only 5.7× faster
for 4-C and 6.3× faster for 5-GKS-3.
6.5.3 Overhead of Supporting Dynamic Updates
We measure the overhead to support dynamic updates

by comparing Tesseract’s performance for 4-C on LJ using
a single machine with STesseract, an optimized version of
Tesseract designed to mine static graphs. STesseract executes
explore for each edge in the graph. The system also does
not perform any differential processing or use snapshots,
and it only includes lines 3 to 8 of the can_expand function
(Algorithm 3). While the original Tesseract finishes in 1,015s,
STesseract only requires 724s to execute the algorithm, a 29%
slowdown. We expect the overhead of supporting evolving
graphs to be between 25% and 50% for most algorithms.
6.5.4 Latency-Throughput Tradeoff
Tesseract supports snapshot-based exploration, which

helps improve throughput by reducing repeated unsuccess-
ful exploration of matches but at the cost of higher latency
for emitting matches (§4.4.3). This approach also amortizes
the cost of reading from the graph store as each worker can
use the same snapshot to process multiple graph updates.
Note that Tesseract allows the graph updates in a snapshot
to be dynamically assigned to multiple workers, avoiding
load imbalance across machines.
We compare the throughput and latency for 4-C on the

LJ dataset using 8 machines. Tesseract processes 133 million
matches per second with a window size of 10K updates, 142
million matches per second with 100K window size and 155
millionsmatches per secondwith 1Mwindow size (a through-
put improvement of 17%). The mean latency to process the
updates in a window increases almost linearly with the win-
dow size. For instance, a 10K window takes roughly 311ms
of processing time, a 100K window takes 2.91s, and a 1M
window takes 26.9s. Tail latencies (P99) remain within 10%
of the mean for window sizes larger than 1K since snapshot-
based exploration amortizes processing latency for updates
that impact many matches. This experiment also justifies our
default window size (100K) as it provides a good compromise
between throughput and latency.
6.5.5 Ingress Scalability

A possible concern with Tesseract’s ingress node and work
queue design is that it introduces a scalability bottleneck due
to the linearization of updates. Intuitively, this is not the case
because graph mining is CPU intensive, i.e., computing the
matches for an update involves orders of magnitude more
work than simply timestamping updates. The fastest graph
mining algorithm in this paper is 4-CL, executing in 30s on
8 machines (Figure 5). In this experiment, since the LJ graph
has 68.9 million edges (Table 3) the aggregate ingest rate for
all workers is 68.9/30 = 2.3 million updates per second.

In order to verify that our ingress node is not a bottleneck,
we execute an empty algorithm that does not do any process-
ing or matching of updates and measure the ingest rate. We
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find that Tesseract workers can ingest ∼1.2 and ∼7.4 million
updates per second, respectively on 1 and 8 machines in our
environment with an empty algorithm. This ingest rate is,
therefore, quite sufficient for most graph algorithms. More-
over, we point out that our ingress node design is simple
and could benefit from many optimizations in a production
environment, such as partitioning of the update stream.
6.5.6 Deletions
Tesseract supports both additions and deletions to the

input graph. We verify that processing deletions takes the
same time as processing additions by adding all edges of
the LJ dataset into an initially empty graph before deleting
all these edges. Tesseract takes 2,756s to process all addi-
tions with the 5-GKS-3 algorithm on 8 machines and another
2,510s to process all deletions when updates are applied in
reverse order. We run the same experiment while deleting up-
dates in a randomly selected order and find that processing
all the deletions takes 3,014s. Randomly ordered deletions
cause matches to be emitted in a different order, creating and
deleting additional matches, resulting in a 20% slowdown.

7 Related Work

Graphs are used for representing and analyzing informa-
tion and relationships in a wide variety of domains [58].
There are two broad classes of graph problems: graph an-
alytics and graph mining. Graph analytics aim to compute
various graph-wide properties, usually through iterative
matrix-vector multiplication. Examples of such problems
include PageRank [53], connected components, and commu-
nity detection. A wide variety of graph processing frame-
works [20, 27, 28, 41, 43–45, 52, 56, 57, 61, 63, 72, 73, 75], have
been developed large scale graph analytics. Their design is
based on think-like-a-vertex, making them unsuitable for
mining algorithms that require enumerating subgraphs [64].
State-of-the-art general, graph mining systems such as

Arabesque [64], Fractal [24], and RStream [67] use graph-
wide exploration and enumerate all the matches in the graph
at the same time. In Arabesque, this approach enables paral-
lelism via BSP-style phased execution, with subgraphs being
built incrementally in each phase, by adding one vertex or
one edge at a time. In RStream, it enables storing and stream-
ing subgraphs from disk in a sequential manner. Fractal [24]
uses a depth-first search approach to enumerate embeddings,
which reduces memory footprint and subgraph enumeration
costs. Recent single-node approaches such as AutoMine [46],
Pangolin [21], and Peregrine [34] have proposed compiler
techniques or pattern-specific optimizations to improve per-
formance over the state-of-the-art. All these systems focus
on static graphs, whereas Tesseract targets evolving graphs.

Several graph query systems [10, 31, 39, 42] use relational
methods for supporting subgraph queries by expressing pat-
terns as a relation query over the graph edges, and generate
matches by joining the edge table. These systems solve a

subclass of graph mining problems where patterns are ex-
pressed as a fixed subgraph query. BigJoin [10] performs sub-
graph queries over static graphs using the GenericJoin algo-
rithm [51] to provide worst-case optimal performance guar-
antees. BigJoin is implemented using Timely Dataflow [49],
and is especially effective for purely structural queries that
just involve joins, since the joins are run in parallel. However,
this parallel execution makes it harder to filter embeddings
efficiently, requiring the joined tuples to be generated before
they can be filtered. Some of these distributed graph query
systems [10] have recently been adapted to support evolving
graphs by leveraging delta queries [15, 29]. There has been
much work on improving subgraph queries performance
over evolving graphs by storing information about query
vertices in the vertices or edges of the graph [39, 62]. Some
specialized systems can accommodate continuous queries [8,
38, 60, 68, 70]. ASAP [33] is a fast, approximate subgraph
query system that estimates the number of pattern matches
in a graph, and it provides an error profile that allows trading
accuracy for query runtime. It has good performance due to
sampling, but it cannot be used to enumerate subgraphs, and
it has limited support for labels. While ASAP is primarily
designed for static graphs, it can be extended to evolving
graphs by rebuilding its error profile on updated graphs.
Tesseract’s compute-storage disaggregation strategy is

inspired by the Scatter architecture [12–14, 56]. Unlike in
these applications, storage is never the bottleneck in graph
mining. However, separating the graph store and keeping
only soft state at each worker simplifies load balance and
avoids partitioning.

8 Conclusions

We presented Tesseract, the first distributed and general
graph pattern mining system designed for evolving graphs.
Tesseract maintains the match set incrementally as the in-
put graph receives updates. Tesseract performs change de-
tection for a single update efficiently and assigns updates
dynamically to a set of distributed workers that operate
independently without exploring duplicates. We demon-
strate that our incremental mining system provides orders-
of-magnitude improvements over existing mining systems.
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