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Abstract

 

Specialization has been recognized as a powerful technique for optimiz-
ing operating systems. However, specialization has not been broadly ap-
plied beyond the research community because current techniques, based
on manual specialization, are time-consuming and error-prone. The
goal of the work described in this paper is to help operating system tun-
ers perform specialization more easily. We have built a specialization
toolkit that assists the major tasks of specializing operating systems. We
demonstrate the effectiveness of the toolkit by applying it to three diverse
operating system components. We show that using tools to assist special-
ization enables significant performance optimizations without error-
prone manual modifications, and leads to a new way of designing sys-
tems that combines high performance and clean structure.

 

1 Introduction

 

A key dilemma for operating systems designers is to reconcile the apparently conflicting
requirements of correct operation across all applications and high performance for individ-
ual applications. The conventional approach to address this dilemma is to write code that
is general-purpose, but optimized for a few anticipated common cases. However, the result
is an implementation with performance characteristics that are fixed throughout the lifetime
of the operating system. Problems arise when common cases vary from installation to in-
stallation, and grow worse when they vary dynamically. 

Much of the operating systems research in the past decade has investigated alternative
approaches to addressing these diverse requirements. A promising approach is to incorpo-
rate customizability into system structure [6, 15, 33, 45, 50]. A customizable operating sys-
tem can be tuned for the currently observed common conditions. In most implementations
of this approach, the ability to be customized is designed into the operating system, but the
actual customized code is written by experts and manually injected into the system. We call
such techniques 

 

explicit customization.

 

 In addition to enabling optimizations for specific
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common cases, explicit customization can be used to extend the functionality provided by
the system. The drawbacks of explicit customization are that significant burden is placed
on system tuners, optimization opportunities are reduced because customizable systems ex-
plicitly limit access to global system state. Some optimizations require access across mod-
ule boundaries, which is often prohibited to provide safety. Furthermore, the advantages of
the approach are not provided to legacy applications or to applications that are unwilling or
unable to take on the responsibility for tuning the operating system to their needs. 

An alternate approach, 

 

inferred customization, 

 

is based on automatically deriving opti-
mizations instead of writing them by hand. We advocate an approach to inferred customi-
zation based on 

 

specialization

 

. Specialization improves the performance of generic operat-
ing system code by creating optimized code for common cases. Specialization in this con-
text consists of 

 

restricting

 

1

 

 code for improved performance, rather than extending it, as is
often the case with explicit customization. 

Because specialized components are restrictions derived from the original system, the
following benefits are possible: the burden on the system tuner is reduced, specialized com-
ponents can take advantage of any state in the system. Furthermore, the benefits of a spe-
cialized system are transparently provided to legacy as well as new applications. However,
our experiences with applying specialization manually [43] have raised a number of draw-
backs which have limited its adoption as a system-building technique. These drawbacks in-
clude that performing specialization correctly involves complex analysis of the system,
hence generating specialized code can be tedious and error-prone, and can result in systems
which are more complex and harder to debug and maintain than the original. This paper
introduces a toolkit we have developed that addresses these drawbacks by reducing the
amount of manual work required to specialize operating systems.

This paper is organized as follows. Section 2 describes the fundamentals of specializa-
tion: specialization predicates, partial evaluation and guards. Section 3 describes the spe-
cialization toolkit. Section 4 presents our experiences with using the toolkit to specialize
three areas of system code: signal delivery in Linux, the Berkeley packet filter interpreter
and Sun RPC. We describe the process of specializing each system component, and discuss
the associated performance improvements. Section 5 discusses the strengths and weakness-
es of the current toolkit based on our experiences. Section 6 presents work related to the
various components of the specialization toolkit. Finally, Section 7 describes ongoing work
on the specialization toolkit and summarizes our experiences.

 

2 An overview of specialization

 

Specializing a system starts with a set of 

 

specialization predicates,

 

 which are states of the
system that are known in advance. For example, the fact that two different variables, 

 

x

 

 and

 

y

 

, have the same value could be a specialization predicate. 

 

Partial evaluation

 

 takes a ge-
neric source program 

 

P

 

gen

 

, plus a set of specialization predicates that apply to it. Based on
the specialization predicates the partial evaluator divides 

 

P

 

gen

 

, into 

 

static

 

 and 

 

dynamic

 

parts. The static part is evaluated at specialization-time, and the results are 

 

lifted

 

 to the out-
put program. The remaining dynamic parts are combined with the lifted static output to

 

1.Using the term specialization to mean restriction has the opposite meaning when it is applied to class
inheritance in object-oriented programming.
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form the specialized program, 

 

P

 

spec

 

, in a procedure called 

 

residualization

 

 [9, 11, 46]. The
output of partial evaluation is an optimized system that relies only on dynamic inputs. We
have identified three kinds of specialization, based on when specialization predicates be-
come available. 

 

Static specialization:

 

 When specialization predicates are known at compile-time, partial
evaluation can be applied before the system begins execution. Section 4.1 describes
our experience with applying static specialization to Sun RPC. The benefit of static
specialization is that the costs of specialization are not incurred at run-time. The
drawback is that it can not take advantage of specialization predicates whose values
are not established at compile-time.

 

Dynamic specialization:

 

 Deferring specialization until run-time allows the use of special-
ization predicates whose values are not established until some point during system
execution, but which once established hold for the remainder of the execution. Sec-
tion 4.2 describes our experience with applying both static and dynamic specializa-
tion to the BSD packet filter interpreter [34]. 

 

Optimistic specialization:

 

 Optimistic specialization extends the previous techniques to op-
timize the system for specialization predicates

 

 

 

that only hold for bounded time in-
tervals

 

2

 

. This kind of specialized code optimistically assumes that the specialization
predicates hold, and thus the rest of the system must ensure they do. Section 4.3 de-
scribes our experience with applying optimistic specialization to signal delivery in
Linux. Optimistic specialization can take advantage of either statically or dynami-
cally specialized code. 

The main design issues related to specialization are correctness and performance. Spe-
cialization is a correctness-preserving transformation only if the specialization predicates
hold while executing the specialized code that relies on them. For static specialization, spe-
cialization predicates cannot be violated once established. Dynamic and optimistic special-
ization predicates may not hold until some point during execution, so the specialized code
needs to be enabled only when the specialization predicates are known to hold. Further-
more, optimistic specialization predicates may be violated as the system executes. Any
time a specialization predicate is violated, executing the specialized code would result in
erroneous behavior. Therefore any system event that can modify a specialization predicate
term should disable the specialized code that relies on it. We use 

 

guards

 

 to enable and dis-
able specialized code when specialization predicate terms are modified.

The time required to generate and insert the specialized code counts against the perfor-
mance benefits of executing it. Thus, specialization is a net performance benefit only if the
performance improvements of executing the specialized code outweigh its costs. This may
require multiple executions of the same specialized code. For these reasons, specialization
is most often applied to code segments that are executed a large number of times for the
same specialization predicate (e.g., reads of a large file or long network stream). 

The performance tradeoffs of optimistic specialization are slightly more complicated.
Efficient optimistic specialization is a matter of 

 

moving

 

 interpretation to the right place,

 

2.We have called these predicates 

 

quasi-invariants

 

 in previous papers. We changed our nomenclature in
response to reasonable complaints about the confusing combination of “quasi” and “invariant.”
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since it requires additional checks to ensure that specialized code can be executed only
when its specialization predicates hold. Thus the cost of executing those checks also counts
against the benefits of specialization. Minimizing this additional cost often means moving
the checks away from the location of the specialized code to the locations where its special-
ization predicates are modified. The reasoning behind this approach is that effective spe-
cialization usually requires the specialized code to be frequently executed, and hence its lo-
cation is a poor choice for guard placement.

 

3 A toolkit for specializing operating systems

 

We have developed a toolkit and methodology for specializing operating systems. A sys-
tem tuner takes the following steps to specialize a system using our toolkit:

 

1.  Identify specialization predicates:

 

 

 

There are three sub-steps to identifying specializa-
tion predicates in an operating system. The first is to use the kernel developer’s
knowledge of the system’s structure and environment to postulate that some predi-
cate in the system is useful for specialization. The second is to locate code that can
be optimized when the postulated specialization predicate holds. The third is to es-
timate the net performance improvement of taking advantage of the specialization
predicate by comparing the specialization overheads to its benefits. 

 

2.  Generate specialized code:

 

 

 

Given a set of specialization predicates, specialized code
can be generated for the system components that reference them. While this has
been done by hand for small, isolated routines, it can be automated and scaled to
larger system components using partial evaluation. 

 

3.  Check when specialization predicates hold:

 

 Dynamic and optimistic specialization are
based on specialization predicates that do not necessarily hold when the system
starts executing. Therefore, these systems need to detect when the specialization
predicates are established and when they are violated.
      The specialization predicates used by static and dynamic specialization are nev-
er violated once established. However, optimistically specialized code depends on
specialization predicates not changing, and will be incorrect if any of them do
change. To preserve correctness, the system tuner must locate all the places in the
system that can cause specialization predicates to change, and 

 

guard 

 

them with
code that will re-specialize the affected components to reflect the new state of the
specialization predicates. A guarded write to a specialization predicate term first
triggers respecialization if a specialization predicate will be modified, then per-
forms the modification. 

 

4.  Replace specialized code:

 

 When specialized code is enabled (e.g., when a dynamic spe-
cialization predicate is established), or must be disabled (e.g., when an optimistic
specialization predicate is changed), the system must replace one version of the
code with another. We call this operation 

 

replugging

 

. Since many operating sys-
tems are concurrent programs, the current version of the code may be 

 

in use

 

 when
replugging occurs. Therefore, some form of synchronization between invoking spe-
cialized code and the replugger is required. Ideally, the overhead of this synchroni-
zation should be incurred during replugging and not while invoking the specialized
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code, since the former executes less often than the latter. Therefore an asymmetric
synchronization mechanism for replugging is appropriate.

The specialization toolkit helps system tuners with steps two, three and four. For step
one, we have found no tool that can substitute for the kernel developer’s intuition for locat-
ing feasible specialization predicates. However, system profiling tools [4, 35, 49, 56, 61]
could be used to estimate, via dynamic execution counts, the benefits of repeated execution
of the specialized code versus the overheads of performing the specialization. Our toolkit
does not currently contain such a profiler, hence they are not discussed further in this paper.
For step two, the Tempo partial evaluator is our tool for generating specialized code. The
TypeGuard and MemGuard tools are used in step three to help system tuners locate code
which may modify specialization predicates and enable or disable specialized code appro-
priately. Finally, the Replugger is our tool for safely replacing specialized code in the face
of concurrent execution in step four. The rest of this section describes these tools in detail.

 

3.1 Tempo: Specialized code generator

 

Tempo is a partial evaluator for C programs [9, 25]. The main challenge for partial evalu-
ation is to separate, given a set of specialization predicates, the static parts of the program
from the dynamic parts. The analysis phase that performs this separation is called 

 

binding-
time analysis

 

. 
A significant challenge for binding-time analysis is to deal with C language features

such as pointers, structures, and functions with side effects. Pointers and aliases are prob-
lematic because they make it difficult to prove that the dynamic parts of the program do not
affect the static parts. Structures and arrays are problematic because their values do not
have a textual representation, and therefore the partial evaluator has no way of lifting them
into the residualized program even if they are static. Finally, functions that modify global
(e.g., heap-allocated) state have side-effects on any other functions that access that state.
The presence of such side-effecting functions can cause binding-time analysis to declare all
functions that access the global state to be dynamic. Each of these limitations reduces the
accuracy of binding-time analysis, leaving more of the program as dynamic, and not spe-
cializable. More significantly, since dynamism propagates transitively, conservative ana-
lyzers applied to such code often declare entire programs to be dynamic, even in the pres-
ence of specialization predicates.

Unfortunately, operating systems code makes heavy use of pointers, arrays, structures,
and side-effecting functions. Tempo was designed to cope with the aspects of C usage that
are common in operating systems. Another challenge is that the long-lived execution of op-
erating systems mean that predicates that may be useful for specialization for some periods
of time may be dynamic in others. Conventional approaches to binding-time analysis do not
capture, or ignore this situation. Our use of Tempo, particularly in the context of optimistic
specialization, was specifically designed to address the long-lived nature of operating sys-
tem code.

Tempo’s binding-time analysis is more accurately able to determine which parts of a
program are static than previous binding-time analyses. This feature is important because
it dramatically increases the potential for specializing the system. Tempo has features that
address the problems of conventional binding-time analyses when applied to operating sys-
tems code written in C [37]: 
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Use sensitivity:

 

 enables an accurate treatment of non-liftable values, that is, values which
do not have textual representation such as pointers, structures and arrays [22]. Tem-
po's approach to treating non-liftable values computes a distinct binding time for
each variable’s use depending on its context. 

 

Flow sensitivity:

 

 enables a single variable to be static following a static definition and dy-
namic otherwise. Tempo associates a unique binding time each assignment of a
variable and dependent reads of that variable [23]. In contrast, flow insensitive
binding-time analyses conservatively consider variables that are assigned to both
static and dynamic values to be dynamic. 

 

Context sensitivity:

 

 Inter-procedural binding-time analysis is crucial for operating systems
code. More specialization opportunities can be exploited when the analysis com-
putes a description for each calling context (e.g., different binding-times associated
to the same argument). A conservative binding-time analysis considers a given
function argument to be dynamic if there exists a call to this function where this ar-
gument is dynamic. In contrast, Tempo's context-sensitive analysis assigns a spe-
cific binding-time description for each binding-time call context [23].

 

Return sensitivity:

 

 Many functions in operating systems have dynamic side effects (e.g., to
modify global state). Such side-effecting functions can not be statically evaluated.
However, in some cases the return value of a side-effecting function can be deter-
mined to be static (e.g., a successful return status). Previous binding-time analyses
make such a function dynamic. Tempo's return-sensitive binding-time analysis en-
ables the return value of a function to be static even when its body needs to be re-
sidualized. Return sensitivity enables more code in the calling function to be deter-
mined static, thus enabling more specialization to occur.

Tempo can perform both compile-time and run-time specialization. To optimize the
performance of run-time specialization, Tempo generates, at compile time, a dedicated run-
time specializer and object-code templates with holes for the values of the static computa-
tions. At run time, the specializer performs the static computations, selects the templates
representing the dynamic computations and fills in their holes with the static values.

 

3.2 Enabling and disabling specialized code

 

By definition, specialized code can only be correct when its specialization predicates hold.
Thus the system tuner needs to ensure that specialized code is kept consistent with the state
of specialization predicates. For static specialization, this step is trivial because the special-
ization predicates are invariant. For dynamic and optimistic specialization, however, the
system tuner needs to ensure that specialized code is not enabled before the specialization
predicates are established. Further, with optimistic specialization, the specialization predi-
cates can be violated after being established, so the specialized code must be disabled (or
the system re-specialized) when a specialization predicate term is modified.

Dynamic and optimistic specialization predicates are established by 

 

binding phases

 

 in
systems. Binding phases can be explicit or implicit. Examples of explicit bindings are a cli-
ent establishing an RPC connection to a server and a process opening a file for reading. Ex-
amples of implicit bindings are inferring a relationship between two processes based on ob-
serving repeated signals sent between them and inferring sequential file access by observ-
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ing repeated read calls without intervening seeks. System tuners need to locate the code that
creates and destroys bindings related to specialization predicates. The observation that en-
ables automatic location of binding and unbinding events is that both kinds of events mod-
ify specialization predicate terms. 

We have designed two tools to help system tuners locate the code that establishes or
destroys specialization predicates. The first tool, TypeGuard, operates on the program
source code and uses type information to locate sites that should be guarded. The second,
MemGuard, uses memory protection mechanisms to identify modifications to specializa-
tion predicate terms. The two tools are discussed in detail in the following subsections.

 

3.2.1 TypeGuard

 

There are two obvious methods of ensuring that a specialization predicate holds. One is to
test it every time it is used (read). The other is to test it every time it is modified (written).
For specialization to be efficient, the specialization predicate terms must be used more fre-
quently than they are modified. Based on this observation, our approach to solving the
guarding problem is to place guards at the site of modifications to specialization predicate
terms. 

Accurately locating modifications to specialization predicate terms is non-trivial. Con-
sider a simple example in which a specialization predicate term is a global variable. A naïve
solution might be to simply search through the source code for occurrences of the variable’s
name using a tool such as 

 

grep

 

. There are two problems with this approach, however. The
first is that it may report too many sites to guard because different variables with the same
name may be locally defined within functions. The second is that it may not report all of
the sites that need guarding, due to aliases. For example, the specialization predicate term
may be passed by reference to a function that modifies it via a different variable name.

To further complicate matters, many useful operating system specialization predicate
terms are not simple scalar global variables, but are fields of dynamically allocated struc-
tures. This characteristic not only highlights the problem of dealing with aliases, but also
introduces the need to distinguish among 

 

instances

 

 of the same structure type. To illustrate
these issues, consider the following example from the Linux kernel’s signal delivery code
which checks whether the signalling process is owned by the same user as the process to be
signalled. The specialization predicate

 

current->uid == p->uid 

 

refers to the 

 

uid

 

 field of two specific instances of type 

 

task_struct

 

. These two pointers
could be aliases for the same structure, or two different structures. Furthermore, elsewhere
in the code, different aliases could be used to refer to these instances. The only textual rep-
resentation common among aliases to these instances is the name of the type they point to,

 

task_struct

 

. 
To address these challenges, we use a two-phase approach for detecting modifications

to specialization predicate terms. The first phase performs a static analysis to identify the
structure types whose fields are specialization predicate terms. These types are then extend-
ed to include an additional specialization predicate ID (

 

SPID

 

) field. The first phase also
identifies all statements that update a guarded field and inserts the guarding code that per-
forms the second phase. The second phase involves dynamically setting the 

 

SPID

 

 field



 

— 8 —

 

when specialized code is enabled, clearing it when specialized code is disabled, and check-
ing it when a specialization predicate term is modified.

This type-based approach detects modifications made to structure fields that are spe-
cialization predicate terms as long as the modification is made via the containing structure.
The C language allows the creation of aliases that point directly to guarded fields, which
creates capabilities for specialization predicates to be modified without going through their
containing structures. To prevent these capabilities from allowing unguarded writes to spe-
cialization predicate terms, we extend the first phase to flag the operations that create them,
which include:

• type-casted assignment from or to the guarded type 

• attempting to guard a field that is part of a union

• taking the address of a field that is guarded

When a statement causes a warning, the system tuner must either remove the offending
statement by restructuring the code, or examine subsequent uses of the flagged value to
manually assure that either the capability does not modify the specialization predicate, or
that those modifications are guarded. 

As an example of guarding, the assignment 

 

current->uid = bar 

 

would be written
as:

 

    if (current.SPID!= NULL) 
        current.SPID->update_uid(bar); 
    else 
        current->uid = bar; 

 

For specialization predicate terms, the 

 

update_uid

 

 function invokes the replugging pro-
cedure and writes the 

 

current->uid

 

 field, which we describe in Section 3.3.
This guarding code identifies structure instances that are 

 

not

 

 specialization predicates
with one additional memory reference and comparison against 

 

NULL

 

. If the structure does
contain specialization predicate terms, it invokes the code necessary to evaluate the contin-
ued validity of the specialization predicate. The guard code is not currently inserted auto-
matically, but it is sufficiently simple that it can be packaged inside a simple macro that can
be inserted by hand. However, it could easily be automated. Our implementation of Type-
Guard is based on the SUIF compiler toolkit [2].

 

3.2.2 MemGuard: Testing guard coverage

 

In the absence of a type-safe language, any type-based guarding tool can not 

 

guarantee

 

complete coverage. Our approach to this problem in TypeGuard is to issue warnings about
alias-producing operations. These must currently be validated by hand. It would be useful
to automate the verification required when TypeGuard issues warnings. In addition, there
are opportunities for modifying specialization predicate terms that occur in operating sys-
tems, independent of the language’s type safety, such as passing pointers to device drivers
or assembly routines. We have built a tool that can guarantee complete guard coverage.
This tool, MemGuard, uses memory protection hardware to write-protect pages that contain
specialization predicate terms. The write-fault handler checks if the address being written
is a specialization predicate term, and if so, performs a guarded write which triggers replug-
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ging when needed. By using hardware memory protection, MemGuard is guaranteed to
capture 

 

all

 

 writes to specialization predicate terms. 
The main drawbacks of this approach are that memory protection hardware has coarse-

granularity and high overheads. The granularity of protection is virtual memory pages, so
modifications to any data that shares a page with a specialization predicate term will result
in false hits. The cost of false hits is high because the performance of a memory write to
any location on a guarded page is reduced by a factor of about 1,000 [13]. 

Even though these high overheads make it inappropriate for production use, Mem-
Guard can be used as an effective tool for debugging software guard placement. Perfor-
mance of executing guarded writes is greatly improved by extending the software guard
code to disable the hardware memory protection as it modifies the specialization predicate
term. In this case, the only memory protection traps caught by MemGuard would be caused
by either false hits or code which should have a software guard. False hits could be elimi-
nated, at the cost of memory consumption, by laying out guarded structures on two adjacent
pages, with the guarded fields on one page, and the unguarded fields on another. Running
a system with MemGuard through a set of kernel test suites would be an effective way of
automatically ensuring software guards are placed everywhere a specialization predicate
can be modified.

 

3.3 Replugger: Dynamic function replacement

 

When a dynamic specialization predicate is established or an optimistic specialization pred-
icate is violated, the system must replace the current code with code that is consistent with
the new state of the specialization predicate. This replacement operation is called 

 

replug-
ging

 

. In our approach, replugging is performed at the granularity of C functions, and re-
pluggable functions are invoked via indirect function pointers.

Maintaining correctness during replugging is non-trivial because the current version of
the function may be in-use when the replugging operation occurs. An obvious way to pre-
serve correctness in the face of concurrent replugging is to use locks to synchronize func-
tion invocation and replugging. However, this approach may add unacceptable perfor-
mance overheads to the invocation of specialized functions. For this reason, we desire an
asymmetric synchronization mechanism in which the overhead of invocation is as low as
possible, at the potential expense of additional overhead for replugging, since specialized
code is usually invoked more often than it is replaced.

Two factors affect the design of a correct replugging mechanism:
1) Whether concurrent invocation of the same repluggable function is possible.
2) Whether there can be concurrency between replugging and invocation.

The first factor, concurrent invocation, is affected by the scope of repluggable func-
tions. A designer can avoid concurrent invocation by associating repluggable functions
with threads. Doing this makes replugging simpler because there can be only one invoking
thread at a time, and enables specialization predicates associated with thread state. Sharing
repluggable functions among multiple threads may save code space but it also makes re-
plugging more complex. One reason for this additional complexity is that concurrent invok-
ing threads should not execute different versions of the same function. 

The second factor, concurrency between replugging and invocation, can occur on either
uni- or multiprocessors. On a uniprocessor, it can happen if an invoking thread can block
inside a repluggable function, thus allowing a replugger to execute. On a multiprocessor,
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replugging threads can run concurrently with invoking threads. Another way that replug-
ging and invocation can be concurrent is for an interrupt-level event to invalidate a special-
ization predicate. Since the replugging operation must wait for any pending invocation to
complete, handling interrupt-level repluggers correctly is complex, and we have avoided
this possibility by not using specialization predicates that are modified at interrupt-level. 

In the case without concurrency among either invocation or replugging, no special
mechanism is required—it is correct for the replugger to simply update the function point-
er. For the cases with concurrency, the replugger must not install a new function until all
threads executing in the previous one have exited. In order to detect whether threads are
executing a repluggable function, a counter is incremented on invocation and decremented
on return. Once replugging has begun, new threads must not be able to invoke any version
of the function being replugged. To achieve this goal, the replugger replaces the previous
version of the function by a stub function, called 

 

holding_tank

 

. The replugging thread
blocks if any threads are actively invoking the previous version of the function. When a
thread enters 

 

holding_tank

 

 it blocks on a condition variable until replugging has com-
pleted. As the last thread exits the previous version of the function, it decrements the count
to zero and signals the replugging thread. Replugging completes when the replugging
thread wakes up, replaces the 

 

holding_tank

 

 function pointer with the new function, and
signals the threads in the 

 

holding_tank

 

 to start executing the replugged function.
This version of the replugger, which accommodates both concurrent replugging and in-

vocation is called the counting replugger. In the case without concurrent invocation (e.g.,
specialized code is bound to threads), we have simplified the counting replugger’s counter
to a boolean flag. Using a flag significantly reduces the overhead of invocation by replacing
bus locked arithmetic on the counter with atomic memory reads and writes.

Table 1 compares the performance of our counting and boolean repluggers to a standard
reader-writer spinlock on a two-processor 450 MHz Pentium-II running Linux 2.2.14. The
measured times, in cycles, demonstrate the desired asymmetric performance characteris-
tics, particularly of the boolean version of the replugger, in which only four cycles is added
to the invocation path. The four cycles consist of setting the flag, clearing the flag, and a
branch not taken to wake up a waiting replugger.

Further details about the operation and implementation of an HP/UX version of the re-
plugger are described in [12], and the code for the Linux version of the replugger is avail-
able at 

 

www.cse.ogi.edu/sysl/projects/synthetix

 

.

4 Experiments

In order to evaluate the effectiveness of our specialization toolkit, we applied it to a wide
range of operating system components. This section describes our experiences with using
the tools to specialize three disparate system components: marshaling in Sun RPC [52], in-

Table 1: Overhead for synchronizing invocation and replugging (cycles)

Reader-writer locks Counting replugger Boolean replugger

Invocation overhead 48 60 4

Replugging overhead 50 340 340
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terpreting Berkeley Packet Filter (BPF) programs [34], and the Linux signal delivery mech-
anism.

4.1 Specializing remote procedure calls
Remote procedure call (RPC) is the basis for NFS [51], NIS [44, 53], and other Internet ser-
vices. At the heart of Sun RPC is the eXternal Data Representation (XDR) standard which
is a machine-independent format for passing RPC parameters. The process of translating
into and out of XDR is called marshaling. Marshaling is a key source of overhead in RPC.
Marshaling is performed by stubs, which are generated automatically from an Interface
Definition Language (IDL) specification. The rpcgen  program takes as input the IDL
specification, and produces stubs and header files which are compiled and linked into pro-
grams that use RPC. When a client makes an RPC call, the stub for that call marshals the
data into a message buffer and sends the message to the server. The server side stub unmar-
shals the data and invokes the server routine called by the client. The results of invoking
the routine are marshaled and sent back to the client. The client stub completes the process
by unmarshaling the results and returning from the remote call.

The RPC stubs are composed of a set of micro-layers, each devoted to a small task. For
example, there are layers to read and write data during marshaling and to manage the ex-
change of XDR-encoded messages through the network. This section reports our experi-
ence applying Tempo to the marshaling stubs, the output of which was compiled and linked
into the RPC client and server [38, 39]. The specialization predicates we used in this exper-
iment are available when the stubs are generated, and are never violated. Thus this is an
example of static specialization. 

4.1.1 Specialization opportunities in Sun RPC
Sun RPC’s marshaling code uses data structures to hold state associated with the binding
between an RPC client and server. Some fields of those structures have values that are
known at stub generation time, and the computations that depend only on these values can
be performed statically. The resulting specialized marshaling code consists of only the
computations that depend on the dynamic values. In contrast, the generic marshaling code
repeatedly interprets and propagates the values of both static and dynamic fields through
the layers. 

The following sections illustrate some specific specializations in Sun RPC’s marshal-
ing stubs using code excerpts that are annotated to show the static and dynamic computa-
tions derived by Tempo’s binding-time analysis. In the following figures, dynamic compu-
tations are printed in bold ; static computations are printed in roman .
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Eliminating encoding/decoding dispatch
Sun RPC’s dispatch of encoding and decoding uses a form of interpretation that is amena-
ble to specialization. The generic function xdr_long  (see Figure 1) is capable of both en-
coding and decoding long integers. It selects the appropriate operation to perform based on
the field x_op  of its argument xdrs . For encoding, x_op  == XDR_ENCODE. For decoding,
x_op  == XDR_DECODE. These are the specialization predicates. 

Specialization reduces the function xdr_long  to three different functions3 – one per
static value of x_op  – each of which consists of a single return statement which is inlined,
removing the function call altogether. 

Eliminating buffer overflow checking
Another form of interpretation appears when buffers are checked for overflow. This situa-
tion applies to the function xdrmem_putlong , shown in Figure 2. As parameter marshal-
ing proceeds, the remaining space in the buffer is maintained in the field x_handy . The
marshaling code initializes x_handy  to the initial buffer size, which is a constant deter-
mined by the stub generator. Each call to xdrmem_putlong  decrements x_handy  by
sizeof(long)  and tests it for negative value (corresponding to buffer overflow). The
specialization predicates in this example are BUFSIZE == 8800  and sizeof(long) ==
4. The buffer overflow checking code involves only specialization predicates, therefore it
can be evaluated during specialization. The specialized function consists of only the buffer
copy (unless a buffer overflow is discovered at specialization time).

3.There is an additional value of x_op  and associated function for “free memory” mode.

bool_t xdr_long(xdrs,lp)  // Encode or decode a long integer
XDR *xdrs;  // XDR operation handle
long *lp;  // pointer to data to be read or written

{
if (xdrs->x_op == XDR_ENCODE) // If in encoding mode

return XDR_PUTLONG(xdrs,lp);  // Write a long int into buffer
if (xdrs->x_op == XDR_DECODE) // If in decoding mode

return XDR_GETLONG(xdrs,lp);  // Read a long int from buffer
if (xdrs->x_op == XDR_FREE) // If in “free memory” mode

return TRUE;  // Nothing to be done for long int
return FALSE;  // Return failure if nothing matched

}

Figure 1  Reading or writing a long integer: xdr_long()

bool_t xdrmem_putlong(xdrs,lp)  // Copy long int into output buffer
XDR *xdrs; // XDR operation handle
long *lp;  // pointer to data to be written

{
if((xdrs->x_handy -= sizeof(long)) < 0) // Decrement space left in buffer

return FALSE; // Return failure on overflow
*(xdrs->x_private) = htonl(*lp);  // Copy to buffer
xdrs->x_private += sizeof(long); // Point to next copy location in buffer
return TRUE; // Return success

}

Figure 2  Writing a long integer: xdrmem_putlong()
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Propagating exit status
The third example extends the optimizations enabled by the specialization predicates used
in the previous examples. The return value of the procedure xdr_pair , shown in Figure 3,
depends on the return value of xdr_int , which in turn depends on the return value of
xdr_putlong.  After specialization, both xdr_int  and xdr_putlong  have static return
values4. Thus the return value of xdr_pair  is known at specialization-time. Tempo prop-
agates this known return value to the caller of xdr_pair  (i.e., clntudp_call , not shown
here), so xdr_pair  no longer needs to return a value and its return type becomes void .
The specialized function, with the specialized calls to xdr_int  and xdr_putlong  in-
lined, is shown in Figure 4. Tempo has determined that the return value is always TRUE in-
dependently of the dynamic objp  argument. Propagating this return value to the body of
the caller eliminated another comparison, not shown here.

4.Note that despite its static return value, the function xdr_pair  has side effects, and thus is not static.
This example illustrates Tempo’s return sensitivity.

bool_t xdr_pair(xdrs, objp)  { // Encode arguments of rmin
if ( !xdr_int(xdrs, &objp->int1) ) // Encode first argument

return (FALSE); // Possibly propagate failure
if ( !xdr_int(xdrs, &objp->int2) ) // Encode second argument

return (FALSE); // Possibly propagate failure
return (TRUE); // Return success status

}

Figure 3  Encoding function xdr_pair()

void xdr_pair(xdrs,objp) { // Encode arguments of rmin
// Overflow checking eliminated

*(xdrs->x_private) = objp->int1; // Inlined specialized call
xdrs->x_private += 4u; // for writing the first argument
*(xdrs->x_private) = objp->int2; // Inlined specialized call
xdrs->x_private += 4u; // for writing the second argument

// Return code eliminated
}

Figure 4  Specialized encoding function xdr_pair()

Xdr_vector(XDR *xdrs, char *basep, u_int nelem, u_int elemsize) {
register u_int i;
register char *elptr;

elptr = basep;
for (i = 0; i < nelem; i++) {

if (! Xdr_int(xdrs, (int *) elptr)) {
return(FALSE);

}
elptr += elemsize;

}

return(TRUE);
}

Figure 5  Marshaling an array: Xdr_vector()
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Marshaling loop unrolling
When an RPC argument is an array, the marshaling code iterates over the array, marshaling
each element in turn. Often, the length of a marshaled array is known in advance, and can
be used as a specialization predicate term. Figure 5 shows the code for marshaling an array.
In this code, the number of elements, nelem s, and the size of each element, elemsize , are
both specialization predicate terms. This enables Tempo to unroll the for  loop in
Xdr_vector , which eliminates nelem  additions, comparisons and branches.

4.1.2 Performance results
We analyze the performance improvements of specialization by evaluating its impact on
marshaling overhead alone, as well as the overall round-trip RPC times. Two experimental
platforms were used to gather measurements. The first consisted of two Sun IPX 4/50
workstations with 64KB of cache running SunOS 4.1.4, with a 100Mbit/sec ATM network
connection. The second consisted of two 166 MHz Pentium PCs with 512KB of cache run-
ning Linux, with a 100Mbit/sec ethernet connection.

Marshaling overhead improvements
Figure 6 illustrates the impact of specialization on marshaling latency. For most message
sizes, specialization reduces latency by more than a factor of two. On the PC, this speedup
increases linearly with the amount of data marshaled. This behavior is expected because the
number of instructions eliminated by specialization is linear with the message size. How-
ever, we found that on the Sun IPX the speedup decreases as the amount of marshaled data
increases. The reason for this unexpected behavior is that on this platform execution time
is dominated by memory accesses, not instruction execution. As the data to be marshaled
grows, a larger portion of the marshaling time is spent copying the data into the output buff-
er. While specialization decreases the number of instructions used to marshal data, the
number of memory accesses remains constant. Therefore the savings due to specialization
become less significant as the message size grows. 
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Figure 6  Client marshaling overhead 
comparison. The gray lines are unspecialized 
client marshalling overheads, the dark lines are 
the corresponding specialized overheads.

Figure 7  RPC round-trip comparison. The 
gray lines are unspecialized RPC latencies, the 
dark lines are the corresponding specialized 
latencies.
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Round-trip RPC improvements
In order to evaluate the effect of improved marshaling latency on overall RPC performance,
we measured average round-trip RPC latencies for arguments that consist of various sized
arrays. Figure 7 shows a 55% improvement in round-trip time on the Sun/IPX platform and
a 35% improvement on the PC/Linux platform. One reason these improvements are less
than for marshaling alone is because of the cost for initializing message buffers on both cli-
ent and server sides. This cost, combined with network access latency, reduces the net per-
formance improvements. However, even with these mitigating factors, specialization has a
significant positive impact on round-trip RPC performance.

4.1.3 Code size
Table 2 shows the effects of specialization on code size. Because of loop unrolling, the size
of the specialized RPC marshaling code grows with message size, and can greatly exceed
that of the generic code. This increase in code size can affect cache performance, although
in our experiments (shown in Figures 5 and 6), any degradation of cache performance was
dominated by the improvements of specialization. We performed an additional experiment
on the PC to evaluate the cache performance impacts of loop unrolling. Table 3 shows the
performance of two versions of the specialized code. The first version fully unrolls loops,
the second version limits unrolling to 250 iterations, which fits in the PC’s cache. The re-
sults show that limiting loop unrolling improves the performance of the specialized code
by approximately 10%. 

4.2 Specializing packet filters
The BSD Packet Filter (BPF) [34] provides a programmable interface for selecting packets
from a network interface. The interface allows user applications to download packet filter
programs written in a bytecode into a kernel- or library-resident packet filter interpreter.
The bytecode programs decide when a packet matches the user’s criteria. Matching packets
are forwarded to the application. The tcpdump  application prints network packets that
match a user-defined predicate. This predicate is provided on the command line, and tcp-

Table 2: Size of the SunOS binaries (in bytes)

Client code Message size

20 100 500 1000 2000

Generic 20004

Specialized 24340 27540 33540 63540 111348

Table 3: Specialization with loops of 250-unrolled integers (time in ms)

Message
Size

PC / Linux

Original Specialized Speedup 250-unrolled Speedup

500 0.29 0.11 165% 0.108 170%

1000 0.51 0.17 200% 0.15 240%

2000 0.97 0.29 235% 0.25 290%
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dump translates it into a BPF program. The TCP packets that match the predicate are re-
turned to tcpdump , where they are printed. The Linux kernel used in this experiment im-
plements packet filters in the libpcap  library. Other kernels, such as NetBSD, implement
packet filters within the kernel.

4.2.1 Specialization opportunities in packet filter interpretation
Since a single BPF program is likely to be executed many times to examine many thou-
sands of packets, it is an ideal candidate for specialization. In this case, the code being spe-
cialized is the packet filter interpreter and the specialization predicates are derived from a
particular packet filter program. Specializing an interpreter with respect to a particular pro-
gram effectively compiles that program [26]. This is a case of either static or dynamic spe-
cialization, since the specialization predicate is never modified, once established. We mea-
sured two cases. First, in the static specialization case, the packet filter program is available
well in advance of its execution. An example of this case is the static packet filter program
used by rarpd , which selects RARP packets from network streams. Second, we consid-
ered dynamic specialization, in which the packet filter program is presented immediately
before execution, and thus the overheads of specialization are included in the overall runt-
ime. The tcpdump  program is an example of this case, since the packet filter programs are
generated from command-line input. 

A session begins when an application hands the packet filter bytecodes to libpcap  by
calling pcap_setfilter . The application initiates filtering by calling pcap_loop . In the
filter-loop, a packet is read and filtered by calling the bpf_filter  function:

u_int bpf_filter(struct bpf_insn *pc, u_char *c,
u_int wirelen, u_int buflen);

The parameters are the packet filter program, a packet, the length of the original packet, and
the amount of the packet’s data present. Of these parameters, the packet filter program is
always the same during a session, so we derive specialization predicates from it. The bu-
flen  argument could also be used as a specialization predicate, but in our experiments it
was not.

The basic structure of the BPF interpreter is shown in Figure 8. The interpreter consists
of an infinite loop, each iteration of which fetches the instruction pointed to by pc , uses a
case statement to decode and execute the instruction, and finally increments pc . In addition,

while(true) {
  switch (pc->opcode) {
    case LD: 
      // do load instruction 
    case JGT: 
      if (accumulator > index_register) 
        pc = pc->target_true 
      else 
        pc = pc->target_false
      // etc...
    case RET: 
      // return instruction 
      result =... 
      break; 
  } 
  pc++ 
}

Figure 8  Basic loop for BPF interpreter
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the interpretation of some instructions, such as jumps, modify pc  within the loop. When
interpreting conditional jump instructions, such as JGT, the value assigned to pc  depends
on dynamic interpreter state. This approach to structuring the interpreter, as a case state-
ment within an infinite loop, is problematic because it propagates the dynamism of pc
throughout, making the interpreter unspecializable. 

An alternate approach to building an interpreter, which is amenable to specialization, is
to use recursion. In this approach, the while loop is replaced by a tail-recursive function
which gets called for each new value of pc , as shown in Figure 9. We restructured the BPF
interpreter using recursion in order to perform the experiments described below.

4.2.2 Performance results
To evaluate the impact of specialization on the performance of interpreting packet filter
programs, we specialized the interpreter for a simple packet filter program which counts
packets. We compared this specialized program to the unspecialized interpreter on the same
packet filter program. We wanted to isolate the benefits of specialization from the unavoid-
able overheads of the packet filter mechanism. We did this by constructing a null packet
filter, which incurs the unspecializable overheads of the packet filter mechanism, but with-
out performing any packet filter interpretation. 

Table 4 presents the execution times to filter 10 megabytes of ethernet packets. We
measured the null packet filter and three versions of the counting packet filter: an unspe-
cialized version, a statically specialized version, and a dynamically specialized version.
The dynamically specialized version includes the overhead of executing the run-time spe-
cializer to generate the specialized code. In addition, the statically specialized code is more
efficient than the dynamically generated template-based specialized code. The right col-
umn isolates the packet filter interpretation cost by subtracting the execution time of the
null filter. In both the static and dynamic cases, specialization yields significant perfor-
mance improvements. 

4.2.3 Code size
Partial evaluation unrolls the fetch, decode, execute loop of the BPF interpreter, thus rais-
ing the possibility of impact on code size. Common packet filters are between five and fif-

Table 4: Specialized BPF performance, time in seconds

Program Run time Run time - Null filter

Null 2.60 NA

Original 4.34 1.74

Statically specialized 2.84 0.24

Dynamically specialized 3.35 0.75

case JGT: 
  if (accumulator > index_register) 
    return(bpf_filter(pc->target_true, c, wirelen, buflen)) 
  else 
    return(bpf_filter(pc->target_false, c, wirelen, buflen))

Figure 9  Using recursion to make pc  static
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teen instructions. The unspecialized interpreter has 550 lines. The interpreter specialized
for a six-instruction filter is 366 lines. For a ten instruction filter, the specialized version is
576 lines. These results show the code size impact is small for common-size packet filter
programs.

4.3 Specializing signals
UNIX signals are a mechanism for communicating events between processes. The state-
ment:

ret = kill (pid, n); 

causes process pid to suspend its current activity and run a procedure designated as the han-
dler for signal n. Figure 10 shows the structure of the kill  system call in Linux. The func-
tion sys_kill  is the kernel-side entry point of the kill system call. The function
kill_proc  searches the process table for the task_struct  of the process being sig-
nalled which is specified by pid . The function send_sig  checks for errors and valid per-
missions. The function generate  interprets the signal number, and delivers the signal to
the destination process by setting state in task_struct , and calls wake_up_process  if
needed. The source code for these functions in the unspecialized Linux kernel (version
2.0.27) is shown in Figure 11. 

When a process repeatedly sends the same signal to the same destination process, it is
likely that the fields of both processes’ task_struct s are unchanged. This observation
presents an opportunity for optimistic specialization: these fields can be guarded, and used
as specialization predicate terms for the generation of specialized signal delivery code.

The difficulty in applying specialization in this way is that the relationship between the
communicating processes is not represented explicitly in the code, and hence must be in-
ferred through observations. For example, if a process sends the same signal to the same
target twice, we might infer an ongoing communication relationship. The problem with ap-
plying this approach to the signal code in Linux is that no history is maintained between
invocations. Therefore, to allow specialization we added a field, last_sig_to , to each
process’s task_struct  to cache information about the last signal it sent. 

The rewritten version of the sys_kill  function compares the values of sig  and pid
to those in last_sig_to  to verify that the signal is indeed a repeat. If it is, sys_kill
invokes signal delivery code that is specialized to send this particular signal between this
pair of processes. Our rewritten versions of send_sig  and generate  cache the signal
number and the identities of the source and destination of the signal for subsequent execu-
tions to be able to detect repeated signals.

sys_kill(int pid, int sig)

kill_proc(int pid, int sig, int priv)

send_sig(int sig, task_struct * p, int priv)

generate(int sig, task_struct * p)

Figure 10  Linux kill  system call architecture
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static inline void generate(unsigned long sig, struct task_struct * p)
{

unsigned long mask = 1 << (sig-1);
struct sigaction * sa = sig + p->sig->action - 1;

/*
 * Optimize away the signal, if it's a signal that can
 * be handled immediately (ie non-blocked and untraced)
 * and that is ignored (either explicitly or by default)
 */
if (!(mask & p->blocked) && !(p->flags & PF_PTRACED)) {

/* don't bother with ignored signals (but SIGCHLD is special) */
if (sa->sa_handler == SIG_IGN && sig != SIGCHLD)

return;
/* some signals are ignored by default.. (but SIGCONT already did its deed) */
if ((sa->sa_handler == SIG_DFL) &&
    (sig == SIGCONT || sig == SIGCHLD || sig == SIGWINCH || sig == SIGURG))

return;
}
p->signal |= mask;
if (p->state == TASK_INTERRUPTIBLE && (p->signal & ~p->blocked)) {

wake_up_process(p);
}
if (!current) return;
if (!current->pid) return;
if (intr_count) return;

switch (sig) {
case SIGUSR1:
    sdl_replug_start(current->sp_kill_proc);  /* 
    current->last_sig_to = p; * Guarded write to specialization
    current->last_sig = sig; * predicate terms 
    p->last_sig_from = current; */
    sdl_replug_end(current->sp_kill_proc, kp_usr1);
    break;
default:
    sdl_replug_start(current->sp_kill_proc);
    p->last_sig_from = current->last_sig_to = current->last_sig = NULL;
    sdl_replug_end(current->sp_kill_proc, yelp);
}

}

int send_sig(unsigned long sig,struct task_struct * p,int priv)
{

if (!p || sig > 32)
return -EINVAL;

if (!priv && ((sig != SIGCONT) || (current->session != p->session)) &&
    (current->euid ^ p->suid) && (current->euid ^ p->uid) &&
    (current->uid ^ p->suid) && (current->uid ^ p->uid) &&
    !suser())

return -EPERM;
if (!sig)

return 0;
/*
 * Forget it if the process is already zombie'd.
 */
if (!p->sig) {

sdl_replug_start(current->sp_kill_proc); /* 
current->last_sig_to = p;  * Guarded write to specialization
current->last_sig = sig;  * predicate terms
p->last_sig_from = current;  */
sdl_replug_end(current->sp_kill_proc, kp_usr1);
return 0;

}
if ((sig == SIGKILL) || (sig == SIGCONT)) {

if (p->state == TASK_STOPPED)
wake_up_process(p);

p->exit_code = 0;
p->signal &= ~( (1<<(SIGSTOP-1)) | (1<<(SIGTSTP-1)) |

(1<<(SIGTTIN-1)) | (1<<(SIGTTOU-1)) );
}
if (sig == SIGSTOP || sig == SIGTSTP || sig == SIGTTIN || sig == SIGTTOU)

p->signal &= ~(1<<(SIGCONT-1));
/* Actually generate the signal */
generate(sig,p);
return 0;

}

int kill_proc(int pid, int sig, int priv)
{
 struct task_struct *p;

if (sig<0 || sig>32)
return -EINVAL;

for_each_task(p) {
if (p && p->pid == pid)

return send_sig(sig,p,priv);
}
return(-ESRCH);

}

asmlinkage int sys_kill(int pid,int sig)
{

int err, retval = 0, count = 0;

if (!pid) return(kill_pg(current->pgrp,sig,0));

if (current->last_sig_to && current->last_sig_to->pid == pid &&
            current->last_sig == sig && current->sp_kill_proc) {

retval = (* sdl_executor(current->sp_kill_proc))();
sdl_executor_end(current->sp_kill_proc); /* Invoke specialized kill_proc */
return retval;

}

if (pid == -1) {
struct task_struct * p;
for_each_task(p) {

if (p->pid > 1 && p != current) {
++count;
if ((err = send_sig(sig,p,0)) != -EPERM)

retval = err;
}

}
return(count ? retval : -ESRCH);

}
if (pid < 0) 

return(kill_pg(-pid,sig,0));
/* Normal kill */
return(kill_proc(pid,sig,0));

}

Figure 11  Unspecialized Linux kill  system call source code
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The specialized code for delivering the signal SIGUSR1 in Figure 12 was generated by
Tempo, based on the following specialization predicates (current  is a pointer to the
task_struct  of the signal source and p is a pointer to the task_struct  of the signal
destination):

current->last_sig_to == p
last_sig_to->uid  == p->uid
last_sig_to->session == p->session
last_sig_to->euid == p->euid
These specialization predicates allow Tempo to eliminate most of the comparisons and

conditionals in the signal delivery code, and directly do the work for delivering a signal in
the body of generate .

This specialization is optimistic because if any of the specialization predicate terms are
modified between signals, the specialized code is invalid and must be replugged. For ex-
ample, if the destination process exits (thus invalidating the last_sig_to  pointer), or if
the euid  or uid  of the source or destination process is modified, the specialized version of
the kill  system call could either crash the machine by indirecting through an invalid
task_struct  pointer, or could produce incorrect results by sending a signal without per-
mission. 

We used TypeGuard to identify locations that require guarding. Given the set of spe-
cialization predicate terms, TypeGuard produced a list of program statements that could
modify those terms. TypeGuard includes in this list all of the program statements (such as
typecasts) that could allow the specialization predicate term to be modified elsewhere. We
manually inspected the locations identified by TypeGuard and when we determined they
could modify specialization predicate terms, we placed a guard that replugged to the unspe-
cialized function before performing the modification. Since Linux kernel threads are non-
preemptive, and these experiments were conducted on a uniprocessor, we used the boolean
version of the replugger. 

int kp_usr1 ()
{

struct task_struct *p;
{

if (((*(*current).last_sig_to).sig != (void *) 0) == 0) {
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0; /* This is a Tempo-declared global integer */
goto pprocfin0;

}
{

struct sigaction *sa;
unsigned int *suif_tmp2;

sa = (struct sigaction *) ((char *)
(*(*(*current).last_sig_to).sig).action + 160) - 1;

suif_tmp2 = &(*(*current).last_sig_to).signal;
*suif_tmp2 = *suif_tmp2 | 512;
if ((*(*current).last_sig_to).state == 1 &&

((*(*current).last_sig_to).signal & 
~(*(*current).last_sig_to).blocked) != 0u)

wake_up_process ((*current).last_sig_to);

}
send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2 = 0;

pprocfin0: ;
}
return send_sig_SSSDDDStr_sigaction_DDDSSSS_flat2;

}

Figure 12  Specialized kill system call source code: kill_proc , 
send_sig , and generate  folded and specialized



— 21 —

4.3.1 Performance results
The latency of delivering a signal consists of a number of components. These components
are: looking up the task_struct  in the process table, updating the signalled process’s
state, saving the signalled process’s context, entering and exiting the kernel, and the unpre-
dictable scheduling delay incurred between making a process runnable and the time it starts
executing the signal handler. Figure 13 shows these components for the specialized and un-
specialized versions of signal delivery, but without the unpredictable scheduling delay.
This scheduling delay was eliminated by measuring the latency of a process sending the
signal SIGUSR1 to itself, which causes the signal handler to be directly invoked upon return
from the system call. For this experiment, one user was logged in, running an X11 server
and three xterm programs, and a few other X11 applications, for a total of 62 processes,
resulting in a table lookup time of 26.5 µ-seconds. With a more intensive workload, the ta-
ble lookup would take even more time. The specialized version of the system call avoids
this lookup, thus eliminating its overhead. The work required to update the signalled pro-
cess’s state was reduced from 14.5 µ-seconds to 12 µ-seconds. Overall, the specialized sys-
tem reduces the latency to send a signal by 65%. The size of the process table clearly has a
major impact on the cost of the kill  system call, but even in a situation without the table
lookup overhead, specialization reduces execution time by 15%. 

4.3.2 Application-level impact
The application-level impact of improving the performance of delivering signals depends
on how applications use them. Signals are often used to signal exceptional information be-
tween processes, such as SIGKILL  from a shell to halt the currently executing process.
However, signals are also used to implement more general services. For example, Leroy’s
POSIX threads implementation for Linux [29] uses Linux’s variable-weight processes with
shared address spaces. This threads package uses signals to communicate between threads,
for example to wake up blocked threads when a mutex is released.

Using this threads package, we wrote a test program that made extensive use of signals
by synchronizing frequently. The test program is an implementation of the classic produc-
er-consumer problem, using thread mutex’s for synchronization. The test does 100,000
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producer-consumer iterations with a buffer size of four items. Four executions of the test
program on the unspecialized kernel had an average run time of 11.9 seconds, with a stan-
dard deviation of 3.7 seconds. Four executions of the same program on the specialized ker-
nel had an average run time of 5.6 seconds, with a standard deviation of 0.7 seconds. The
large variation in performance in the unspecialized code is caused by the random position
of the target task in the process descriptor list. In the specialized code, the process table
lookups are only performed the first time a signal is sent to a process, the subsequent look-
ups are specialized away. The remaining variability in the specialized code is due to non-
deterministic scheduling behavior.

4.3.3 Code size
The unspecialized signal delivery code, shown in Figure 11, has 59 lines of non-whitespace
code among four functions. Specializing this code eliminated the error checking on special-
ization predicate terms and folded the four functions into one. The resulting function,
kp_usr1 , shown in Figure 12, has 18 lines. The code required to guard the specialization
predicate terms added a total of 60 lines among eleven functions in four files.

5 Discussion and experiences

5.1 Results and experiences with the toolkit
The experiences reported in this paper represent examples of all three types of specializa-
tion: static, dynamic and optimistic. We applied specialization to a range of system com-
ponents, and reduced execution time by between 15% and 93%. 

The experiments exercised our specialization toolkit across a wide range of system
component types, each of which presented differing degrees of complexity. The remote
procedure call experiment was the easiest to perform, since it was an instance of static spe-
cialization, hence it required no dynamic enabling or disabling of specialized code. In ad-
dition, the binding stages are clearly defined in the RPC protocol, thus making the special-
ization predicates easy to identify. This experiment demonstrated that Tempo can special-
ize complex machine-generated code, and achieve significant speedups. 

The packet filter experiment was more difficult to perform since the interpreter was
written in a style that prevents specialization. Once the systematic modifications to the in-
terpreter were made, this experiment showed that static specialization reduces interpreta-
tion time by a factor of seven. In addition, dynamic specialization, in which the overhead
of generating the specialized code is counted against the benefits, reduces interpretation
time by a factor of two. This experiment demonstrated Tempo’s ability to specialize an en-
tire domain-specific language interpreter, with a complex specialization predicate (an en-
tire packet filter program).

The signal experiment was the most difficult of the three, since optimistic specialization
includes guarding and replugging. In addition, the lack of explicit specialization predicates
required that we modify the code to reify the state of the previous signal in order to detect
repeated signals. This experiment exercised our guard placement tools as well as Tempo.
We used TypeGuard to locate the kernel statements that potentially modify each of the spe-
cialization predicate terms. TypeGuard produced a large number of false positive reports,
mostly relating to allocating new structure instances, which do indeed modify specializa-
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tion predicate terms, but do not violate specialization predicates, since newly allocated
memory can not contain specialization predicate terms. In contrast, the free  operation ap-
plied to a specialization predicate term does need to be guarded since after that operation
the specialization predicate term no longer exists. We had to manually examine each of
TypeGuard’s reports to determine whether it required guarding. In addition to our guarding
experiences, we found that optimistic specialization poses additional challenges to Tempo.
The complication is that optimistic specialization predicate terms are actually modified by
parts of the system. If those parts are given to Tempo, binding-time analysis will (accurate-
ly) determine the specialization predicates to be dynamic, and thus unspecializable. In or-
der to account for the fact that the specialization predicates were guarded, we had to selec-
tively omit parts of the code before presenting them to Tempo. Having done this, Tempo
effectively specialized the signal delivery code, resulting in application-level performance
improvements of a factor of two.

5.2 Lessons for system tuners
As with any optimization, specialization is best applied to the common paths of an operat-
ing system. With these common paths identified, we found two kinds of system constructs
that lend themselves to specialization. 

The first construct to look for is session-oriented operations, such as file open/close,
socket open/close, RPC binding, etc. In these situations, the binding stages are explicit,
which eases the task of identifying specialization predicates. For example, the file open call
establishes a binding between a file and a process. The specialization predicates resulting
from this binding are related to the user’s file permissions, the layout of the file on disk,
whether the file is shared or not, etc. In addition, these explicit binding events directly trig-
ger enabling and disabling code, which simplifies the task of placing guards.

The second important construct is domain-specific language interpreters or compilers
used by a system. The execution behavior of language-based components is described by
the domain-specific program. Examples of such constructs include using Java to extend
web servers or clients [24], active networks [57], and other mobile code systems [1, 59, 60].
When the same program is used repeatedly, it can be a useful specialization predicate. With
the exception of self-modifying code, program-based specialization predicates are never
modified, making them useful for static or dynamic specialization, and avoiding the over-
heads related to optimistic specialization.

5.3 Lessons for system designers
The lessons for software architects designing a system from scratch are to employ the con-
structs that are amenable to specialization. 

The first lesson is to make relationships between components explicit, rather than im-
plicit, whenever possible. This encourages explicit sessions in place of implicit relation-
ships. The evolution of the HTTP protocol [5, 16] exemplifies this trend: HTTP 1.0 created
a short-lived TCP connection for each data request from a client to a server, while HTTP
1.1 utilizes persistent TCP connections between clients and servers. The latter approach is
more likely to yield useful specialization predicates. 

When explicit sessions are not appropriate, the next lesson is to be able to recognize
implicit connections from repeated patterns of actions. Recognizing patterns often requires
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additional state to be maintained across interactions. We found this to be useful in the signal
example, where state was used to detect repeated signals between two processes, which al-
lowed us to derive a specialization predicate. 

Finally, using domain-specific languages, interpreters and stub compilers is a powerful
technique, not only because they raise the level of abstraction of system components, but
also because they naturally give rise to useful specialization predicates. We have begun in-
vestigating approaches to building software systems as layers of virtual machines and in-
terpreters in this manner [10]. 

The main implication of our methodology is on system complexity and ease of mainte-
nance. Making optimizations automatic and based on the source code allows the source
code base to be left generic and easily understandable, modular and maintainable. 

6 Related work

6.1 Related specialization research
Our specialization-based approach to operating systems implementation is an instance of a
programming methodology called multi-stage programming [55]. Multi-stage program-
ming refers to programs that generate other programs, usually with the goal of improving
performance. The program that generates or analyzes programs in a staged programming
system is called a meta-program, and the result is the generated-program. Staged program-
ming techniques can be distinguished along a number of axes, including [54]:

Automatic vs. manual annotation: Whether the static and dynamic portions of the input
program are identified by an analysis (e.g., binding-time analysis) or via manual an-
notations (e.g., pragmas written by the system tuner). 

Homogeneous vs. heterogeneous: Whether or not the generator (the meta-program) is
written in the same language as the generated program. 

Static vs. runtime generation: Whether generated code is produced before runtime (static
generation), or during runtime (runtime generation).

Two-stage vs. many-stage: If the output program is itself a meta-program, the process can
be applied recursively. Most such systems are also homogeneous, because it allows
the transformations applied at each stage uniformly, which makes building them
simpler, but excludes legacy code. 

By this categorization, Tempo is an automatic tool, since its binding-time analysis au-
tomatically derives the dynamic and static labellings of program components. Tempo is a
heterogeneous system, because its input is C-language programs, and its output is C and
object code. Furthermore, its analysis core is written in ML. Tempo supports both static and
runtime code generation. Tempo can be a two- or three-stage system. When performing
static specialization, Tempo is two-stage. Tempo’s dynamic specialization is three-stage,
since it produces a generator that produces specialized code [32].

C-Mix [3] is another partial evaluator for C programs that fits in the same staged pro-
gramming categorization as Tempo. Like Tempo, C-Mix can partially evaluate C pro-
grams, do inter-procedural analysis, and deal with complex data structures and side-effects.
However, it was not specifically designed to deal with systems code, and its analysis is not
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as precise as Tempo’s. In particular, C-Mix is flow-insensitive, which means that a variable
is considered dynamic as soon as it is dynamic in any part of the program, including excep-
tion handling. C-Mix also consumes more code space, because it eagerly replicates code to
avoid problems in binding-time analysis.

Other staged programming research projects use functional programming languages,
such as ML. The MetaML language is a manual system that uses “staging annotations” in-
stead of automatic analysis in order to make the resulting output more predictable [47, 48,
54, 55]. Since MetaML input and output programs are in the same language as the staged
programming system, MetaML is homogeneous, which enables it to support N-level staged
programming. MetaML also supports both static and dynamic program generation. 

In addition to the staged programming aspects of our work, there is work related to the
other tools in the specialization toolkit. Lackwit [40] is a program understanding tool for C
based on type inference. Unlike TypeGuard, which is based on C’s types, Lackwit discards
C’s weak type system, and instead infers its own strong dynamic types for values based on
the set of operations each value participates in, derived from a conservative data flow anal-
ysis of the program. Thus Lackwit can construct very specific types, e.g. the type of “point-
ers that are allocated and freed,” as distinct from the type of “pointers that are allocated but
not freed.” This kind of analysis could be useful in placing guards for specialization pred-
icates in system code, similar to TypeGuard. Lackwit performs more precise analysis than
TypeGuard, but at the expense of using an algorithm that is exponentially complex in the
worst case, which does not scale to the size of most systems code. 

Tempo’s binding-time analysis has similarities to the analyses used in program slicing
tools [58]. Forward slicing techniques propagate information from variable definitions to
their uses, and have been used to define binding-time analyses for imperative programs
[14]. The analysis used by these tools is similar to the part of Tempo’s binding-time anal-
ysis that propagates the state of variables from definitions to their uses. However, non-lift-
able values are not addressed by forward-slicing tools, and nor can they address values used
in different contexts. Backward slicing techniques propagate information from variable
uses to their definitions. This is similar to the part of Tempo’s binding-time analysis that
computes the binding-time definitions of variables. The way Tempo computes the binding
time of definitions is similar to backward slicing which computes the commands that are
needed in a slice. Unlike the two-point domain provided by slicing analysis (needed, not
needed), Tempo’s binding-time analysis is performed with a four-point domain (static, dy-
namic, static and dynamic, and {} ), since some definitions may need to be both evaluated
and residualized.

The Utah Flex project developed OMOS [41], an object/meta-object server that sup-
ports the dynamic linking of executable modules. OMOS wraps dynamically instantiated
execution modules in an object-oriented package, even if they were not written in an object-
oriented language. OMOS provides considerably more functionality than our replugger, in-
cluding the ability to specify which module should be loaded using certain code properties,
such as whether it is in memory, or has been linked to sit at a particular address range. Thus
OMOS encompasses some of the functionality of our specialization predicate guards, but
does the checking only at load time.
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6.2 Other approaches to operating system customization 
Aspect-oriented programming [28] provides a useful vocabulary for comparing approaches
to system customization. An aspect of a system is a property which necessarily spans sys-
tem components, and which is usefully considered independently. In this vocabulary, our
methodology uses specialization to optimize the performance aspect of a system and the
guarding tools help ensure correctness when access to specialization predicate terms span
system components. 

Aspect-oriented programming can be implemented using language tools built specifi-
cally to support it [31], or using a more general technique called open implementations, in
which the implementation of a software module is tailorable by clients of that module [27]. 

An open implementation of an operating system can be used to improve performance
without altering functionality, or to implement additional functionality in an existing sys-
tem. Building customizable operating systems using open implementations has been an ac-
tive area of research in the last decade. Examples of such customizable operating systems
include SPIN [6], Exokernel [15], the Flux OSKit [17], Vino [50], SLIC [20], Choices [7]
and Apertos [62]. 

In customizable operating systems correctness depends on extensions not being able to
affect parts of the system beyond the extension’s scope. SPIN provides such protection
through the use of a type-safe programming language combined with a dispatcher which
enforces constraints described by the service-writer [42]. For example, the dispatcher might
enforce the constraint that a particular virtual memory extension can only handle faults for
the process that installed it. SPIN also includes a hierarchical name-space that limits the
scope of customized modules to only those tasks that specifically ask to use the customized
components. The responsibility of ensuring that customizations do not conflict with each
other is left to extension-writers and the authors of built-in services.

Exokernel represents another approach to operating system customization. Exokernel
pushes system services outside the kernel where they can be more easily and safely extend-
ed. As with SPIN, the responsibility of ensuring that customizations will not interfere with
each other is left to the authors of the user-level system services and the developers of sub-
sequent customizations.

The Utah Flux project has constructed a software architecture that supports replacement
of operating system components, particularly nesting of operating system components [18,
19] using the recursive virtual machine concept. Each virtual machine level can be custom-
ized for specific needs, and is protected from other virtual machines at the same level. The
layers of indirection implicit in this structure come at some cost. However, specialization
may be able to minimize these costs. The replaceable software components are large and
complex, and the relationships between them will provide many specialization predicates
because the components are not replaced frequently. We believe the modular structure of a
system built with Flux could be particularly amenable to specialization, which would be
one way to construct high-performance, highly-structured systems.

Other researchers have used specialization in conjunction with specially designed sys-
tem components to optimize a specific operating system service. For example, the Ensem-
ble system uses specialization of network stacks written in ML in order to achieve high per-
formance from modular components [30]. The Scout operating system achieves high per-
formance by flattening network stacks automatically based on a new abstraction, paths,
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which are defined by programmers [36]. Scout uses domain-specific language compilers to
produce optimized code from the path specifications. 

7 Conclusions and future work

This paper introduced concepts, tools and a methodology for specializing operating sys-
tems code. We detailed the operation of tools for the specialization, guarding and replug-
ging phases of specialization. We evaluated the effectiveness of static, dynamic and opti-
mistic specialization by applying them in experiments that included more than one operat-
ing system (both Linux and Solaris), and a range of styles of code, ranging from regular
system code (delivering signals), kernel-resident interpreters (interpreting packet filter pro-
grams), and a stub compiler (for RPC). These experiments demonstrated substantial perfor-
mance improvements, comparable with those that are possible through hand-coded optimi-
zations. Finally, we discussed the lessons we learned from these experiences and implica-
tions for future software engineering practices for system building.

The tools presented in this paper aid in the production of specialized code paths and in
guarding them when they are used optimistically. Another important problem is how to
identify good opportunities for specialization. In all our experiments to date, we have iden-
tified specialization opportunities by hand, using expert knowledge and heuristics to deter-
mine whether they would benefit from specialization. It would be useful to have tools to
identify hot spots in operating systems, distill specialization predicates of such hot spots,
and evaluate the feasibility of a given specialization strategy. There are many difficult spe-
cialization policy issues to solve such as whether a particular specialization is worthwhile
given a particular guarding strategy and execution context, which specialized versions to
generate ahead of time, which ones to cache, and what policies to use for managing such a
cache. 

One promising approach to addressing the complex trade-offs involved with the over-
heads and benefits of specialization is to dynamically monitor the run-time behavior of a
system and analyze the net benefits of specializing individual system components given ob-
served execution frequencies, and use feedback control to enable or disable specialization
of each component in the system. We plan to use the microfeedback toolkit developed at
OGI [8, 21] to develop controllers that achieve this kind of dynamic adaptivity of special-
ization policy in a way that is predictable, stable, responsive, and composable.
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