
Fair and Timely Scheduling via Cooperative Polling

Charles Krasic Mayukh Saubhasik
Anirban Sinha

Department of Computer Science
University of British Columbia

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

Abstract
Advances in hardware capacity, especially I/O devices such
as cameras and displays, are driving the development of ap-
plications like high-definition video conferencing that have
tight timing and CPU requirements. Unfortunately, current
operating systems do not adequately provide the timing
response needed by these applications. In this paper, we
present a hierarchical scheduling model that aims to pro-
vide these applications with tight timing response, while
at the same time preserve the strengths of current sched-
ulers, namely fairness and efficiency. Our approach, called
cooperative polling, consists of an application-level event
scheduler and a kernel thread scheduler that cooperate to
dispatch time-constrained application events accuratelyand
with minimal kernel preemption, while still ensuring rigor-
ously thatall applications share resources fairly. Fairness
is enforced in a flexible manner, allowing sharing accord-
ing to a mixture of both traditional resource-centric metrics
and new application-centric metrics, the latter being critical
to support graceful application-level adaptation in overload.
Unlike traditional real-time systems, our model does not re-
quire specification or estimation of resource requirements,
simplifying its usage dramatically. Our evaluation, usingan
adaptive video application and a graphics server, shows that
our system has event dispatch accuracies that are one to two
orders of magnitude smaller than are achieved by existing
schedulers. At the same time, our scheduler still maintains
fairness and has low overhead.

Categories and Subject DescriptorsD.4.1 [Operating Sys-
tems]: Process Managemnent—Scheduling

General Terms Design, Measurement, Performance

Keywords Fairness, Timeliness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction

Over the years, there have been impressive improvements
in computing capacity. Today, common personal computers
rival the supercomputers of the not too distant past, in mea-
sures such as processor speed, storage capacity, communi-
cation bandwidth, etc. These advances are allowing the de-
velopment of desktop applications with demanding timing
requirements. For example, high-resolution video displays
and cameras have become commonplace today, and video
conferencing applications using these devices are increas-
ingly being used to reduce the need for face-to-face meet-
ings involving long-distance travel. These applications per-
form numerous activities such as capture and output of au-
dio and video, echo cancellation and network streaming, all
of which have stringent timing requirements. For example,
packets need to be received by the client-side application
with minimal delay to reduce overall lag or frame skipping.
Another class of applications with similar requirements is
gaming. Video gamers prefer frame rates upwards of 100
fps (10 ms per frame) due to rapid motion and close viewing
conditions, and so gaming displays are often advertised as
having under 5 ms response time. Therefore, gaming appli-
cations have challenging requirements because they need to
perform all their other activities, including I/O and compu-
tation, within 5 ms for each frame.

An emerging trend is a class of applications that have
both tight timing and heavy CPU requirements. For exam-
ple, digital multi-track audio processing software used by
musicians, has tight timing constraints, and also substan-
tial CPU needs due to sophisticated graphical visualization.
Similarly, high resolution I/O devices such as 24 inch dis-
plays with 1920x1080 resolution are easily affordable to-
day (they cost less than $400). These displays support full
HD quality video (i.e., 1080p), but the data rates and the
de/compression needs of HD continuous media applications
routinely push the computational limits of available proces-
sors. In addition, these applications are increasingly being
designed to support diverse environments, from ultra high-
resolution for tele-immersion [Yang 2007] to constrained
resolution for mobile platforms. An appealing idea is “en-
code once, run everywhere”, wherein data is encoded and

stored once scalably, spanning the entire range of low to high
resolutions [Schwarz 2007]. The applications adapt the data
on the fly, at one or several stages of processing, based on
availability of resources such as CPU capacity, storage, net-
work bandwidth or display size. Thisadaptive approach can
also be used to serve the same content to different clients si-
multaneously, and multiple independent content to the same
client (e.g., real-time editing of video sports feeds). These
adaptive applications are time-sensitiveand they can satu-
rate resources because they aim to provide the highest pos-
sible quality based on resource constraints.

Current Approaches While hardware technology has ad-
vanced exponentially and these sophisticated applications
have become available, unfortunately, modern operating sys-
tems do not provide the timing response needed by these
applications. Poor timing, especially under heavy load, re-
sults in quality artifacts such as stutters, skips, hangs, and
auditory and visual glitches, limiting the use of these appli-
cations. Traditionally, commodity operating systems aim to
provide fairness and high throughput, at the expense of tim-
ing response. For example, Unix-based feedback schedulers
use low CPU usage as a heuristic to give priority to interac-
tive applications [Corbato 1962]. However, continuous me-
dia applications may have high resource requirements as de-
scribed above, and thus may not be run at the desired times.

Consider various options for providing improved timing.
The quantum of the scheduler can be reduced so that the OS
can respond to application events more rapidly, but that con-
tradicts with the throughput goal, due to increased context
switching. Alternatively, a time-sensitive application can be
strictly prioritized at the expense of other applications but
that contradicts with fairness. In the worst case, a tight-
loop bug in a real-time application can effectively lockup
the entire system. Another alternative is to use reservation
schemes [Mercer 1994, Leslie 1996, Jones 1997] that pro-
vide each thread an allocation, consisting of a certain pro-
portion of the CPU over a certain period of time, ensuring
that the deadlines of real-time tasks are satisfied. Best-effort
tasks can coexist because they have a certain minimum al-
location to avoid starvation. These schemes require specify-
ing resource requirements, which is non-trivial in general-
purpose environments. It is possible to estimate require-
ments [Steere 1999, Lu 2000, Yang 2008], but a more fun-
damental problem with reservations is that the resource can
be allocated anytime during the period. If an application has
tight timing requirements (e.g., packets should be delivered
to the application within one ms after they are received), the
period has to be short, which can dramatically increase con-
text switching overhead, since a single application with a
short period prevents the scheduler from allowing any other
application to run for a long duration. As a result, reserva-
tions have been mainly used to provide coarse-grained tim-
ing response (e.g., 30 ms granularity for displaying video
frames).

Our Approach We believe that it is important for com-
modity operating systems to provide accurate timing and
fairness to applications, without requiring resource specifi-
cations such as CPU allocation. Our key observation is that
time-sensitive applications have some computations that are
time synchronous (e.g., video display) and others that are
best effort and can be adapted (e.g., video decoding), and
these two types of computations need to be clearly identi-
fied so that their needs can be met independently. In par-
ticular, the time-synchronous computations should specify
their timing needs to the OS scheduler so that it can dis-
patch them with low latency, and yet all applications, in-
cluding time-sensitive applications, should share resources
fairly with each other. Based on this observation, we present
a programming model for designing these applications and a
scheduler that meets their needs.

By default, our scheduler enforces max-min fairness
among threads in terms of the measured amount of CPU
time each executes. Thread weights may be adjusted to al-
ter the default sharing. We refer to this asresource fairness
since it is defined based on a resource metric,i.e. CPU time.
Alternatively, we also provide a thread grouping mechanism
that allowsapplication fairness. Threads may be grouped,
and their overall allocations subdivided among group mem-
bers in application defined terms, for instance multimedia
applications may determine fairness based on user-centric
quality. In multimedia applications, our notion of resource
fairness relates to the common notions Quality of Service
(QoS), whereas application fairness relates to Quality of Ex-
perience (QoE).

Our approach provides timing accuracy (up to roughly
one ms), fairness across all applications, has low overhead
and requires no resource specification. It consists of a two-
tiered, cooperative application and kernel-level scheduling
system. The application-level scheduler dispatches non-
preemptively, prioritizing the time-synchronous computa-
tions (timer events) over the best-effort computations (best-
effort events). The kernel scheduler is preemptive and en-
sures fair sharing of resources across all applications. Con-
necting the two schedulers is a bidirectional interface called
cooperative polling by which the application scheduler can
specify its timing needs to the kernel scheduler, and the ker-
nel scheduler can provide the timing needs of other applica-
tions (e.g., the earliest timer event of any other application)
to the application scheduler.

A key aspect of cooperative polling is that the kernel ex-
pects that a time-sensitive application will yield voluntar-
ily so that the timing needs of other time-sensitive appli-
cations can be satisfied. For example, the application is ex-
pected to yield by the next earliest timer event. Cooperative
polling reduces unnecessary kernel preemption, which can
cause application-level priority inversion and unpredictable
timing. It also makes applications aware of the timing needs
of other applications, allowing them to accommodate others,

and vice versa. Furthermore, by sharing timing information,
these applications are able to more effectively adapt theirbe-
havior while preserving timeliness during overload.

Our kernel-level scheduler provides preferential treat-
ment to the cooperative application by ensuring that its timer
events are dispatched with low latency. This cooperative fair-
sharing approach minimizes dispatch latency, but the sched-
uler still ensures that applications share resources fairly, i.e.,
uncooperative applications lose preferential treatment.Fur-
thermore, our scheduler provides both resource-based and
application-specific fairness.

Our approach is similar to work on split level schedul-
ing such as scheduler activations [Anderson 1992], in that
we provide a way for application-level and kernel-level
schedulers to cooperate. However our approach differs from
scheduler activations in two important ways. Firstly, the se-
mantics of cooperative polling are much simpler, mainly be-
cause the kernel component of cooperative polling does not
have any role in the creation or deletion of kernel threads
(activations), while such a role is integral to the more com-
plex semantics of scheduler activations. Secondly, whereas
scheduler activations use upcalls, we piggyback timing in-
formation onto the polling operations performed by time
sensitive applications. This aspect of our approach and its
benefits are similar to how soft and firm timers use in-kernel
polling (triggers) to provide high resolution timing without
frequent interrupts [Aron 2000, Goel 2002].

We have implemented cooperative fair sharing in the
Linux kernel. We have developed a video streaming ap-
plication called QStream that adapts video quality based
on available network, CPU and storage bandwidth [Krasic
2007; 2008]. We have modified QStream to use coopera-
tive polling and we have retrofitted cooperative polling into
the X11 server. Our evaluation shows the benefits of our
approach for supporting resource-intensive, time-sensitive
applications.

The following sections describe our approach in detail.
Section 2 describes the application programming model,
and then Section 3 presents the cooperative application-level
and kernel-level scheduling system. Section 4 describes the
implementation of our system, and provides an overview of
some adaptive applications we have developed. Section 5
presents our evaluation, Section 6 discusses related work in
the area, and Section 7 presents our conclusions.

2. User Level Programming Model

Our event-driven programming model is inspired by the
principles of reactive programming [Berry 1992]. It is de-
signed for computations that can be run non-preemptively
and are short-lived. Non-preemptive scheduling avoids un-
predictable timing that can be caused by preemption. It also
helps avoid the use of locking and synchronization primi-
tives required in multi-threaded programs.

submit(Event *e);
an
el(Event *e);run();stop();
Figure 1. Application scheduler API.stru
t Event {enum { TIMER, BEST_EFFORT } type;Callba
k
allba
k;TimeVal release;TimeVal user_virtual_time;...};

Figure 2. Event type definition.

Short-lived events avoid blocking or sleepingand run for
short periods of time, helping ensure that timer events can be
dispatched with low latency. Asynchronous I/O is favored
to avoid blocking. Having only short-running events may
sound counter intuitive, since long computations seem in-
herent to continuous media applications (e.g., video decom-
pression). However, most long computations use loops, and
each iteration can be divided into a separate event. Another
well-known technique is to break up the execution of a long
computation into smaller units through the use of corou-
tines [Adya 2002]. This focus on short, non-blocking events
promotes an environment that allows software to quickly re-
spond to external events, such as the arrival of data from the
network, hence the namereactive programming.

2.1 Application Scheduler API

In our programming model, cooperative applications use a
per-thread application scheduler that operates independently
of application schedulers in other threads. Program execu-
tion within each thread is a sequence of events (function in-
vocations) that are run non-preemptively.

As our actual implementation is written in C, we will
illustrate our model in this section using C-like pseudo code.
Figure 1 lists the key primitives in the application scheduling
model.

The application callssubmit to submit an event for exe-
cution. To initiate dispatching of events, the applicationcallsrun, which normally runs for the lifetime of the application.
The application must submit at least one event before call-
ing run, and it callsstop from within an event to end the
dispatching of events. The application can also call
an
el
to revoke an event it had previously submitted.

Figure 2 shows the type definition of an event. An ap-
plication specifies each event as either a timer or a best-
effort event. The
allba
k field specifies the function that
will handle the event and any data arguments to be passed.
Therelease field specifies an absolute time value. Timer
events arenot eligible for execution until therelease time
has passed. Once eligible, timer events take priority over
all best-effort events. The core application scheduler never
skips or drops any timer events, including delayed events
in our model. It is the responsibility of the application to

re
v_video_frame(player, frame) {frame.de
ode_event = {type = BEST_EFFORT,user_virtual_time = de
oder_get_virtual_time(frame),
allba
k.fn = de
ode_video_frame };submit(frame.de
ode_event)frame.expire_event= {type = TIMER,release = de
oder_get_release_time(frame),
allba
k.fn = expire_video_frame };submit(frame.expire_event);}de
ode_video_frame(player, frame) {
an
el(player.loop, frame.expire_event);if (de
ompress(frame) != DONE) {submit(frame.de
ode_event);return;}frame.display_event = {type = TIMER;release = player.start + frame.pts;
allba
k.fn = display_video_frame };submit(frame.display_event);}expire_video_frame(player, frame) {
an
el(frame.de
ode_event);}display_video_frame(player, frame) {put_image(player.display, frame.image);};
Figure 3. Example of adaptive video player.

adapt to delayed events. Theuser_virtual_time field is
explained in the next section.

2.2 Application Example

Figure 3 shows an example of how applications are writ-
ten in our programming model. It presents an outline of
the core logic of an adaptive video player (for a more de-
tailed explanation, see [Krasic 2007]). The entry point in
this example is there
v_video_frame function which is
called upon arrival of compressed video frame data (e.g.,
from network or disk). It schedules two events for the frame,
a decode and an expire event. The decode event is a best-
effort event for decoding the frame. It executes the func-
tion de
ode_video_frame. In our adaptive player, video
frames may arrive in order of importance, and if the CPU is
busy, multiple best-effort frame decode events may be pend-
ing at the same time. Theuser_virtual_time attribute of
the best-effort events is used to determine the order in which
to decode frames. The functionsde
oder_get_virtual_time
andde
oder_get_release_time (not shown) use application-
specific semantics to assign values ofuser_virtual_time
and release, reflecting the relative importance of individual
frames to perceived quality.

Less important frames may have theirexpire_event
timer fire before they can be decoded, and they will be
dropped. Note that this adaptation is time dependent and
does not require estimating resource availability. For more
important frames, thede
ode_event will occur first and
decompress the frame data. Since decompression is CPU

intensive, it may invoke several iterations of the decode
event for full decompression. Finally, when decompression
is done, a timer event is scheduled to display the image at
the correct frame presentation time.

2.3 Assumptions and Limitations

The programming model above does not not require any
specification of resource requirements. However, we assume
that the CPU requirements of timer events alone will not
saturate the system, which is likely because most computa-
tion within adaptive applications is not time sensitive. Also,
cooperative applications will be designed (ideally) to adapt
their best effort events. For example, in a video or audio
player, the code responsible for decoding frames is the most
CPU intensive and typically accounts for over 75% of the ex-
ecution time. However, buffering and other adaptation meth-
ods allow flexibility as to when decoding is performed. In
contrast, the code for presenting an already decoded frame
onto the display or a sound device requires limited process-
ing but has tight timing requirements [Krasic 2007]. We be-
lieve most continuous media applications such as games,
graphical simulations, visualization, etc. share similarchar-
acteristics.

We also assume that events are non-preemptable within
an application thread, and that programs will be written
with short-lived events. The non-preemptive and short-lived
computation requirements match well with event-based ap-
plications. For example, GUI systems generally use short
event handlers for responsiveness. We believe that it should
be possible to modify existing event-driven applications to
use cooperative polling without significant restructuring, as
we show later for the X11 server. It should be possible to
use non-preemptive thread libraries such as Pth [Engelschall
2006] to implement our model. Another alternative is the
TAME system [Krohn 2007] that offers the programmabil-
ity advantages of threads.

3. Kernel Level

Our overall scheduling approach combines application-level
event scheduling, described in the previous section, with a
kernel scheduler that we call a cooperative fair-share sched-
uler. Connecting the two schedulers is a new
oop_poll
system call that enables inter-thread cooperation by sharing
an thread’s timing and progress information with the ker-
nel and with other threads, the result being improved timing
response. In this section, we describe
oop_poll and then
present our kernel scheduler.

3.1 The
oop_poll System Call

The
oop_poll call voluntarily yields the CPU and com-
municates timing and fairness information to the kernel as
shown below:
oop_poll(Group gid, Event *timer, Event *best_effort);

This call takes a thread group parameter and two event
parameters. A thread group in our system consists of threads
that share resources cooperatively. The values of the event
parameters specify 1) the timer event with the earliest re-
lease time, and 2) the best-effort event with the smallestuser_virtual_time in the current thread to the kernel
scheduler. We call these values the thread’s release time and
importance. These event values are used to wake up the
thread at its next release time, or when its best-effort event
is most important among all threads within its thread group.

When
oop_poll returns, the kernel sets the release time
in the timer event to the earliest release time among timer
events, submitted via
oop_poll, acrossall other threads.
Similarly, theuser_virtual_time value in the best_effort
event is set to the least user-virtual time among the best-
effort events of other threads within thesame thread group.
Our kernel expects that threads will cooperate by calling
oop_poll in the future according to these return values. In
exchange for this cooperation, the kernel scheduler gives the
thread preferential treatment in the form of protection from
preemption and accurate timer dispatch, as described laterin
Section 3.2. Thus these event parameters represent aquid-
pro-quo quality of service agreement. We define threads as
beingcooperative when they use the
oop_poll system call
and adhere to cooperative behavior described above.

Our fair-share scheduler provides resource-centric fair-
ness across thread groups and application-specific fairness
within a thread group. Threads within a group pool their re-
sources and then subdivide them according to application-
specific policy as expressed by theuser_virtual_time
value of thebest_effort event parameter. The kernel se-
lects the thread with the leastuser_virtual_time within
a thread group. For example, a video application can set this
value to the number of frames processed, denoting video
quality. Then two video threads running in the same thread
group (e.g., multi-party video conferencing) would have the
same frame rate (video quality) even though the CPU is al-
located differently to the threads. If the threads in a group
are from heterogeneous applications, they must adopt a com-
monly understandable notion ofuser_virtual_time, e.g.,
based on cumulative measures of utility. Thread groups can
be used to schedule the threads of a single application, co-
operating adaptive applications, or all applications of a user.

3.2 Kernel Scheduler

We have designed a kernel scheduler that aims to provide
better timeliness and fairness than current best-effort sched-
ulers by taking advantage of the cooperative polling model.
Our kernel scheduler uses a variant of weighted fair-queuing
(WFQ) to accomplish fair sharing. Below, we provide an
overview of this algorithm before describing our cooperative
fair-share scheduler.

Fair-Share Scheduling Our fair-share scheduler uses the
notion of virtual time. As each thread executes, our sched-

Figure 4. Hierarchical architecture of cooperative polling.

uler updates the virtual time, in weighted proportion to the
actual running time of the thread. As shown in Figure 4, the
scheduler uses a fair-share run queue sorted by minimum vir-
tual time, with threads in a group sharing their virtual time.
The run queue keeps track of minimum virtual time.When a
thread is added to the run queue, its virtual time is set to at
least the minimum virtual time. This happens when a thread
is first created, and also when a thread wakes up. This adjust-
ment ensures that new threads and threads that sleep cannot
accumulate CPU allocation that would subsequently allow
them to starve other threads. This “use it or lose it” approach
helps accommodate the sporadic needs of IO-bound threads.
Standard integer arithmetic techniques help ensure that vir-
tual time wrap-around works correctly.

The scheduler also computes how long the next thread
should run, i.e., the timeslice of the thread, asts = period/N.
Theperiod is a global scheduling parameter (a typical value
is 20 ms), andN is the number of runnable threads. Each
thread gets a chance to run every period, and hence smaller
values improve short-term fairness. However, the scheduler
enforces a minimum timeslice (e.g., 100 us) to prevent live-
lock. Note that the period parameter does not affect the tim-
ing response of the cooperative scheduler described below.

Cooperative Fair-Share Scheduling The cooperative fair-
share scheduler provides enhanced timing support by com-
bining fair sharing with information available from thread
release times. A thread issuing the
oop_poll system call is
inserted into a release queue, sorted by earliest release time,

as shown in Figure 4. When there are cooperative threads
in the release queue, either runnable or blocked, the sched-
uler uses the earliest release time among all the coopera-
tive threads to adjust the timeslice of the thread that is cho-
sen to run. There are two cases depending on whether the
earliest release time is in the future or in the past. When
the release time is in the future, the scheduler selects the
thread with the smallest virtual time, and sets its timeslice
ts = min(release− now, period/N). Otherwise, the sched-
uler selects the thread with the earliest release, and sets its
timeslicets = 0. On exit from
oop_poll, the release time
of the timer parameter will be set based on the timeslice, in-
forming the application when it should next yield. Not visi-
ble to the application, the kernel extends the true timeslice by
a grace period during which the application has the chance to
yield before being preempted (also to ensure the minimum
timeslice), this will be explained further in the next section.

In the first case, when(release− now) > period/N, the
scheduler uses the fair-share scheduling algorithm described
earlier. Otherwise, it uses earliest-release scheduling be-
cause the thread is expected to execute until the next release
time. In this case, the earliest cooperative thread runs with its
timeslice set to zero, allowing it to run for a minimal amount
of time. As a result, the application scheduler of a coopera-
tive thread will execute timer events with release time in the
recent past, and then it will yield back to the kernel imme-
diately (since its timeslice is 0) via
oop_poll. This is the
expected behavior of cooperative threads.

Policing Misbehaving Threads Cooperative threads re-
ceive preferential treatment because they are scheduled soon
after their release times are due (earliest-release schedul-
ing), but our scheduler includes apolicing mechanism to en-
sure that they do not gain long-term advantage by misusing
oop_poll. Specifically, our policing mechanism demotes
a cooperative thread to a best-effort thread so that the thread
is subject to fair sharing exactly as other best-effort threads.
Unlike cooperative threads, the kernel does not maintain
release times for best-effort threads, so they are unable to
run at specific times. Policing is temporary and threads re-
gain cooperative status each time they call
oop_poll.The
scheduler performs policing for three reasons described be-
low: 1) running beyond timeslice, 2) non-cooperative sleep,
and 3) exceeding a virtual time threshold.

When a cooperative thread is selected to run (i.e., it had
called
oop_pollwhen it blocked), a kernel timer is sched-
uled after the timeslice plus a grace period. This period
is a scheduling parameter called
oop_sla
k (1ms by de-
fault). Cooperative threads are expected to yield soon af-
ter their timeslice deadline, but if they fail to do so within
the slack period, they are preempted and demoted. Second,
based on our programming model, cooperative threads are
normally expected to sleep by calling
oop_poll. However,
if a thread blocks in the kernel for any other reason, then
it will not have a release time and is demoted. In regards

to overhead, we note that there is only a single instance of
the above timer required (per cpu), for the currently running
task. In Section 5.6 we report that overall overhead of our
scheduler is small, hence we believe the overhead of this
timer is negligible.

As a final defense against misbehavior, the kernel uses
the virtual time of the thread to ensure fairness. Recall that
oop_poll inserts the thread’s release time into the release
queue. This insertion is not done if the thread’s virtual time
exceeds the run queue’s minimum virtual time by more than
a certain threshold. A thread issuing many timer events in a
short period can increase its CPU share in the short term, but
this will cause its virtual time to advance faster than other
threads. The threshold (order of ms) ensures that cumulative
unfairness is bounded in the long term. A malicious applica-
tion can employ a large numbers of threads but higher-level
containment mechanisms are more appropriate for defend-
ing against such attacks.

Scheduler Usage The weights of the fair-share scheduler
are adjustable via the standard POSIXni
e system call.
Adaptive applications will be able to maintain their tim-
ing even in overload, but the weight can be used to influ-
ence quality. For non-adaptive cooperative applications,the
weight can be used to compensate if the normal fair share is
not sufficient. Since our scheduler is fully work-conserving,
weights for non-adaptive applications can be set conserva-
tively without risking starvation of other applications.

4. Implementation
Our core implementation consists of an application-level and
a kernel-level scheduler. The application scheduler imple-
ments the API shown in Figure 1 and calls the
oop_poll
system call to invoke the kernel scheduler. We briefly de-
scribe our implementation of the kernel scheduler and two
applications, the QStream video application and the X11
server, that we have modified to support cooperative polling.
We will use these applications to evaluate our approach.

4.1 Kernel Scheduler

Our current prototype scheduler is a based on the official
Linux kernel repository (version 2.6.26.5). Several recent in-
frastructural improvements in Linux help the performance
or the implementation of our scheduler. These include a
preemptable kernel, high-resolution timers and process ac-
counting, tickless idle mode, and the replacement of a prior-
ity scheduler with the CFS (Completely Fair) Scheduler.

In prior work [Goel 2002], we described the benefits of
a preemptable kernel on event dispatch latency. With low-
latency kernel preemption, the dominant remaining compo-
nent of event dispatch latency is scheduling latency. The con-
tributions of this paper are targeted directly at scheduling
latency. We use high-resolution timers as a straightforward
way to enforce timeslices, although CFS still relies on a peri-
odic timer ‘tick’ to decide when to end the current timeslice.

High-resolution process accounting simplifies virtual time
computations.

Our implementation does have multiprocessor support,
but we do not evaluate multiprocessor operation or work-
loads in this paper. We plan to do so in future work. Like
CFS, our scheduler maintains a run queue per processor. In
our case, each run queue contains per-processor instances
of fair-share virtual time, release time, and best-effort user
virtual time queues. Non
oop_poll tasks are load bal-
anced in the same way as CFS. For tasks using
oop_poll,
we disable thread migration—i.e. we currently assume that
oop_poll applications are multiprocessor aware, and they
take responsibility to distribute their work among their (CPU
pinned) threads as they see fit. We have implemented such
a scheme in QStream to utilize multiprocessors for video
processing. We are also exploring alternative methods for
supporting event-driven programs on multiprocessors [Zel-
dovich 2003].

The CFS scheduler in Linux arrived concurrently with
the development of our own scheduler. Our kernel scheduler
is similar to CFS, and it should be possible to re-target the
oop_poll implementation to CFS.

4.2 The QStream Video Application

As part of our broader work, we have implemented a com-
plete adaptive video streaming system called QStream [Kra-
sic 2007]. QStream is a substantial application consistingof
over 100,000 lines of code, mostly written in C. QStream
uses scalable video compression along with a resource adap-
tation algorithm called Priority-Progress to adapt to avail-
able network bandwidth, storage throughput, and CPU avail-
ability. QStream includes alibqsf event library that im-
plements our application-level scheduler. QStream uses the
event API shown in Figure 1, and it required no changes ex-
cept relinking with a modifiedlibqsf to use cooperative
polling.

4.3 X11 Server

The X.Org X11 server (X server) forms the core graphical
interface for most Unix based operating systems, and is thus
crucial for time-sensitive Unix applications requiring real-
time visualization. The X11 architecture uses a socket to
communicate between applications and the X server. Socket
communication is subject to scheduling delays, so applica-
tion requests are handled in a best-effort manner.

The X server is an event-driven application [Packard
2000]. It provides an extension called X Synchroniza-
tion [Glauert 1991] that allows applications to communi-
cate their timing needs to the server. The main primitive,XSyn
Await, provided by this extension allows specifying a
wait condition and provides a barrier-like functionality.Any
X11 requests made by an application subsequent to callingXSyn
Await are deferred until the condition becomes true.
Although this extension is present in X11, its implementa-
tion does not include high resolution timers. We modified

the X11 server to use
oop_poll inside its event loop, and
enabled precise timer conditions in the synchronization ex-
tension. Our modifications consist of 917 lines out of a total
of 236,221 lines in X11 (approximately 0.3%). We also mod-
ified the QStream video player to callXSyn
Await before
each call to XPutImage to communicate the desired display
time for each video frame.

5. Evaluation
In this section, we evaluate the timeliness, fairness and over-
head of our cooperative polling model. The workload in
our experiments consists of a varying mix of best-effort and
time-sensitive applications. Each workload is run for 5 min-
utes with some additional time for startup and tear down.

We use a kernel compilation job to represent an inten-
sive best-effort application. We set the number of best-
effort threads in the system by parallelizing the kernel build
process, using themake -j parameter. We use two time-
sensitive applications, the QStream video streaming player
(adaptive) and the X11 server (non-adaptive). Similar to
best-effort threads, the adaptive workloads can fully satu-
rate the system, utilizing 100% CPU. We control the num-
ber of adaptive threads by streaming different videos con-
currently. Each video has a highly variable bit rate and vari-
able processing requirements. This adaptive application is an
extremely challenging target for the scheduler. Our results
show that the bursty nature of these video processes exhibits
pathological behavior for any heuristic that attempts to pre-
dict future requirements based on the recent past. We also
performed experiments that show the benefits of incorporat-
ing cooperative polling into the X11 server.

We compare our kernel scheduler against the Completely
Fair (CFS) and the real-time priority Linux schedulers. We
use CFS in its “low-latency desktop mode” configuration.

We evaluate timeliness by measuring tardiness (or dis-
patch latency), the difference between the requested release
time and the time when a timer event is dispatched. This
value is obtained by instrumenting the application sched-
ulers in QStream and X11. We evaluate fairness by compar-
ing CPU allocation across threads, and we evaluate overhead
by measuring video throughput in terms of its frame rate.

The setup for all the experiments consists of three PCs
connected by a LAN, two as video servers, and the other as
the client desktop. The two servers load balance the server
work. All the measurements are taken on the desktop, and
in all cases, we ensure that the servers and the LAN do not
limit desktop performance. The desktop machine is a generic
desktop PC with a 3.0 GHz Intel Pentium 4 (1MB L2 cache),
1 GB of RAM, NVidia NV43 GPU (driver version 173.08
beta), running the Ubuntu 7.10 Linux distribution.

5.1 Timely Response - Baseline

The workload for this experiment consists of a single adap-
tive thread sharing the processor with best-effort threads.
This experiment provides a useful baseline for the perfor-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Coop Realtime Cfs

Figure 5. Cumulative distribution of tardiness with a single
adaptive thread.

mance that can be expected with multiple adaptive appli-
cations. We use four concurrent invocations of gcc for the
kernel build workload.

Figure 5 shows the cumulative distribution of tardiness in
QStream with each of the schedulers. The worst case tardi-
ness occurs when the lines reach the top of the y-axis. The
shape of the lines gives an indication of the distribution of
the tardiness of the events, with lines to the left indicating
lower tardiness. This figure shows two main results. First,
the Linux real-time scheduler and our cooperative scheduler
have similar worst case tardiness, on the order of 1ms. This
number represents close to optimal tardiness, given the gran-
ularity of events within our QStream implementation. In par-
ticular, we have verified that the worst-case execution times
for best-effort events in QStream are in the under 1 ms range.
Note that the real-time scheduler has poorer average tardi-
ness because, in the absence of
oop_poll(),QStream uses
thepoll() system call which does not use high-resolution
timers in Linux. Otherwise, we expect the numbers would
be similar.

The second result is that the Linux CFS scheduler fares
poorly in terms of tardiness. Many events are dispatched
over 20 ms after their release. This tardiness is unaccept-
able for video conferencing and various audio application,
specially echo cancellation [Valin 2007]. Without explicit
information from applications, conventional schedulers use
heuristics to categorize applications as interactive, andfavor
them in terms of tardiness. This experiment shows that when
best-effort threads drive a system into overload, the sched-
uler interactivity heuristics tend to fail, and applications with
timing constraints do not work well.

5.2 Timely Response - Complex Workload

In this experiment, we employ multiple adaptive threads
in our workload. We use a mix of 8 adaptive threads, and
4 best-effort threads. Roughly 7 adaptive threads saturate
the processor, so this experiment runs at 100% CPU load.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Linux CFS
Linux Realtime

Coop poll, multiple groups
Coop poll, single group

Figure 6. Tardiness with multiple adaptive threads.

We are not aware of any real-time systems that attempt to
provide tight timing at 100% capacity while maintaining
fairness. We run the cooperative scheduler in two scenar-
ios, threads in the same thread group, and threads in sep-
arate thread groups (see Section 3.1). In the single-group
experiment, the adaptive threads aggregate their CPU allo-
cations and use the best-effort eventuser_virtual_time
parameter of
oop_poll to synchronize frame rates. In the
multiple-group experiment, only the timer event information
is shared, and the kernel allocates CPU fairly.

Figure 6 shows the cumulative distribution of tardiness
in QStream with the three schedulers. Both the single and
multiple group cases of the cooperative scheduler achieve
comparable tardiness, in the 1ms range. With Linux real-
time priorities, all the adaptive threads run with equal pri-
ority in the round-robin real-time class. As compared to the
previous experiment, both the CFS and the real-time cases
have much worse performance. With CFS, almost all events
are dispatched with over 20 ms tardiness, and with Linux
real-time, the tardiness values are now well above 10 ms.
The worst-case performance of both the schedulers is over
100 ms. With multiple threads, the real-time scheduler uses
timeslices that are too coarse grained.

5.3 Fairness

Figure 7 shows fairness results by plotting the CPU usage
of the 8 adaptive threads for two cases: CFS and cooperative
fair share with threads in separate groups. Figures 7 a) and
b) show the sum of CPU usages per adatpive thread, while
Figures 7 c) and d) show the CPU usages individually. The
kernel build jobs run several short compilations, and we
do not plot their CPU usage directly. However, the overall
usage of these best-effort threads is the time remaining in
the Figures 7 a) and b), since the total CPU usage is 100% in
all these experiments. Since there are 12 running threads, the
ideal result is an allocation of 8.3% per process and 66.6%
to the 8 adaptive threads.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
um

ul
at

iv
e

%
 C

P
U

 u
sa

ge

Time (seconds)

(a) Linux CFS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

C
um

ul
at

iv
e

%
 C

P
U

 u
sa

ge

Time (seconds)

(b) Coop Poll, Multiple Groups

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300

C
P

U
 L

o
ad

 (
%

)

Video Position (s)

(c) Linux CFS

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300

C
P

U
 L

o
ad

 (
%

)

Video Position (s)

(d) Coop Poll, Multiple Groups

Figure 7. CPU fairness with multiple adaptive threads.

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

F
ra

m
es

 p
er

 s
ec

o
n

d

Video Position (s)

(a) Multiple Groups

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250 300

F
ra

m
es

 p
er

 s
ec

o
n
d

Video Position (s)

(b) Single Group

Figure 8. Video quality in frames per second.

To help quantify the data in the graphs, we compute ac-
cording to a resonably popular metric known as the Jain
fairness index [Jain 1984], which is defined by the follow-

ing equation: f airness = (∑xi)
2

(n∑X2
i)

. This index ranges from

1/n (worst case) to 1 (best case). The Linux CFS scheduler
and our scheduler provide comparable fairness to adaptive
threads, the Jain index for both cases in Figures 7 is 0.98.
However, as can be seen comparing the top areas of Fig-
ures 7 a) and b), our scheduler provides slightly less alloca-
tion to best-effort threads because these threads lose alloca-
tion when they sleep during I/O operations. This difference
is most pronounced during the first phase of the experiment,
when the kernel build is highly I/O intensive (make build
and make dep stages). Later, the kernel build becomes CPU
intensive spending most of its time in gcc.

The Linux real-time scheduler starves the gcc processes,
as expected (figure not shown). Also the allocation between
real-time threads is highly uneven, because the round-robin
algorithm does not track CPU usage tightly.

Application-Specific Fairness Although the fairshare sched-
ulers in the previous section provide uniform resource fair-
ness, they do not provide uniform application fairness.

 0

 2

 4

 6

 8

 10

 50 100 150 200 250 300

B
it

ra
te

 (
M

b
it

s/
s)

Video Position (s)

Figure 9. Video Bitrates.

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300

C
P

U
 L

o
ad

 (
%

)

Video Position (s)

Figure 10. CPU fairness with multiple adaptive threads in a
single thread group.

Figures 8a) and 8b) show the video frame rate when the
adaptive threads run in different thread (Jain index 0.86)
groups or the same thread group (Jain index 0.97). Notice
the tight grouping of frame rates in Figure 8b). Recall, adap-
tive threads may specify application-level virtual time to
oop_poll, allowing them to subdivide their combined al-
location according to application specific criteria. As a re-
sult, the single thread group here achieves extremely fair
quality (frame rates), in contrast to fair CPU allocation that
delivers highly unfair video quality. Note that each video
plays a different clip, Figure 9 shows the bitrates of each
of them. Such highly non-uniform bitrates are suggestive of
the correspondingly bursty relationship between video qual-
ity and CPU requirement of each thread. Hence the variation
in the frame rate in Figure 8a) is not unexpected.

A smooth CPU rate translates to a bursty video quality,
and vice versa. Confirming the latter, Figure 10 shows the
individual CPU allocations (Jain index 0.92) of the adaptive
threads corresponding to Figure 8b) . We believe that a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Xserver with coop poll,
Xserver with sync

Figure 11. Tardiness of X11.

purely kernel scheduling solution, lacking the application
specific information,cannot achieve the level of application
fairness shown in Figures 8b).

5.4 Cooperative but Non-Adaptive

The experiments of Sections 5.1 and 5.2 measured the tar-
diness of the QStream player. In those experiments, we had
disabled frame display to the X11 server, to isolate any ef-
fects due to X. In this section, we enable frame display and
measure the performance of the X11 server. The workload in
these experiments is the same as in the previous sections (8
adaptive threads andmake -j4 kernel build). We only use
our cooperative scheduler to run this experiment. We run two
experiments that compare the performance of the X11 server
with and without cooperative polling. The first experiment
uses the X11 synchronization extension (see Section 4.3) to
measure frame display tardiness, which is not possible with
an unmodified server because it does not know about display
release times. In the second experiment, the synchronization
information is used by the X11 server to supply timer events
to the kernel via
oop_poll, and to measure tardiness.

Figure 11 shows the cumulative distribution of tardiness
of frame display events in X11. When using cooperative
polling, the X11 server has tardiness in the 1 ms range, even
under the heavy load imposed by this experiment. With-
out cooperative polling, the tight timing achieved by the
QStream adaptive threads (see Figures 5 and 6) is lost due to
unpredictable timing in the X11 server. Note that this exper-
iment uses the synchronization extension that is designed to
meet the timing requirements of frame display, but the X11
server is unable to run in time due to CPU load, and hence
the increased tardiness. We should emphasize that the adap-
tive threads use cooperative polling, which indirectly helps
X11 even when it does not use cooperative polling. The X11
tardiness would be close to the Linux CFS CDF shown in
Figure 6 if the adaptive threads were running under CFS.

5.5 When Cooperative Tasks Misbehave

Section 3.2 described how our scheduler polices
oop_poll
threads. In this section, we evaluate our scheduler with a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100 1000

T
ar

di
ne

ss
 C

D
F

Time (milliseconds)

Mis-behaving thread
Rest of the threads

Xserver

Figure 12. Tardiness with a misbehaving cooperative task.

misbehaving application, by modifying a QStream applica-
tion that deliberately delays its yields. The delay is randomly
chosen from the range of 0-10 ms, and the probability of
delay is configurable. Aside from one misbehaving player,
which delays yielding with a probability of 0.01, this work-
load is the same as in the previous section. Figure 12 shows
that the tardiness of only the misbehaving player is affected.
It gets policed repeatedly causing it to have high tardiness
up to 40 ms, while the rest of the players and the Xserver are
unaffected.This experiment shows that
oop_poll not only
provides better timing to cooperative applications, but also
does not harm them when others are uncooperative!

5.6 Scheduler Overhead

In this section, we describe micro- and macro-benchmark
experiments that measure the performance overhead of our
cooperative fair-share scheduler compared to the Linux
CFS scheduler. We ran the context-switch latency micro-
benchmark from the lmbench benchmark suite [McVoy
1996], and the results for the two schedulers are the same.

We also ran a macro-benchmark experiment comparing
cooperative fair sharing with CFS. The workload in these
experiments consists only of adaptive threads, from 1 to 14
videos. This range helps evaluate our scheduler’s overhead
across a range of workloads from under-load to heavy over-
load. In this experiment, we use the same video in all the
threads. This video is specially prepared with a uniform bit
rate-quality relationship (I frame only, fixed quality, content
with no movement), so that the video frame rate provides a
good estimate of the scheduler overhead.

Figure 13 shows the average as the number of videos is
increased. Since 7 videos saturate the processor, both sched-
ulers have the same frame rate until 7 videos. Beyond that,
the throughput of our scheduler is lower due to increasing
context switching. The actual slowdown is modest (6% at 14
players). Overall, our cooperative scheduler is competitive
with CFS, both in fairness and throughput, yet we achieve as
much as two orders of magnitude improvement in timing.

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14

F
ra

m
es

/s
ec

on
d

Number of players

CFS Coop poll

Figure 13. Overhead of Cooperative Polling vs. Linux CFS.

5.7 Limits of Periodic Scheduling

We believe that cooperative polling provides tight timing
with low overhead because it uses the direct timing infor-
mation provided by threads to inform its scheduling deci-
sions. We compared our approach with a purely periodic ap-
proach in which the scheduler simply gives a short timeslice
to each thread, simulating round-robin or the period param-
eter of reservation based scheduling.

We performed this experiment with 8 adaptive applica-
tions, and we progressively decreased the global period (de-
scribed in Section 3.2) of our scheduler, but the applications
did not use cooperative polling. We summarize our results
here. We were able to achieve a worst-case tardiness of 5 ms,
and a context switch rate of 9348/second, when the global
period is 1 ms. Decreasing the period further had no benefits
on tardiness. With cooperative polling, the equivalent work-
load has a worst-case tardiness of 1ms and a context switch
rate of 2211/second. Thus, cooperative polling achieves a
5x improvement in tardiness with a 4x reduction in context-
switch rate relative to periodic scheduling methods.

6. Related Work

The SMART scheduler [Nieh 1997] and the borrowed vir-
tual time (BVT) scheduler [Duda 1999] share our goal of
providing support for time-sensitive and best-effort applica-
tions. Both use virtual-time based fair sharing across all ap-
plications, similar to our scheduler. However, SMART uses
reservations for real-time threads, requiring estimationof re-
source requirements. BVT uses a user-specifiedwarp value
to temporarily bias the virtual time of time-sensitive appli-
cations, but the warp value is not directly related to the ap-
plication’s timing needs.

Our approach would benefit from the integrated sup-
port for CPU, memory and disk scheduling in the Redline
system [Yang 2008]. However, Redline requires specifying
reservations and estimating resources, and its use of reser-
vations limits timing accuracy that can be achieved without
introducing significant overhead.

Our model is closely related to split level scheduling [Govin-
dan 1992] in which threading is implemented via hybrid user
and kernel-level scheduling. The aim is to correctly priori-
tize user-level threads in different address spaces while min-
imizing user/kernel interactions. Scheduler activations[An-
derson 1992] aim to limit preemption by informing the user
level about the scheduling decisions made by the kernel.
However, activations use kernel upcalls to communicate the
kernel’s scheduling decision to the application, while our
model uses application-level polling to synchronize with the
kernel’s scheduling decisions. Additionally, our applications
also inform the kernel about their timing needs or priorities.

The reflective scheduler by Ruocco [Ruocco 2006] uses
an event system that allows application-specific adapta-
tion for real-time applications. However, this scheduler re-
quires all events to have deadlines associated with them,
gives higher priority to real-time applications, and unlike
our scheduler is non-work conserving. Similarly, the TMO
model [Jenks 2007] uses time-triggered events that have
higher priority than message triggered events, but TMO
threads can starve best-effort threads.

While cooperative polling is used by applications, soft
timers [Aron 2000] use kernel-level polling at key trigger
points, such as kernel entry to efficiently schedule soft-timer
events (e.g., packet transmission) internal to the kernel.Both
approaches aim to avoid unnecessary preemption or inter-
rupts.

Our model focuses on time-sensitive applications that can
adapt during overload. Our QStream video streaming appli-
cation uses a technique called Priority-Progress to adapt to
network and CPU availability [Krasic 2007]. This technique
was inspired by other works on quality-adaptive stream-
ing [Rejaie 1999].

7. Conclusions

Our QStream video streaming application supports mobile
devices, high-quality media streaming, and multi-party con-
ferencing, all of which can saturate resources and thus re-
quire adaptation. We found that the combination of tight
timing and synchronization constraints, heavy resource de-
mands and adaptation is challenging for current operating
systems. These limitations led to the design and implemen-
tation of the cooperative polling model that exposes timing
constraints so that time-sensitive applications adapt more ef-
fectively while still preserving timeliness during overload.
Our results show that our approach can provide worst-case
timing of roughly 1ms to user-level applications even under
heavy load. We believe this is a boundary between what gen-
eral purpose and specialized real-time systems can support.

At the same time, a standing issue in developing sched-
ulers for time-sensitive applications is the need to ensure
fairness with best-effort applications. This work shows that
cooperative polling can be integrated with fair share schedul-
ing, providing the benefits of both.

We see several avenues of future work. We are currently
evaluating cooperative workloads on multi-core processors,
and integration of cooperative polling in the Linux CFS
scheduler. We are interested in exploring the use of co-
operative polling for user-level device drivers [Williams
2008] that need tight timing for correctness. Another direc-
tion would be incorporating cooperative polling as a hyper-
call to improve scheduling in virtual machine monitors. Fi-
nally, we note that our QStream application and the user- and
kernel-level cooperative polling framework is open source
software and is available athttp://qstream.org.

References

[Adya 2002] A. Adya, J. Howell, M. Theimer, W. Bolosky,
and J. Douceur. Cooperative task management without
manual stack management. InProc. of the USENIX Techni-
cal Conference, June 2002.
[Anderson 1992] Thomas E. Anderson, Brian N. Bershad,
Edward D. Lazowska, and Henry M. Levy. Scheduler ac-
tivations: Efficient kernel support for the user-level man-
agement of parallelism.ACM Transactions on Computer
Systems, 10(3):53–79, February 1992.
[Aron 2000] Mohit Aron and Peter Druschel. Soft timers:
Efficient microsecond software timer support for network
processing.ACM Transactions on Computer Systems, 18
(3):197–228, August 2000.
[Berry 1992] Gérard Berry and Georges Gonthier. The ES-
TEREL synchronous programming language: design, se-
mantics, implementation.Science of Computer Program-
ming, 19(2):87–152, 1992. ISSN 0167-6423.
[Corbato 1962] F. J. Corbato, M. Merwin-Daggett, and
R. C. Daley. An experimental time-sharing system. In
Proceedings of the AFIPS Fall Joint Computer Conference,
pages 335–344, 1962.
[Duda 1999] Kenneth J. Duda and David R. Cheri-
ton. Borrowed-virtual-time (bvt) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler. In
Proc. of the SOSP, pages 261–276, 1999.
[Engelschall 2006] Ralf S. Engelschall. The GNU Portable
Threads. http://www.gnu.org/software/pth/, 2006.
[Glauert 1991] Tim Glauert, Dave Carver, Jim Gettys, and
David P. Wiggins. X Synchronization Extension Library
Version 3.0. X Consortium Standard, 1991.http://www.xfree86.org/
urrent/syn
lib.pdf.
[Goel 2002] Ashvin Goel, Luca Abeni, Charles Krasic, Jim
Snow, and Jonathan Walpole. Supporting time-sensitive
applications on a commodity OS. InProc. of the OSDI,
pages 165–180, December 2002.
[Govindan 1992] Ramesh Govindan and David P. Ander-
son. Scheduling and IPC mechanisms for continuous me-
dia. InProc. of the SOSP, pages 68–80, October 1992.
[Jain 1984] R. Jain, D. Chiu, and W. Hawe. A quantitative
measure of fairness and discrimination for resource alloca-
tion in shared computer systems. Technical Report TR-301,

DEC Research, September 1984. URLhttp://www.
se.wustl.edu/~jain/papers/fairness.htm.
[Jenks 2007] Stephen F. Jenks, Kane Kim, and et al.
A middleware model supporting time-triggered message-
triggered objects for standard linux systems.Real-Time Sys-
tems, 36(1-2):75–99, 2007.
[Jones 1997] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU
reservations and time constraints: efficient, predictable
scheduling of independent activities. InProc. of the SOSP,
pages 198–211, October 1997.
[Krasic 2008] Charles Krasic and Jéan Sebastian Lé-
garé. Interactivity and scalability enhancements for quality-
adaptive streaming. InProc. of the ACM Multimedia, Van-
couver, 2008.
[Krasic 2007] Charles Krasic, Anirban Sinha, and Lowell
Kirsh. Priority-progress CPU adaptation for elastic real-
time applications. InProc. of the Multimedia Computing
and Networking Conference (MMCN), January 2007.
[Krohn 2007] Maxwell Krohn, Eddie Kohler, and M. Frans
Kaashoek. Events can make sense. InProc. of the USENIX
Technical Conference, pages 87–100, 2007.
[Leslie 1996] Ian M. Leslie, Derek McAuley, Richard
Black, Timothy Roscoe, Paul T. Barham, David Evers,
Robin Fairbairns, and Eoin Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications.IEEE Journal of Selected Areas in
Communications, 14(7):1280–1297, 1996.
[Lu 2000] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao,
S. H. Son, and M. Marley. Performance specifications and
metrics for adaptive real-time systems. InProc. of the RTSS,
December 2000.
[McVoy 1996] Larry W. McVoy and Carl Staelin. lmbench:
Portable tools for performance analysis. InUSENIX An-
nual Technical Conference, pages 279–294, 1996. URL
iteseer.ist.psu.edu/m
voy96lmben
h.html.
[Mercer 1994] C. W. Mercer, S. Savage, and H. Tokuda.
Processor capacity reserves: Operating system support for
multimedia applications. InProc. of the IEEE International
Conference on Multimedia Computing and Systems, pages
90–99, May 1994.
[Nieh 1997] Jason Nieh and Monica Lam. The design,
implementation and evaluation of SMART: A scheduler for
multimedia applications. InProc. of the SOSP, pages 184–
197, October 1997.
[Packard 2000] Keith Packard. Efficiently scheduling
x clients. In In Proceedings of the Freenix Track of
the USENIX Annual Technical Conference, pages 44–44,
Berkeley, CA, USA, 2000. USENIX Association.
[Rejaie 1999] Reza Rejaie, Mark Handley, and Deborah
Estrin. Quality adaptation for congestion controlled video
playback over the Internet. InProc. of the ACM SIGCOMM,
pages 189–200, October 1999.
[Ruocco 2006] Sergio Ruocco. User-level fine-grained
adaptive real-time scheduling via temporal reflection. In

Proc. of the RTSS, pages 246–256, 2006.
[Schwarz 2007] Heiko Schwarz, Detlev Marpe, and
Thomas Wiegand. Overview of the scalable video coding
extension of the h.264/avc standard.IEEE Trans. Circuits
Syst. Video Techn., 17(9):1103–1120, 2007.
[Steere 1999] David Steere, Ashvin Goel, Joshua Gru-
enberg, Dylan McNamee, Calton Pu, and Jonathan
Walpole. A feedback-driven proportion allocator for real-
rate scheduling. InProc. of the OSDI, pages 145–158,
February 1999.
[Valin 2007] Jean-Marc Valin. On adjusting the learning
rate in frequency domain echo cancellation with double-
talk. IEEE Transactions on Audio,Speech, and Language
Processing, 15(3):1030–1034, March 2007.
[Williams 2008] Dan Williams, Patrick Reynolds, Kevin
Walsh, Emin Gun Sirer, and Fred B. Schneider. Device
driver safety through a reference validation mechanism. In
Proc. of the OSDI, 2008.
[Yang 2008] Ting Yang, Tongping Liu, Emery D. Berger,
Scott F. Kaplan, and J. Eliot B. Moss. Redline: First class
support for interactivity in commodity operating systems.
In Proc. of the OSDI, 2008.
[Yang 2007] Zhenyu Yang, Wanmin Wu, Klara Nahrst-
edt, Gregorij Kurillo, and Ruzena Bajcsy. Viewcast: view
dissemination and management for multi-party 3d tele-
immersive environments. InProc. of the MULTIMEDIA,
pages 882–891, 2007.
[Zeldovich 2003] Nickolai Zeldovich, Alexander Yip,
Frank Dabek, Robert T. Morris, David Mazières, and Frans
Kaashoek. Multiprocessor support for event-driven pro-
grams. InProc. of the USENIX Technical Conference, pages
239–252, June 2003.

