March 13,2007 14:28 vra80334_appc Sheet number 1 Page number 855 black

appendix

C

TUTORIAL 2 —IMPLEMENTING CIRCUITS
IN ALTERA DEVICES

In this tutorial we describe how to use the physical design tools in Quartus II. In addition
to the modules used in Tutorial 1, the following Quartus II modules are introduced: Fitter,
Floorplan Editor, and Timing Analyzer. To illustrate the procedures involved, we will first
implement the example_verilog project created in Tutorial 1 in a Cyclone II FPGA.

C.1 IMPLEMENTING A CIRcUIT IN A CycLONE II FPGA |

Select File > Open Project and browse to the directory designstyle2, which contains the
Verilog design example used in Tutorial 1. As depicted in Figure C.1, select the exam-
ple_verilog project (Quartus II project files have the filename extension .gpf) and click
Open.

C.1.1 SELECTING A CHIP

In Tutorial 1 we used the Compiler to perform the synthesis operations, which generated
the information needed for functional simulation. Now, we will implement the design in
an FPGA and then use timing simulation.

To specify which chip to use, select Assignments > Device to open the window shown
in Figure C.2. Click on the pull-down menu in the box labeled Family and select Cyclone Il.
Note that in some cases Quartus II will display the message “Device family selection has
changed. Do you want to remove all pin assignments?” Click Yes to close this pop-up box.

In the Target device box you can specify that Quartus II should automatically select a
device during compilation. The ability to have a chip chosen automatically is sometimes
convenient for the designer. However, in this case we wish to select a specific chip, so click
on Specific device selected in ‘Available devices’ list.

The various chips in the Cyclone II family are displayed in the box labeled Available
devices. One available chip is the EP2C35F672C6 (if this device is not listed, change the
Speed Grade item in the Filter box to Any). The meaning of the chip name is as follows:
The EP2C means that the chip is a member of the Cyclone II family, and the 35 gives

855

March 13, 2007 14:28

856

vra80334_appc Sheet number 2 Page number 856 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

x|
Laak i I&} designatyle? j - = E5-

example_wetilog.qpf

File: name: IeHampIe_veriIog.qpf j Open I
File:s of type: Illuarlus Il Froject File [*.qpf.”. quartus;” qar) j Cancel |
%

Figure C.1 Opening the example_verilog project.

an indication of the number of logic elements in the chip. The designator F672 indicates
a Fineline 672-pin ball grid array package; we describe package types in section 3.6.3.
The C6 gives the speed grade. We discuss speed grades in Appendix E. As indicated in
Figure C.2, choose the EP2C35F672C6 device, and then click OK to close the Settings
window. We have chosen this chip because it is provided on an Altera development board
that is discussed in Appendix D.

C.1.2 CoMPILING THE PROJECT

In Appendix B we ran just the synthesis tools in Quartus II, by using the command Processing
> Start > Start Analysis & Synthesis. Now, we wish to run in sequence the four modules
in the Quartus II software that we showed in Figure B.16: Synthesis, Fitter, Assembler,
and Timing Analyzer. Before invoking these tools, open the menu under Tools > Options
and then in the category General > Processing click to select Automatically generate
equation files during compilation. This setting causes the Quartus IT Compiler to record
in its Report File the logic expressions generated during the compilation process.

To invoke the tools, select Processing > Start Compilation, or use the toolbar icon
that looks like a solid purple triangle. As we saw in Tutorial 1, the compilation progress
through each Quartus II module is displayed in the Status window on the left side of the
Quartus II display. After the Analysis & Synthesis module converts the Verilog code into a
circuit that comprises Cyclone II logic elements, the Fitter module chooses locations on the

March 13, 2007 14:28

vra80334_appc

Sheet number 3 Page number 857 black

C.1 IMPLEMENTING A CIRcUIT IN A CYcLONE II FPGA

x
Category:
- Files
- User Libraries [Current Project] Select the family and device vou want to target for compilation.
- Device
- Timing &nalysis Settings . - Show in 'Available devices' list
- ED& Tool Settings IREall IE}'C|DnE I J Package: : =
[Compilation Process Settings Dievice & Fin Options... | = ks
[+ Analysiz & Synthesis Settings PFin count: Ay -
- Fitter Settings r~ Target device
- Aszembler " Auto device selected by the Fitter Speed giade: IAn-"' jv
D.emgn Assmtant. ' Specific device selected in ‘Available devices' list Core voltage: 1.2
- SignalT ap |l Logic Analyzer Other nia _
- Logic Analyzer Interface : [V Show advanced devices
- SignalProbe Settings . .
[#- Simulator Settings ralells deniEes
[#- PowerPlay Power &nalyzer Settings Mame | LEs | Memor... | Embed... | FLL | ;I
EF2C35F484C6 33216 433840 70 4
EP2C35F484C7 33216 483840 70 4
EP2C35F484C8 33216 483840 70 4
EP2C35F48418 3316 483840 70 4
E E i 4
EF2C35FEFZCT 33216 483840 70 4 J
EP2C35FEFZCE 33216 483840 70 4
EPZC35FET218 33216 483840 70 4
EF2C3511484C6 33216 433840 70 4
EPZC3511484C7 33216 483840 70 4 LI

Migration compatibiliby Companian device

Migration Devices... | HardCopy [1: I ﬂ

¥ | Lirnit DS & Bék to HardCopy || device resources

0 migration devices zelected

oK I Cancel |

v

Figure C.2 Selecting a Cyclone Il device.

FPGA chip for these logic elements. A detailed discussion of the CAD modules is provided
in Chapter 12.

When compilation is finished, the compilation report displayed in Figure C.3 is pro-
duced. Click on the small + symbol to expand the Fitter section of the report, and then click
on the Equations section to reach the display in Figure C.4. Scroll through this part of the
report to see the logic expressions implemented by our circuit. At the bottom of the report
the output f is given as

f = OUTPUT(A1L2);

This means that f appears on an output pin, and that output is defined by the logic expression
called A1L2, which is realized as indicated near the top of the Fitter Equations section in
Figure C.4. This expression properly implements our logic function f = x;x, 4+ X»x3. Note
that the # symbol is used by Quartus II to denote the OR operator.

857

March 13, 2007 14:28

858

vra80334_appc Sheet number 4 Page number 858 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

i
BB Legal Motice
B8 Flow Summary Flows Status Successful - Tue Moy 07 20:54:48 2006
BB Flow Settings Quartus |l Yersion E.0 Build 202 06/20/2008 SF 1 5J 'web Edition
%5 Flows Mon-Default Global Set Fievigion Mame example_verilog
-¢SHES Flow Elapsed Time Top-level Entity Mame examnple_verilog
-~ EH B Flow L?g _ Family Cyclone I
=& Analysis & Synthesis Device EP2C35FE72C6
F-ESH] Fitker -)
Timing Models Final
[]--@[:I Assembler . 5
1-&H(Timing Analyzer et timing requiremerts e
Total logic elements 1/33216(<1%)
Total registers 1]
Total pins 44478 [<1%)
Total virtual pins 0
Total memary bits 0/483.840(0%)
Embedded Multiplier 9-bit elements 0/ 70[0%
Total PLLs 0/4[(0%)
1 | Bl

Figure C.3 The compilation summary.

¢ B Legal Motice --R1LZ is £~11 at LCCOMB_X30_Y35_NO
¢S Flow Summary RILZ = xZ £ (x1) # !x2 & x3:
- ¢SHERR Flow Settings
- ¢SHERR Flow Mon-Default Glabal
- &ER8 Flow Elapsed Time --x1 iz x1 at PIN_C13 J
é Flow Log ——operation mode i= input
E]--@[:I Analysis & Synthesis
=-&H 23 Fitter | | %l = INPUT(]:
& summary
BB Settings
~&neb Equations --%3 is %3 at PIN_D13
(= Pin-Out File - ——operation mode iz input -
= B |7 o[

Figure C.4 The Fitter Equations section.

C.1.3 PERFORMING TIMING SIMULATION

Timing simulation is done by using the same procedure that we described in Tutorial 1 for
functional simulation. Select Assignments > Seftings and click on the Simulator item, as
shown in Figure B.24. Open the drop-down list next to Simulation mode and change this
setting from Functional to Timing. Use the Edit > End Time command to set the duration
of the simulation to 640 ns. Then, turn on grid lines at 40-ns intervals by selecting Edit >
Grid Size and setting the Time period to 40 ns.

Use similar input waveforms for xi, x,, and x3 that were drawn with the Waveform
Editorin Tutorial 1 as inputs for the timing simulation. Select Processing > Start Simulation
to run the simulation. When it is completed, the simulation report is displayed. Part of this

March 13,2007 14:28 vra80334_appc Sheet number 5 Page number 859 black

C.1 IMPLEMENTING A CIRCUIT IN A CycLONE II FPGA 859
il
% Simulation Report Simulation Waveforms
@ Legal Motice Simulation mode: Timing
&S5 Flow Summary
3B Flow Settings tdaster Time Bar: [85.396 ng 4| »| Pointer: | 0 : : :
: 1|85, : pz Interval | -85.4 ng Start: End:
=& 3 Simulatar m J‘l | |
-G8 smary A Vet | 1P 160,0ns 320,0ns 4800ns B40.0ng
~EHER Settings s Name | ‘o 3% s
- &ZF Simulation War |
@D Sirnulation Cov % 0 w3 E1 [| [| [| [
B i —_ ——
o Messeg =2 0| eo |
a |22 f B 1 1
e m =

Figure C.5 The Timing Simulation Report.

report is shown in Figure C.5. Select View > Fit in Window to see the complete time range
of the waveforms. Compare these waveforms to those shown in Figure B.25. The timing
simulation produces the same results as the functional simulation in Tutorial 1 except that
the changes in the waveform for f are now determined by the timing characteristics of the
Cyclone II 2C35 chip. There are two changes in the waveform for f shown in Figure C.5
that we should mention. At the 320 ns point in the simulation, the inputs x;x2x3 change
from 011 to 100. Since f = 0 for both of these input combinations, we would expect to
see no change in the output value produced by the simulation. The waveform in Figure
C.5 shows that f does have the correct value (0) after the inputs change to 100, but there is
a short period of time when a wrong value of f = 1 is produced. This temporary change
in the output value, which is usually called a glitch, is due to the delay properties of the
lookup table based logic element in the Cyclone II FPGA. We discuss lookup table based
logic cells in section 3.6.5. A similar glitch occurs at the 480 ns point in the simulation
shown in Figure C.5. In practice, glitches like these do not cause a problem, because they
only exist for a short time before the output stabilizes at the correct value. We discuss this
topic in more detail in Chapter 9.

We can use the vertical reference line in the Simulation Report window to determine
the exact time when f changes value. To do this select View > Snap to Transition, so that
your mouse pointer will align perfectly with an edge on any waveform. Click and drag
the vertical reference line to the point where f first changes to 1, as shown in the figure
(you can also move the reference line by using the keyboard arrow keys). The box labeled
Master Time Bar now displays 85.396 ns, meaning that it takes about 5.4 ns for the change
in x3, which occurs at 80 ns, to cause a change in f. This result is a reflection of the timing
characteristics of the Cyclone II FPGA.

C.1.4 UsING THE CHIP PLANNER

In addition to examining the equations in the compilation report, another way to view the
implementation results is to use the Chip Planner. Select Tools > Chip Planner to open the

March 13, 2007 14:28

860

vra80334_appc Sheet number 6 Page number 860 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

-Iolx]
Device: EP2CI5FE7206 Task: [Floorpian Editing “modied (7] £

5

H

L

h¥BER o 0P

GEF B[Rl P E& G
v &

_d

Figure C.6 The Chip Planner display.

window shown in Figure C.6. To make the window look like the one in the figure, it may
be necessary to turn off the feature that displays equations in the bottom part of the Chip
Planner window. Select View > Equations to toggle off this feature.

Figure C.6 shows some of the logic elements in the Cyclone II 2C35 chip. As shown
in Appendix E, each logic element comprises a four-input lookup table. The logic elements
are organized into logic array blocks (LABs), where each LAB contains 16 logic elements.
Selecting View > Fit in Window in the Chip Planner will display the entire chip. The Chip
Planner uses different colors to indicate logic elements and pins that are used in a circuit
and those that are unused. For our small example four pins are used for the three inputs and
one output, and one logic element (of more than 33,000 in the chip!) is used to implement
the function f. To see larger or smaller views of the chip, click on the Zoom Tool button
in the Chip Planner toolbar, which looks like a small magnifying glass. Left-click to zoom
in and right-click to zoom out. To display different sections of the chip, use the window
scroll bars.

Adjust the display so that the logic cell that produces the output fis visible, as depicted
in Figure C.7 (your compilation results may use a different logic element and pins from the
ones shown in the figure). Make sure the Selection Tool, which looks like an arrowhead,
in the Chip Planner is active, and then click on the logic element for f to select it. The
Chip Planner can draw lines that indicate which other resources the selected logic element

March 13,2007 14:28 vra80334_appc Sheet number 7 Page number 861 black

C.1 IMPLEMENTING A CIRCUIT IN A CYcLONE II FPGA 861
4% Chip Planner - IEllil
= Device: EP2CI5FE72C6 Task: [Floorplan Ediing “modiied || £
=
k& -
b
Mtz
-4 B
L
(-
= 2
a4
&
::I@ x=h
i B
’95 Kl
Fanin(3/3) <GoTa | || Equations [1/1] GoTo> [[Fanut (141]
1 [+1) = AIL2[F11)= ENIE
B 12 [%2) %2 G 1] 2 % w3
B3 [43) \ _'|;I

Figure C.7 Viewing node fan-in and equations.

is connected to by choosing View > Generate Fan-In Connections and View > Generate
Fan-Out Connections. It is also possible to see what logic function is implemented in the
selected node by selecting View > Equations. As seen in the figure, this choice displays
the logic expressions from the compilation report in the bottom part of the Chip Planner
window.

Instead of displaying the whole chip, it is also possible to see more details for individual
resources. Right-click on the logic element for f and select Locate > Locate in Resource
Property Editor to open the Resource Property Editor tool shown in Figure C.8. Another
way to open this tool is to double-click the mouse on the logic element. To make the display
look as shown in the figure it may be necessary to select View > View Port Connections
to toggle off this feature.

A lot of useful information is available in the Resource Property Editor. It shows that
the lookup table inputs called B, C, and D are used for our logic function. Hover the mouse
cursor over each of the inputs in turn to see that B is connected to x3, C to x, and D to x;.
The window shows the logic function implemented in the lookup table under the name Sum
Equation; this terminology is used because it is possible to configure a lookup table such
that it implements separate outputs for the sum and carry functions needed in a full-adder
(since our logic function is not a full-adder, the expression for Carry Equation is shown
as N/A). We should note that the logic expression shown for f in the figure is specified as

March 13, 2007 14:28

862

vra80334_appc Sheet number 8 Page number 862 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

f = x3(x; +X2) + X3x,x;. This is not the simplest expression that one may expect, namely
f = x1x2 + X>x3. But both expressions represent the same function and the CAD tools do
not always display the simplest form of an equation.

The bottom right corner of the Resource Property Editor window shows the propagation
delays through the logic element. Click on the value 150 ps associated with input D, which
is connected to x;. As indicated in Figure C.8 the corresponding path through the logic
element is highlighted. The path starting at input C has a delay of 271 ps, and the path
through B has the delay 420 ps. The differing delays associated with each input to the lookup
table is the reason that we observed glitches in the simulation waveforms for f in Figure
C.5; changes in the input x; affect the value of the output f more quickly than changes in
inputs x, and x3. In larger designs where it is important to optimize the performance of the
implemented circuit, the CAD tools make use of the faster inputs through lookup tables for
the parts of a circuit that are the most timing critical.

It is possible to explore different parts of the implemented circuit using the Resource
Property Editor. To experiment with this feature, right-click on the DATAD input to the
lookup table and select Go to source node, as indicated in Figure C.9. This action causes
the Resource Property Editor to display the pin used for the input x;. The Back to previous
resource icon in the Resource Property Editor toolbar, which looks like an arrow pointing
to the left, can then be used to return the display to the logic element previously viewed.
In a similar way, you can right-click on the output of the lookup table and examine the pin
used for the output f.

% Resource Property Editor o]
= JJ Mode narne: || LCCOME_%30_Y35_N0 -- |example_verilog|f~11 j‘
m

BRRQT L e DRG LT

| P tiez/Mad W all Sum Equation B&[DEICIHIBECED
= TOPETTES, ndes allies 4 ! Mode: i=
et o o | "> [o=]| | GoTo |
= - Sum LUT Mask |FCOC COMBOUT | <]
-Eg] Earr_l,l LUT Mazk | Mi& DATAR | 420 pE
= Operation Mode normal
r 1]
0 Latch Type none DATAC)
DatAD | jE

Figure C.8 The Resource Property Editor display.

March 13,2007 14:28 vra80334_appc Sheet number 9 Page number 863 black

C.2 IMPLEMENTING AN ADDER USING QUARTUS II 863

", Resource Property Editor

JJ Mode name: || LCCOME_®30_Y35_M0 -- |example_wverilog|fr~11

source node |example_wer

Inverted

Global Type

Edit Connection
Remaove Connection

BRRQTL|Le DDA

Figure C.9 Using the Resource Property Editor.

We have now completed the implementation of the example_verilog project in a Cy-
clone II FPGA. Close the project.

C.2 IMPLEMENTING AN ADDER USING QUARTUS II

In section 5.5 we show how an n-bit ripple-carry adder can be specified in Verilog code.
In this section we show how the ripple-carry adder can be implemented using the Quartus
II system. Create a new project, adderl6, in a directory tutorial2\addern. We will imple-
ment the adder circuit in a Cyclone II FPGA. Thus, in the New Project Wizard window
shown in Figure B.6, select the Cyclone II family and choose the specific device called
the EP2C35F672C6 (if this device is not listed, change the Speed Grade item in the Filter
box to Any). We are using this device because it is available in the DE2 Development and
Education board provided by Altera (see altera.com), which we discuss in Appendix D.

C.2.1 THE RirPLE-CARRY ADDER CODE

Verilog code for the n-bit adder is given in Figure C.10. It takes as inputs the carry-in
signal, carryin, plus two n-bit numbers, X and Y, and produces the n-bit output sum, S,
and carry-out signal, carryout. The code uses the parameter n, so that the adder can be
parameterized to work for any number of bits. In this example, n is set to 16. In the code
the vector C is used to represent the intermediate carries between the stages in the adder. A
for loop is used to create n full-adders that comprise the ripple-carry adder.

March 13, 2007 14:28

864

vra80334_appc Sheet number 10 Page number 864 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

module adderl6 (carryin, X, Y, S, carryout);
parameter n = 16;
input carryin;
input [n—1:0] X, Y;
output reg [n—1:0] S;
output reg carryout;
reg [n:0] C;
integer k;

always @Q(X or Y or carryin)
begin
C[0] = carryin;
for (k = 0; k <=n-1; k = k+1)
begin
S[k] = X[k] » Y[k] » C[k];
Clk+1] = (X[k] & Y[k]) |
end
carryout = C[n];
end

(Clk] & X[K]) | (CK] & YK]);

endmodule

Figure C.10 Verilog code for a ripple-carry adder.

Type the code in Figure C.10 into the Text Editor, as explained in Section B.4.2, and
save the file in the tutorial2\addern directory using the name adderi6.v. Compile the
circuit. The compilation report is shown in Figure C.11.

C.2.2 SIMULATING THE CIRCUIT

To test the correctness of the circuit, we will perform timing simulation. For brevity only
a few test vectors will be used, but in a real design situation more extensive testing would
be required.

Create a new Vector Waveform file. Use Edit > End Time to set the desired simulation
to run from 0 to 250 ns. Choose the grid lines to be placed at 25-ns intervals. This is done
by selecting Edit > Grid Size, which leads to the window in Figure C.12 and setting the
Time period to 25 ns. Select View > Fit in Window to display the entire simulation range
in the window.

Select Edit > Insert > Insert Node or Bus, and then open the Node Finder utility to
reach the window in Figure C.13. Set the filter to Pins: all and click List, which displays
the input and output nodes as depicted in the figure. Scroll down the list of displayed nodes
until you reach carryin. Select this node by clicking on it and then clicking the > sign.
Next select the X input. Note that this input can be selected either as nodes that correspond

March 13, 2007 14:28

& Compilation Report - Flow Summary

vra80334_appc

C.2

Sheet number 11 Page number 865 black

IMPLEMENTING AN ADDER USING QUARTUS I

=101 x|

B Legal Mokice
-¢SHEE Flow Summary Flows Status Successful - Mon Mov 13 16:16:38 2006
é% Flow Settings Quartus [l Yersion [Beta) 6.1 Internal Build 185d 10./31 /2006 SJ Full Yersion
- ¢SHE Flow Non-Default Glo | Revision Mame adder1B
- {SHER Flow Elapsed Time Taop-level Entity Name adder1 6
- EHB Flow L?g) Family Cyclone ||
- &0 Analysis & Syrthesis | o EP2C35FE7206
- &1 Partition Merge Tiring Models Final
&1 Fitter 't :
G- &S] Assembler et timing requirements ez
5B Tiving Analyzer Total logic elements A0/ 33216(<1 %)
Tatal combinational functions 40/ 33216(<1 %)
Dedicated logic reqisters 0/33.216[0%)
Total regizters]
Total pirs B0/ 475 (11 %)
Tatal wirtual pin: 0
Tatal memary bitz 0/433840(0%)
Embedded Multiplier 9-bit elements 0/ 70(0%]
Tatal PLLs 0/4(0%)
—
Figure C.11 The compilation report summary.

Grid size x|

Basze grid on
) Clock settings:

' Time period:

Period: |2E| ns -

.

Cancel |

Figure C.12

Setting the spacing of grid lines.

to the individual bits (denoted by bracketed subscripts) or as a 16-bit vector, which is a
more convenient form. Then, select the input Y and outputs S and carryout. This produces

the image in the figure.

Click OK.

The Waveform Editor window now looks like the image in Figure C.14. Vectors
X, Y, and S are initially treated as binary numbers. They can also be treated as either
octal, hexadecimal, signed decimal, or unsigned decimal numbers. For our purpose it is
convenient to treat them as hexadecimal numbers, so right-click on X in the Name column
and select Properties in the pop-up box to get to the window displayed in Figure C.15.
Choose hexadecimal as the radix, make sure that the bus width is 16 bits, and click OK.
(Quartus II uses the term bus to refer to multibit nodes.) In the same manner, declare that Y

865

March 13,2007 14:28 vra80334_appc Sheet number 12 Page number 866 black

866 APPENDIX C€ ¢ TUTORIAL 2—IMPLEMENTING CIRCUITS IN ALTERA DEVICES
Node Finder
Named: [f =] Fier: [Pins: 1 =l Custoize.. | List | ok |
Look in: ||EIC|E|EI1 Bl J W Include subentities Stop | Cancel |

MNodes Found: Selected Modes:
| Assignments | Tvpe | C;l I Mame | Assignments | Type
Unassigned Input Group U I |adder 16| carryin - Unassigned Input
Unassigned Inpuk u ¥ |adder 16]% Unassigned Input Group
Unassignad Inpuk u BB |adder 16] v Unassigned Input Group
Unassigned Input u o |adder16|5 Unassigned Cukput Grou
Unassigned Inpuk U L |adder 16| carryout nassigned Qukput
Unassigned Input u
Unassigned Inpuk U Y |
Unassigned Input u
Unassigned Input u > |
Unassigned Inpuk u
Unassigned Input u g |
Unassigned Inpuk U p” |
Unassigned Input u
Unassigned Input u
Unassigned Inpuk U
Unassigned Input u
Unassigned Inpuk U
Unassigned Input U
Unassigned Cutput u-
) J | ol
A
Figure C.13 The Node Finder window.
B waveform1.vwf* o]
] M aster Time Bar. 0ps 'l 'l Painter: | Ops |nteryal; | Ops Start; | End: |
l:% A ey Mare \alue ot ; ps 50.0 ns 100,0 n= 1500 ns 2000ns 250.0 n4
= =
g fes 00
o7 w0 carmyin B0
— [l b B 000000... 0000000000000000
o
ER- TR P v B 000000, TI000O0000000000
A Yol ES 5 B 00, e,
)@ ><n£ £ 52 caryaut B
&

i1 fo1 fa 1Y &

s
=

Z

H

Figure C.14 Selected input and output nodes.

March 13,2007 14:28 vra80334_appc Sheet number 13 Page number 867 black

C.2 IMPLEMENTING AN ADDER USING QUARTUS II

Node Properties [%]
General |
Mame: I><
Type: finPUT =l

Yalue type: |9‘|—9V9|

Fadix:

Bus with: [16 =

[" Display gray code count as hinary count

oK I Cancel |

Figure C.15 Defining the characteristics of a node.

_inx
=] Master Time Bar: Ops 'I >| Pointer: | 0 psz Interval: | 0 psz Start: | 0ps End: | 2800 nz
IE A = " Vs at 0 ps 50.0 ns 100,00 ns 150,0 ns 200,0ns 250.0 nsi
= ame: 0ps 0pe
& "
E?w 2 0 Canmin BO
—_— | X H 0000 0ooo
2 2 L[58 v H 0000 o000
A2 F (s 5 H 3044 R
>@ X]E Xn; o B2 carmout B
& e e
G
oo. A
8% 81 4] D

Figure C.16 Using the hexadecimal representation for multibit signals.

and S should be treated as hexadecimal numbers. The resulting waveform display is shown
in Figure C.16.

We will now set the test values of X and Y. The default value of these inputs is 0. To
assign specific values in various intervals proceed as follows. Select (highlight) the interval
from 100 to 175 ns of input X . Press the Arbitrary Value icon in the toolbar (it is labeled
by a question mark), to bring up the pop-up window in Figure C.17. Enter the value 3FFF
and click OK. Then, set X to the value 7FFF in the interval from 175 to 250 ns. Set Y to
0001 in the interval from 50 to 250 ns. Thus, the input waveforms should be as depicted
in Figure C.18. If this were a real design project we would enter additional test values into

867

March 13, 2007 14:28

868

vra80334_appc Sheet number 14 Page number 868 black

APPENDIX C . TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

Arbitrary Value [%]
Mode/group namers):
® Cancel |
Radix: IHexadecimaI j
Mumetic or named wvalue: j

Figure C.17

Assigning the value of a multibit signal.

_ioix
=53 Simulation Report Simulation Waveforms
BB Legal Notice Simulation mode: Timing =]
- (SHEE Flow Summary K
E%@ 2:;b:|aS:Dtrtlngs IE M aster Time | 0ps J_'IPointer| Opz Interval| Ops Start End|
&R Summary A vaueat PP 1000ns a0 |
%% S?ttlng.s s Mame 0ps [ops
%@- Sirnulation Way N
& ISan;ﬂation Covg 0 carnmyin B0
é% essanm 1 % H 000 0000 T AR ST
- Y EIE ¥ Hoooo | oooo Y o
=B 5 H 0000 0000 0001 g 4000 Bono
i)
-+ | 52 campout| B0
.
KN I | e K | 2]
Figure C.18 The result of timing simulation.

the waveforms, but for purposes of this tutorial a few test vectors will suffice. Save the file
as adder16.vwf.

C.2.3 TIMING SIMULATION

To examine the functionality of the circuit, and determine its speed of operation in the
chosen device, we will perform a timing simulation. Select Assignments > Seftings >
Simulator to reach the window in Figure B.25 and choose Timing as the simulation mode.
Run the simulator. The result is given in Figure C.18. It shows considerable delays in
producing the correct value S = 4000 because the carries are rippling through the adder
stages.

Point to the small square handle at the top of the reference line and drag it to the point
where the S value becomes 4000. A more accurate view can be obtained if the waveform
image is enlarged using the Zoom Tool. Enlarge the image to look like the display in

March 13,2007 14:28 vra80334_appc Sheet number 15 Page number 869 black

C.2 IMPLEMENTING AN ADDER USING QUARTUS II 869
o
L Ll Simulation Waveforms
--EhB Legal Natice Simulation mode: Timing =
2P Flow Summary L]
E% ;:S::é:otrtmgs % Master Time Bar: 121.87 ns <| >| Painter: |EIE.B? ns Interval: | -25.0 ns Start: End:|
é% Sum!'nary A \alue &t B.87 nz 11025 ns 12362 ns |
é% Settings s Mame 131 57 17187 ns
éﬂ- Sirnulation ! B u
%g f;j;ﬂation' |a [] caimyin BO
5 Mess::g: gl e H 3FFF | 0000 FFF
) rryCik y H 0001 oo
A fo] g H 4000 a0 FR S MATT Y doo0
-+ |k 52 camypout| B0
-
TR Y| oz 1 | 2L L 3

Figure C.19 Detailed results of timing simulation.

Figure C.19. Click on the Selection Tool icon, and drag the reference line as closely as
possible to the point where the value 4000 becomes valid.

The change in S from 0001 to 4000 is caused by the X input changing from 0000
to 3FFF, which occurs at 100 ns. As seen in Figure C.19, the output S changes to 4000
at approximately 121.9 ns. Therefore, the propagation delay through the adder, for these
particular values of inputs, is estimated to be 21.9 ns. Note that, in this case, the adder
performs the operation 3FFF 4- 1 = 4000 which involves a carry rippling through most of
the stages of the adder circuit. For other values of inputs, the propagation delay may be
much smaller. In Figure C.18, we see that the operation 0000 4+ 0001 = 0001 is completed
in about 5.76 ns.

When we compile our circuit using Processing > Start Compilation one of the modules
executed is the Timing Analyzer. As explained in Chapter 12, this module automatically
produces an estimate of the speed of the circuit. Open the compilation report by selecting
Processing > Compilation Report or by clicking on its icon. The report includes the derived
timing analysis. Click on the small + symbol next to Timing Analyzer to expand this section
of the report. Then, click on Summary to get the display in Figure C.20. The summary
indicates that the estimated worst case propagation delay from an input to output pin, #,4,
is 21.9 ns. This longest path starts at the X [1] input and ends at S[14]. More detailed
information about the propagation delays along various paths through the circuit can be
seen by clicking on tpd on the left side of Figure C.20, which displays the information in
Figure C.21. Here, we see that there are several paths along which the propagation delay
is close to the maximum, including the one given in the summary in Figure C.20. These
longest-delay paths are referred to as critical paths.

The Timing Analyzer performs several types of timing analysis. The results displayed
in Figure C.21 give the delays through a combinational circuit, from input pins to output
pins. The other types of analysis are applicable only to circuits that contain storage elements,
namely flip-flops. This type of analysis is discussed in section C.4.

March 13, 2007 14:28

870

vra80334_appc

APPENDIX C

Sheet number 16 Page number 870

black

TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

ol
&R B Legal Matice Required | Actual Fram | To Failed
gé v Sumary | |Twpe Stack [ring" |Tine |F |7 | Ciock | Clock | Paths
- SHEB Flow Settings 1 N |Norme | 21870 me| 1] |SH4] ~ 0
3B Flow Mon-Default Glot [2] Tatal number of failed paths il
¢S5 Flow Elapsed Time
B Flow Log
&L Analysis & Synthesis
&3] Partition Merge
-5 Fitker
M-&3L] Assembler
=-&EF23 Timing Analyzer
SHEF summary
SHEB Settings
SHEF tpd
-2 i} Messages
4 v 4] I ©i
Figure C.20 The worst-case propagation delay.
_ioix
=5 Compilation Report pd
- B Legal Notice Fequired | Actual P2P -
gé Fbgw Summary Slack | B3P Time | Tine From | To
- <HEEB Flow Settings 1 N [Mone 21,870 ns A 5[14]
- HEEB Flow Mor-Default Glat |2 | M2& [Mone N2 ns =[0] |5[14]
-~ &ER FlowElapssd Tme |3 | N/& |Mone 21627 ng YA |S[4]
~EhB Flow Log s | Mes [Hone 20950 s I IERE
S%g sgi'i‘t’i:; i‘qj:’g“':hes's 5 | N/ |None 20837 ns FOMERE]
- B Fiter B | N/ |Mone 20839 ns FEE
5] Assembler 7| e [Nore [20813ns M2l |sh4]
= &h Tiring Anlyzer 8 | M |Mone | 20.634ns TR
%% Surnmary g Mg |Mone 2017 ns ¥[2] |5[12)
-5 Settings 10 | W& |Mone 19.880 ns #[2]|50e]
%ﬁﬁ tpd 11 | Ma |Mone 19814 n= =[1] | canpout
""" A2 Messages 12 | Néa |Mone 19.716 ns 0] | carmout
LI—I ﬂ 13 | NAA - [Mane 19 R71 n= M1 | rarrunot ﬂ
Figure C.21 The critical paths.

We have finished working on the addern circuit, so close the project.

C.3 UsINGg AN LPM MODULE

In section 5.5.1 we discuss how an adder circuit can be implemented by using the
Ipm_add_sub module in the library of parameterized modules (LPM). In this section we
compare the adder circuit produced by the [pm_add_sub module to the ripple-carry adder

March 13,2007 14:28 vra80334_appc Sheet number 17 Page number 871 black

C.3 UsIiNG AN LPM MODULE 871

implemented in the previous section. Create a new project, adderi6_Ipm, in a directory
tutorial2\adderlpm. Choose the same FPGA chip as in section C.2.

The easiest way to instantiate an LPM module is by means of a wizard. Select Tools
> MegaWizard Plug-in Manager to activate the wizard. A number of pop-up boxes will
appear in which we can specify the features of the desired module. In the screen shown
in Figure C.22 choose to create a new variation of a megafunction, and click Next. In the
screen in Figure C.23 select the LPM_ADD_SUB module. Make sure that the Cyclone 11
family is indicated at the top right, and also select the entry Verilog HDL as the type of file
to create. Let the output file be named megadd.v. (The filename extension, v, will be added
automatically.) Click Next. In Figure C.24, specify that a 16-bit adder circuit is required.
Click Next to reach the subsequent screen and accept the default setting that indicates that
both inputs can vary. Click Next again to reach the window in Figure C.25 and specify that
both carry input and output signals are needed. Observe that the wizard displays a symbol
for the adder which includes the specified inputs and outputs. Advance past the next screen,
which presents a pipelining option that we will not use. The last screen is given in Figure
C.26, which indicates the files generated by the wizard. Click Finish. We are interested
only in the megadd.v file, so make sure that this is the only file selected by a check mark.

The megadd module is shown in Figure C.27. (We have removed the comments to
make the figure smaller.) The top-level Verilog code that instantiates this module is given
in Figure C.28. Enter this code into a file called adder16_Ipm.v.

Compile the design. A summary of the timing analysis is shown in Figure C.29.
In this design, the worst-case propagation delay is about 13.28 ns. Clearly, the adder
implementation by means of an appropriate LPM is superior to our generic specification in
Figure C.10. The reason that this adder is much faster than our previously created ripple-
carry adder is that the LPM makes use of special circuitry in the FPGA for performing
addition. We discuss such circuitry, often called a carry-chain, in Sections 5.4 and 12.1.
We may conclude that a designer should normally use an LPM if a suitable module exists
in the library.

MegaWlizard Plug-In Manager [page 1]

The MegaWizard Plug-ln Manager helps you create or modify design
\ files that contain custom wvariations of megafunctions.

YWhich action do you want to perfarm?
& Create a new custom meagafunction varistion
" Edit an existing custom megafunction variation

 Copy an existing custom megafunction variation

Copyright € 1991-2003 Altera Corporation

Cancell <Elack| Iext » I Finish |

Figure C.22 Choose fo create an LPM instance.

March 13,2007 14:28 vra80334_appc Sheet number 18 Page number 872 black

872 APPENDIX € ¢ TurorRIAL 2—IMPLEMENTING CIRCUITS IN ALTERA DEVICES
MegaWizard Plug-In Manager [page 2a] 1[

Which megafunction waould you like to customize?

Select a megafunction from the list below

=[] Inztalled Plug-lns -
Altera SOPC Builder
= ﬁ Auithrmetic

e ALTACCUMULATE
ALTFP_ADD_SUB
ALTFP_DIV
ALTFP_MULT
ALTMEMMULT
ALTMULT_ACCUM [MaC)
ALTMULT_ADD
ALTSOURT
LPM_ABS
LPH)_SUB
LPM_COMPARE
LPM_COUNTER
LPM_DIVIDE

Which device Family wall you be IC}.clone Il 'l

using?

Which type of output file do pou want to create?
 AHDL

 WHDL

& ‘erlog HOL

What name do you want for the output file? Browse. ..

|D Sukornial2hadderlprimegadd

™ Generate clear box netlist il instead of a default wrapper file
[for uge with supparted EDA synthesis tools only)

[~ Returm to this page for ahather create operation

Mote: To compile a project successfully in the Quartus || software,
wour design files must be in the project directory, in the global user
libraries specified in the Options dialog box [Tools mernu), or a user
library specified in the User Librariez page of the Settings dialog

LPM_MULT box [Assignments mer).
4] PARALLEL_ADD
-8 Gates our curent user library directories are:
=-@ 140

E]--ﬁ Memary Compiler

B Senal Flazh Loader
-] SignalT ap Il Logic Analyzer
=88 Storage LI

Cancel | < Back | Mext > | Firizh |

Figure C.23 Select the LPM and its Verilog specification.

To examine the circuit produced by using the LPM adder, open the Chip Planner
tool as discussed in section C.1.4. Locate in the Chip Planner the part of the circuit that
implements the adder, as indicated in Figure C.30. The logic elements that comprise the
adder are connected together vertically by the carry chain wires. As indicated in the figure,
select one of the logic elements in the adder and double-click on it to examine its contents
in the Resource Property Editor tool. As illustrated in Figure C.31, the logic element is
configured into a mode that produces both a sum output as well as a separate carry output
that is fed to the next stage of the adder.

The adder16_Ipm project can now be closed.

| C.4 DESIGN OF A FINITE STATE MACHINE

This example shows how to implement a sequential circuit using Quartus I1. The presentation
assumes that the reader is familiar with the material in Chapter 8. In section 8.1 we show
a simple Moore-type finite state machine (FSM) that has one input, w, and one output, z.

March 13,2007 14:28 vra80334_appc Sheet number 19 Page number 873 black

C.4 DESIGN OF A FINITE STATE MACHINE

MegaWizard Plug-In Manager - LPM_ADD_SUE [page 3 of] ﬂ

LPM_ADD_SUB
Yersion 6.1 About Documentation

Currenthy selected device Family: Cyelone I1 w

megadd

dataz(15..0

datab[15..0]

Hiow wide should the 'dataa’ and 'datab’ input buses be? |16 | bits

‘hich operating mode do you want for the adderfsubtrackor?

Subtraction anly
Create an ‘add_sub’ input part to allow me ko do both
[1 adds; O subtracts)

Resource Usage
16 Iut

| Cancel || < Back || Mext = || Eirish |

Figure C.24 Choose the adder option and the number of bits.

Whenever w is 1 for two successive clock cycles, z is set to 1. The state diagram for the
FSM is given in Figure 8.3; it is reproduced in Figure C.32. Verilog code that describes
the machine appears in Figure 8.33; it is reproduced in Figure C.33. Create a new project,
simple, in the directory tutorial2\fsm. Create a new Text Editor file and enter the code
shown in Figure C.33. Save the file with the name simple.v.

Select the same Cyclone II device as in previous sections of this tutorial. Before
compiling the code we need to make one change in the settings used by the synthesis
module in Quartus II. Select Assignments > Settings to open the Settings window, and
under Category click on the item Analysis and Synthesis Seftings. Then, click on the
button More Settings to open the window shown in Figure C.34. In the box called Existing
options settings scroll down to the bottom of the list and click on the item State Machine
Processing. Change the value of this option from its default (Auto) to the setting User-
Encoded. This setting instructs the Synthesis module to use the state assignment specified
in the Verilog code in Figure C.33, rather than to choose state codes automatically. Compile
the circuit.

Open the Waveform Editor and import the nodes Resetn, Clock, w, and z. These nodes
are found by setting the Node Finder filter to Pins: all. We also want to see the behavior of
the state variables, which are implemented by means of flip-flops. To find these nodes, set
the Node Finder filter to Registers: post-fitting and click List. The Node Finder displays two

873

March 13,2007 14:28 vra80334_appc Sheet number 20 Page number 874 black

874 APPENDIX € ¢ TurorRIAL 2—IMPLEMENTING CIRCUITS IN ALTERA DEVICES

MegaWizard Plug-In Manager - LPM_ADD_SUE [page 5 of 8] ll

‘,a LPM_ADD_SUB q
version 6.1 About Docurmentation

[1] Parameter
Setkings

Do vou want any optional inputs or outputs?

Input:

dataa[15..0] W Create a carty input

datahb(15.0

Outputs:

Resource Usage
16 Iut

| Cancel ” < Back. || Mext > || Eirish |

Figure C.25 Include carry input and output connections.

nodes, as shown in Figure C.35. Import both of these nodes into the Waveform Editor. Set
the total simulation time to 650 ns and set the grid size to 25 ns. Set Resetn = 0 during the
first 50 ns, and then set Resetn = 1. To enter the waveform for the clock signal, click on the
name of the Clock waveform in the Waveform Editor display. With the signal highlighted,
click on the Overwrite Clock icon in the toolbar (the icon depicts a clock). This causes the
pop-up window in Figure C.36 to appear. Set the clock period to be 50 ns, make sure that
the offset is 0 and the duty cycle is 50 percent, and click OK. The defined clock signal is
now displayed in the Waveform Editor window, as depicted in Figure C.37. Next, draw the
waveform for w as indicated in the figure. To make the changes in w occur shortly after
the positive clock edge, we temporarily changed the grid size in the Waveform Editor to
5 ns. Specifying the waveform for w in this manner is a reasonable choice, because most
signals in a real system are generated by flip-flops that use the same clock signal. Save
the file, under the name simple.vwf. Run the Timing Simulator to get the result shown in
Figure C.38.

The FSM behaves correctly, setting z = 1 in each clock cycle for which w = 1 in the
preceding two clock cycles. Examine the timing delays in the circuit, using the reference
line in the Waveform Editor. Observe that changes in the FSM’s state occur about 2.95 ns
after an active clock edge and that 6.37 ns are needed to change the value of z at its output
pin.

March 13,2007 14:28 vra80334_appc Sheet number 21 Page number 875 black

C.4 DESIGN OF A FINITE STATE MACHINE 875
MegaWizard Plug-In Manager - LPM_ADD_SUB [page & of 8] -- Summary ﬂ

:a LPM_ADD_SUB
Yersion 6.1 Ahout Documentation

Summary

Turn on the files vou wish bo generate, & gray checkmark indicates a fils that is
automatically generated, and a red checkmark indicates an optional file. Click
Finish to generate the selected files, The state of each checkbox is maintained in
subsequent Mega'wizard Plug-In Manager sessions.

datas[15..0
databf15..0

The Megawizard Plug-In Manager creates the selected files in the Following
directary: DiitutorialZ)adder|pmi,

File I [escription

[megadd.v Y ariation file

O megadd.in: AHDL Include file

O megadd.cmp YHOL component declaration file
[megadd.bsf Guartus 1l symbol file

O megadd_inst.v Instantiation termplate file

O megadd bb.v “erilog HOL black-box file

Resource Usage
16 lut

| Cancel || < Back. || Mext = || Finish |

Figure C.26 Files generated by the wizard.

Open the Timing Analyzer summary in the compilation report, which is displayed in
Figure C.39. Row 4 in the table indicates that the maximum frequency, which is often called
Fax, at which the synthesized circuit can operate is 420.17 MHz. This is a useful indicator
of performance. The F,,,, is determined by the longest propagation delay between two
registers (flip-flops). The figure also shows the values of some other timing parameters.
The worst-case flip-flop setup time, #,,, and hold time, #,, are given. Line 1 in Figure
C.39 specifies that the w input can change until up to 0.609 ns after the active clock edge
occurs (at the clock pin), and still meet the flip-flop setup requirement. Line 3 shows that
the worst-case hold time at the w input pin is 0.839 ns after the active clock edge. We
explain in section 10.3.2 how flip-flop timing parameters are determined in a target chip.
The parameter ¢, indicates the time elapsed from an active edge of the clock signal at the
clock pin until an output signal is produced at an output pin. This delay is 6.37 ns for the z
output, which is what we also observed in the waveforms in Figure C.38.

Note that the states of this FSM are implemented using two state variables. The Verilog
code in Figure C.33 specified the present state variables as y[2] and y[1]. However, Quartus
II gave the names y~15 and y~14 to these variables, as we discovered when using the Node

March 13,2007 14:28 vra80334_appc Sheet number 22 Page number 876 black

876 APPENDIX € ¢ TurorRIAL 2—IMPLEMENTING CIRCUITS IN ALTERA DEVICES

module megadd (dataa, datab, cin, result, cout);
input [15:0] dataa;
input [15:0] datab;
input cin;
output [15:0] result;
output cout;
wire sub wire0;
wire [15:0] sub wirel;
wire cout = sub wire0;
wire [15:0] result = sub wirel[15:0];

lpm_add_sub lpm_add_sub component (
.dataa (dataa),
.datab (datab),
.cin (cin),
.cout (sub wire0),
-result (sub wirel));
defparam
lpm_add_sub_component.lpm width = 16,
Ipm_add_sub_component.lpm direction = ”ADD?”,
Ipm_add_sub_component.lpm type = "LPM_ADD_SUB”,
Ipm_add_sub_component.lpm hint = ”ONE_INPUT_IS_CONSTANT=NO”;

endmodule

Figure C.27 Verilog code for the megadd module.

module adder16_lpm (carryin, X, Y, S, carryout);
input carryin;
input [15:0] X, Y;
output [15:0] S;
output carryout;

megadd adder circuit (.cin(carryin), .dataa(X), .datab(Y),

result(S), .cout(carryout));
endmodule

Figure C.28 Verilog code that instantiates the LPM adder module.

March 13,2007 14:28 vra80334_appc Sheet number 23 Page number 877 black

C.4 DESIGN OF A FINITE STATE MACHINE 877

8 Compilation Report - Timing Analyzer Summary =]
Required | Actual From | To Failed
; Type Stack |Time |Time |7 [T |Ciock [Clock [Paths
1| ‘worst-caze tpd Mg Mone 13.283nz|Y1] |S013]]- - 1]
- 2| Tatal number of falled paths 0
Figure C.29 The worst-case delay for the adder16_Ipm circuit.
4% Chip Planner _10] |
Device: EF2C30FETZCE Task: IFIoorpIan Editing [Aesignn 'l !I
by &
O L
#h 3 |
K i
il |
5 B i
=1 |
£ |
& |
85 [
i i
| =
H o4

Figure C.30 Examining the 16-bit adder in the Chip Planner.

Finder. Quartus II uses the names of all inputs and outputs as given in the Verilog code, but
it may generate different names for internal connections.

Two or more binary signals displayed in the Waveform Editor can be combined into a
“group” (corresponding to a vector in Verilog terminology) of signals that can be referred to
by a single name. Open the simple.vwffile and select the y~15 and y~14 simultaneously, so
that their waveforms are highlighted (make sure that y~15 is listed above y~14, as shown
in Figure C.37). Select Edit > Grouping > Group to reach the pop-up box in Figure C.40.
Type y as the group name, choose binary as the radix, and click OK. This causes y to be
used, instead of y~15 and y~14, in the file simple.vwf. Perform timing simulation to get
the result in Figure C.40. Now, the FSM states are represented by the values of the vector
y that correspond to our Verilog code.

March 13,2007 14:28 vra80334_appc Sheet number 24 Page number 878 black

878 APPENDIX € ¢ TUTORIAL 2—IMPLEMENTING CIRCUITS IN ALTERA DEVICES

", Resource Property Editor !E

“ Mode name: || LCCOME =16 _Y¥3Z2_No --Iadderlﬁ_lpmImegadd:adder_circuitlj

0
V
v
€
% Ty
e

Figure C.31 One stage of the 16-bit adder.

w=1

Figure C.32 State diagram of a Moore-type FSM.

March 13,2007 14:28 vra80334_appc Sheet number 25 Page number 879 black

C.5 CoONCLUDING REMARKS 879

module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1]y, Y;
parameter [2:1] A =2b00, B =2Db01, C =2bl0;

// Define the next state combinational circuit
always Q(w or y)
case (y)

A:if(w) Y=B

else Y=A

B: if(w) Y=C

else Y =A;
C:if(w) Y=C

else Y=A
default: Y =2

endcase

// Define the sequential block

always @(negedge Resetn or posedge Clock)
if (Resetn ==0) y <= A;
else y<=Y;

// Define output
assign z = (y == C);

endmodule

Figure C.33 Verilog code for the FSM in Figure C.32.

C.5 CoNCLUDING REMARKS

Having completed this and the preceding tutorial, the reader is familiar with many of the
most important features of Quartus II. In the next tutorial we will show how the user can
manipulate which pins on the target chip are used for a circuit, and how FPGA programming
is done with Quartus II.

March 13, 2007 14:28

880

vra80334_appc

APPEND

More Analysis & Synthesis Settings

IX C .

Sheet number 26 Page number 880

black

|

Specify the zettings for the logic options in your project. Assignments made to an individual node or
entity in the Asgignment Editor will override the option gettings in thiz dialog box.

— Dption

Mame:
Setting:

Description:

State b achine Processing

Reset |
Reset Al |

Specifies the processing style used ta compile a state machine. You
can uge your own 'User-Encoded’ style, or select 'One-Hot', Minimal
Bits', or ‘Aute’ (Compiler-selected) encoding.

E xisting option sethings:

MHame: | Setting: | :I

Mumber of Removed Regigters Repor... 100

Optimization Technique - Cpclone |1 Balanced

PowerPlay Power O ptimization Marmal compilation

Power-Up Don't Care On

Remowe Duplicate Registers On

Remove Redundant Logic Cells O

Restructure Multiplexers Auto

Retiming Meta-Stability Register Sequ... 2

Safe State Machine Off

Shaow Pararmeter Settings Tablezin 5. On

State Machine Processing Uszer-Encoded

Suppresz Register Optimization Relat... OFff =
QK I Cancel |

i

TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

Figure C.34

Setting the state machine processing to User-Encoded.

x
Marmed: IE j Filker: IHegisters: pozt-fitting ﬂ Customize. .. I List | (]9 I
Lk, in: jJ ¥ Include subentities Stop | Cancel I
Modes Found: Selected Modes:

Mame I Azsighments I Type > | Mame I Azsighments I Type
4G =14 Unagzigned Regigtered > | ¥ |zimplely~14 Unaszzigned Registered
L Jlaal Unassigned Registered G lsimplely™15 Unassigned Registered
<
« | 3 2 Y Y | 2
4

Figure C.35

Nodes that represent the state variables.

March 13, 2007 14:28

[Bampieror JRI=TEY
Master Time Bar: 0ps j_'l Puointer: | 0 ps Interval; | 0ps Start; | End: |

vra80334_appc Sheet number 27 Page number 881 black

C.5 CoONCLUDING REMARKS

x

— Time range
Start time: IIJ Ips ﬂ
End time: [B50.0 Ine =l
r— Base waveform on
€ Clock seftings:
B

' Time period;

Penod: IED.D I g r I
Offzet: ID.D I ris hd I
Duty cycle [%]: IED _lj

Ok I Cancel |

Figure C.36 Creating the Clock waveform.

W pg 1000 ng 2000 ng 3000 ng 400.0 ne 8000 ng BO0.0 ng |
Mame algue at 0ps i i i i i i
p= |

=0 Fesetn| AD |
-1 [T Y I s o s e s e O O I
(1 W A0 L L
L 3 z B
LE L ™15 Al 1]
LE 3 ¥14 Al 1
Kl I

Figure C.37

Input test vectors.

881

March 13, 2007 14:28

882

vra80334_appc

APPENDIX C

=h) Simulation Report

Sheet number 28 Page number 882 black

TUTORIAL 2 —IMPLEMENTING CIRCUITS IN ALTERA DEVICES

nulation Waveforms

Simulation Waveforms

EhE Legal Motice Simulation made: Timing
S Flow Summary
HER Flow Settings =l
=1-&H 3 Simulator
§ aster Time Bar: ps 4| | Painter: ps Interval: ps tart: nd:
SR Summary 14 Time B] Faoi 1} | l:| O 5 End
g Setti
é% stinds | A ps 1000ns 2000ns 3000ns 4000ns G000ns 6000 ns|
%H} Simulation 4 Mame Walue at i i i i i i
& simulation ¢ | 2 Ops E pe
SHEE Ml Usage | | @) .
"i;') Messages =0 Fesetn| A0
=1 Clock | &0
H w2 " Al .
" £ 3 z Al
-+ |4 w15 | AD 1 1
— |5 w14 Al
VTR TR | 4 Y I—
Figure C.38 Timing simulation waveforms.
ing Analyzer Summary — |EI|5|
E[:I Assembler l g A
%@ Tirning Analyzer Tupe Slack ?iﬁwqeumd .?;:L;d B |Ta
- as 1| ‘worst-case tsu N4 | Mone -0.609 ns w w14
B Clock Settings 2| worst-caze tco M |Maone B370ns v18 |z
-EHEF Clock Setup: 'C 3| wiorst-case th M4 |Mone 0839 ns W w14
5% fsu 4| Clock Setup: "Clock’ Mt Mone Restricted to 42017 MHz [period = 2380 nz | |»™15 |w™14
gg E;D 5| Total number of falled paths
i) Messages
] <| | 5

Figure C.39

Summary of the timing analysis for the FSM circuit.

Group name: I_'r'

[Eray |

I Dizplay gray code count as binary count

o]

|

Fadiz:

Canecel |

Figure C.40 Grouping of signals.

March 13, 2007 14:28

vra80334_appc

Sheet number 29 Page number 883

black

C.5 CoONCLUDING REMARKS

_ioi
% Sirmulation Repaort Simulation Waveforms
% Legal Motice Simulation mode: Timing
&R Flow Summary
-5 Flow Settings Master Time 0 Pointer ! . !
pz | *|Pointer:| Opz Interval:| Ops Start End:
=-&F 2 Simulator m JJ | |
S srmary | A value ot | PP 200,0 s 4000 s B000ng
@% S,atting_s s Marme s 0ps
@H}' Sirnulation Y |
& simulation C &, 0 Resetn| HO |||
gBwee |2 e wo AAAAAANANAMAMANET
A E5530E5
E [w HD
dh
A P 3 z HO
- | v B 00 00 0500 % T0500 3 00 03 07 3 00
KN S 1 | Bl KT [
Figure C.41 Waveform displayed as a vector y.

883

March 13,2007 14:28 vra80334_appc Sheet number 30 Page number 884 black

