BddCut: Towards Scalable Symbolic Cut Enumeration

Andrew C. Ling

Department Electrical and
Computer Engineering
University of Toronto
Toronto, Canada
e-mail: aling@eecg.toronto.edu

Abstract— While the covering algorithm has been perfected
recently by the iterative approaches, such as DAOmap and IMap,
its application has been limited to technology mapping. The main
factor preventing the covering problem’s migration to other logic
transformations, such as elimination and resynthesis region iden-
tification found in SIS and FBDD, is the exponential number of
alternative cuts that have to be evaluated. Traditional methods
of cut generation do not scale beyond a cut size of 6. In this pa-
per, a symbolic method that can enumerate all cuts is proposed
without any pruning, up to a cut size of 10. We show that it can
outperform traditional methods by an order of magnitude and, as
a result, scales to 100K gate benchmarks. As a practical driver,
the covering problem applied to elimination is shown where it can
not only produce competitive area, but also provide more than
6x average runtime reduction of the total runtime in FBDD, a
BDD based logic synthesis tool with a reported order of magni-
tude faster runtime than SIS and commercial tools with negligible
impact on area.

I. INTRODUCTION

In CAD, the network covering problem has been success-
fully leveraged by technology mapping for K-LUTs to produce
extremely good solutions in terms of area and delay [1, 2]. The
covering problem attempts to find a set of cones to cover a net-
work such that a given optimization goal is satisfied. For ex-
ample, when applied to K-LUT technology mapping, the cov-
ering problem attempts to minimize the number of cones in its
solution to reduce area of the LUT network. This process is
illustrated in Fig. 1.

Reconvergent
one

(a) (b)

Fig. 1. Treating technology mapping as a covering problem. (a) Initial
network. (b) Possible covering. (c) Final mapping to LUTs.

One important step during the covering problem is the gen-

Jianwen Zhu

Department Electrical and
Computer Engineering
University of Toronto
Toronto, Canada
e-mail: jzhu@eecg.toronto.edu

Stephen D. Brown

Altera Corporation
Toronto Technology Centre
Toronto, Canada
e-mail: sbrown@altera.com

eration of all cuts in the network that are used to derive a set
of cones to cover the network. The cut generation step is the
primary bottleneck of the covering problem and has limited the
application of the covering problem framework to technology
mapping for K-LUTs with small values of K (4 or 5), even
though many other problems in CAD can be represented as
a covering problem. One such problem is elimination [3, 4],
which is found in gate-level synthesis.

Elimination [3, 4] is one of the first area optimizations in the
synthesis flow that collapses redundant nodes into their transi-
tive fanouts. Nodes are considered redundant if their removal
through resynthesis operations does not change the functional-
ity of the circuit. Elimination also defines regions for succeed-
ing logic optimizations to be applied on since collapsed nodes
form large resynthesis regions. Current methods for elimina-
tion rely on trial-and-error to define resynthesis regions and,
hence, will not scale as circuits reach and surpass the 100K
gate mark. In particular, in a binary decision diagram (BDD)
based synthesis engine called FBDD, where logic transforma-
tions were sped up significantly [4], elimination emerged as the
primary bottleneck for scalability and has been reported to take
up to 70% of the runtime [4]. Being able to solve elimination
as a covering problem would treat elimination as a global op-
timization problem rather than a greedy based heuristic and,
more importantly, dramatically reduce the runtime of the elim-
ination step. However, since each elimination region is rela-
tively large (8 or more inputs), migrating the covering prob-
lem to elimination is not feasible due to the exponentially large
number of cuts that need to be generated and stored. Thus, for
applications that require large values of K, traditional methods

for cut generation cannot be used.

As a solution, we propose a novel scalable symbolic cut
generation method using BDDs that, unlike previous methods,
scales to cut sizes of up to 10 without the need of pruning. The
primary benefits of our symbolic approach are summarized as
follows:

e Subcuts are shared between larger cuts and do not need to be duplicated
in different cut sets. This dramatically reduces time to produce cuts and
the storage requirements to hold cut sets.

e Subcut sharing allows cuts to be evaluated simultaneously. This in-
creases efficiency by removing the need to evaluate all cuts indepen-
dently.

e Redundant cuts are automatically removed from the cut set which further
reduces the complexity to generate cuts.

We will show that our symbolic cut generation method is

more than 20x faster than traditional cut generation techniques.

Also, we will show that our approach scales better than current

cut generation methods found in ABC, the fastest technology
mapper reported recently. As a result, we can generate large
cut sizes sizes up to 10 and can successfully apply the cover-
ing problem to elimination in FBDD: a BDD based synthesis
engine that has been shown to produce an order of magnitude
speedup over SIS [4] with little impact to area. As a conse-
quence of replacing elimination in FBDD with our cover-based
elimination algorithm, we get an average 6x speedup in total
runtime with no penalty to area when technology mapped to
standard cells or 4-LUTs.

The rest of the paper is organized as follows: section II
discusses the cut generation in more detail along with previ-
ous work; section III describes our symbolic cut generation
method; section IV describes our cover-based elimination; sec-
tion V shows the results of our approach; and section VI con-
cludes with a brief summary of our work and future directions.

II. BACKGROUND AND PREVIOUS WORK

A. Terminology

A circuit, as a DAG G = (V, E), represents functions, pri-
mary inputs and outputs (PIs, POs) as nodes, u € G(V'). Each
directed edge, e € G(F), with head, v = head(e), and tail
v = tail(e), represents a signal output from node v and enter-
ing node u. A cone, C,, rooted at node v is a subgraph in a
circuit where all nodes, u, in C, have a path from « to v. Addi-
tionally, if C,, is found in the final cover of a mapping solution,
the root node v is known to be visible. For example, in Fig. 1b,
the bottom right cover forms a cone and the OR-gate is the vis-
ible root node of the cone. The fanins of a cone (node) are
the set of nodes feeding the cone (node) and fanouts of a cone
(node) are the nodes fed by the cone (node). PIs are nodes
with no fanins and POs are nodes with no fanouts. A fanout
free cone (FFC), C,, is a cone that has a fanout only at the root
node v, such as the cones in Fig. 1b. A maximum FFC (MFFC)
of node v is the largest possible FFC rooted at v. The cut of a
cone C, is the set of cone fanin nodes, v € fanin(C,), and
the cut size, || fanin(C,)||, of a cone is known as the number
of distinct nodes feeding the cone. For example, looking at the
bottom right cone in Fig. 1b, the nodes feeding the NOT-gate
and AND-gate are the cone fanins and also form the cut for the
cone with a cut size of 2. A cone is derived from a cut by tak-
ing the subgraph rooted at a single node whose fanin nodes are
identical to the cut nodes. A cone (cut) is thought as K -feasible
if it has K or less distinct fanin nodes (cut nodes). Traversing
a graph in topological order implies a node’s fanins will be
visited before itself.

B. Cut Generation

One of the first works to use cut generation was presented
in [5]. Here, the authors define the set relation to generate all
K -feasible cuts shown in Equation 1. For a detailed explana-
tion of Equation 1, please refer to [5]. This contrasts with in-
cremental cut generation methods based on network flow [6, 7]
and has proven to be much faster.

D(v) = {cu *cw | cu € {{u} UP(u)|u € fanin(v)}, (1)
cw € {w}Ud(w)|w € fanin(v)},u # w, ||cy * cu|| < K}

In Equation 1, ®(v) represents the cut set for node v; {u}
represent the trivial cut (contains v only); c,, represents a cut

from the cut set {{u} U ®(u)}; and ®(u) represents the cut set
for fanin node u. Traditional methods generate cuts by visiting
each node in topological order from PIs to POs and merging
cut sets as defined by Equation 1. Two cut sets are merged by
performing a concatenation (c,, * ¢,,) of all cuts found in each
fanin cut set, and removing any newly formed cuts that are no
longer K -feasible (||, * ¢y|| < K). Generating cuts this way
is not scalable to large cut sizes () > 6) and for circuits con-
taining a large degree of reconvergent paths. For example, in
IMap [2], which utilizes a popular technology mapping frame-
work, cut generation takes more than 99% of the runtime for
K = 7. In [8], the authors address this problem by selectively
pruning cuts that they deem to be wasteful. However, for large
cut sizes, pruning tends to remove too many cuts that may be
valuable in the final mapping solution.

VY,

62:V1V2V4

Fig. 2. Example of two cuts in a netlist where co dominates c7.

A side effect of Equation 1 is the generation of redundant
cuts. A cut, cg, is redundant if it completely contains all the
input nodes of another cut, c;, in which case cs is known as a
dominator cut. Fig. 2 illustrates this relation. These cuts can
be removed because they will not affect the final quality of a
mapping solution. In ABC [9], the authors address this prob-
lem by assigning all cuts a signature such that dominator cuts
can be quickly identified and removed. This, along with sev-
eral other optimization, results in an order of magnitude run-
time reduction over previous techniques. As a consequence,
ABC is currently the fastest LUT technology mapper available
with competitive depth and area results. However, even with
its clever heuristics, ABC cut generation time slows down sig-
nificantly for cuts sizes of 8 or larger. Although this is not a
problem for commercial FPGAs that restrict their LUT size to
6 or less [10], migrating the covering problem to elimination
requires a more scalable cut generation solution.

C. FBDD

As stated previously, the primary motivation of solving elim-
ination as a covering problem is to remove the elimination bot-
tleneck experienced by FBDD [4]. FBDD is BDD based syn-
thesis engine [11] which has proven to be an order of mag-
nitude faster than SIS with competitive area results. Remov-
ing the elimination bottleneck will further increase the speedup
experienced by FBDD. FBDD currently adopts an elimination
scheme similar to SIS. In FBDD elimination, regions are grown
from a given seed node where its fanins are successively col-
lapsed into the node in a greedy fashion. If the new logic rep-
resentation simplifies after the collapse operation, the collapse
is committed into the netlist, otherwise the collapse is undone.
This greedy approach to elimination in FBDD is very slow and
as a result, elimination in FBDD takes up more than 70% of the

runtime. As we show later, we solve this problem by treating
elimination as a covering problem which results in a significant
speedup in FBDD with no sacrifice to area.

IITI. SCALABLE SYMBOLIC CUT GENERATION

Before we can treat elimination in FBDD as a covering prob-
lem, a scalable cut generation approach is required. Traditional
methods for cut generation cannot be used as they do not scale
to cut sizes of 6 or more without pruning [8]. We want to avoid
pruning since this may remove valuable cuts, particularly when
K becomes large (8 to 10). As described in Equation 1, cuts
are generated by concatenating subcuts in every possible way.
This is extremely inefficient since subcuts are duplicated every
time they are used to generate a new cut. Our symbolic ap-
proach solves this problem by sharing subcuts between larger
cuts. Referring back to our original cut expression in Equa-
tion 1, we can rewrite our equation in symbolic form.

fv = Huefanin(v) (u + fu) 2

Equation 2 is very similar to the set relation shown in Equa-
tion 1; however, in contrast with previous approaches, we
maintain cut set representations as a Boolean function, f,. In
our approach, we map a unique Boolean variable to each node
v found in our netlist and represent cuts by the conjunction of
the fanin node variables. Thus, our cut set f,, will be a Boolean
expression in SOP form where each cube will represent a cut.
To join cut sets, we use the II operation that can be thought
as the logical AND of all clauses (u + f,). Here, f, is the
Boolean function cut set representation for fanin node w, and
u is the trivial cut. For example, consider Fig. 3a. Here, each

[, =bc+deg+cde+beg

u J,=bct+deg+cde+beg

(a) Boolean expressions (b) BDD representation

Fig. 3. Symbolic representation of cut sets.

node is represented by a Boolean variable. Also, notice that the
cut set f, is the conjunction between the clauses (¢ + f.) and
(b+ fv).

A problem with using cubes to represent our cut set is that it
suffers from similar scalability problems as traditional cut gen-
eration methods since each cut needs to be stored separately
as a cube and no subcut sharing occurs. A solution to this is
to represent our cut set as a reduced order binary decision di-
agram, which we will simply refer as a BDD for convenience
(for a detailed description of the BDD data structure, please re-
fer to [12, 13]). BDDs are DAGs which represent a Boolean
function where each node in the DAG represents one variable.
Node edges represent positive (1) or negative (0) assignments
to the variable where each edge points to the associated co-
factor. For example, referring back to Fig. 3a, the BDD used

to represent the cut set f, is shown in Fig. 3b. Here, positive
edges are represented by a solid line and negative edges are
represented by a dotted line.

Notice that representing cut sets as a BDD allows subcuts to
be shared as cofactors. Thus, subcuts can be reused in express-
ing larger cuts. For example, consider Fig. 4. Notice that in the

e <

¢ ~de - c,=deg @

(2) (b)

Fig. 4. BDD representation of cuts c1, c2, and c3.

BDD representation, the subcut ¢; = de is a positive cofactor
for variable c and g, and is shared by two larger cuts c3 = cde
and ¢y = deg. Thus, instead of requiring 8 BDD nodes to store
cuts ¢; to c3, only 4 BDD nodes are required.

Another benefit of using BDDs is that redundant cuts, such
as dominator cuts, are automatically removed. For example,
consider Fig. 5a containing the cut ¢; and the dominator cut ca.
As aBDD, c¢; and cg are shown in Fig. 5b. Since BDD node cis
now redundant, it can be removed as in Fig. 5S¢ which removes
the dominator cut c3. This example illustrates how redundant
cuts are automatically removed in BDD representations. This,
along with the subcut sharing, substantially reduces the runtime
and storage requirements of cut generation.

d (o

c,=de

@ \
AN \\ AN

(b) (©

\
\
\

Fig. 5. BDD representation of cuts ¢1 and c3.

A. Symbolic Cut Generation Algorithm

Fig. 6 illustrates our cut generation algorithm. First, the
netlist is sorted in topological order (line 1). Next, the cut set
function, f,, for each node in the graph is initialized to a con-
stant 1 (empties the cut set) and is assigned a unique variable
for cut representation (line 2-5). Finally, for each node, v, its
cut set is formed following Equation 2 (line 7-10). When form-
ing the cut set for node v, each fanin node, u = fanin(v), is
visited (line 7) and a temporary cut set is formed by the logical
OR of the trivial cut u and its cut set fy,, (f» = (u+ f.), where
fz» u, and f,, are represented as BDDs). Next, the temporary
cut set is conjoined to the cut set of v using the logical AND op-
eration (line 9, f, = f, - fz.). This merges the cut sets of all the

fanin nodes to form new cuts. When forming larger cuts with
the logical AND operation, it is possible to form cuts larger
than K, thus BDDANDPRUNE is also responsible for pruning
cuts that are not K -feasible.

CutGeneration()

I G« SORT()
2 foreach v € G

3 fo—1

4 by < CREATENEWBDDVARIABLE()
5 end foreach

6 foreach v € G

7 foreach u € fanin(v)

8 fo < BDDOR(bu, fu)

9 fvo < BDDANDPRUNE(fy, fz, K)
0 end foreach

1 end foreach

—_—

Fig. 6. High-level overview of symbolic cut generation algorithm.

B. Ensuring K -Feasibility and Finding Minimum Cost Cut

When conjoining two cut sets together using the logical
AND operation, we must ensure that all cuts remaining in the
new cut set are K -feasible. We achieve this by modifying the
BDD AND operation to remove cubes with more than K liter-
als. This recursive algorithm is illustrated in Fig. 7. Notice that

-

fz) BDDANDPRUNE(fz, fy, K, n)
if ISCONSTANT(f,) AND ISCONSTANT(fy)
return (f, ANDf,)
b < GETTOPVAR(fz, fy)
fny, < BDDANDPRUNE(f; (b = 0), f, (b = 0), K, n)
ifn <K
fpy, — BDDANDPRUNE(fz (b =1),fy(b=1),K,n+1)
else
Jpy <0
return (CREATEBDD(b, fny, fpy))

O 002 W AW —

Fig. 7. High-level overview of BDD AND operation with pruning for K.

the only difference in this algorithm compared to the recursive
definition of a BDD AND operation is the check in line 5. It is
recommended that those not experienced with BDD operations
please refer to [12, 13]. The algorithm starts off by checking
the trivial case where both BDD cut sets are constant functions
(line 1). If not the trivial case, the top most variable of both cut
sets is retrieved (line 3). This is followed by recursive calls to
find the negative and positive cofactors of the new cut set f,
(line 4-6). When constructing the positive cofactor, we make
sure that the number of positive edges seen is less than or equal
to K (line 5-8). If not, we prune out all cubes that form due to
that branch in the BDD. This works since our cut sets, f, and
fy» only contain positive literals and n is initialized to zero in
the first call to BDDANDPRUNE. Thus, we can assume n is
equivalent to the size of the cube in the current branch of the
BDD. Finally, we join the cofactors and form a new cut set and
return (line 9).

Fig. 8 is a simplified algorithm to find the minimum cost cut
from our BDD cut set. In MINCUTCOSTRECUR, the minimum
cost cut, Cpin, and its cost, cost, from the cut set f,, is returned.
Notice that ¢,y is returned as a cube where each positive lit-
eral in the cube represents a fanin node to the cut. Lines 1-4 are
the trivial cases when a trivial cut (line 1) or invalid cut (line 3)
is encountered. If the cut set is not an empty set, the algorithm

< Cmin, cost > MinCutCostRecur(f)

1 iffo=1
2 return < 1,0 >

3 elseif f, =0

4 return < ¢, ¢ >

5 if VISITED(fy)

6 return < f;, cost >

7 b« TOPVAR(fy)

8 < CNimjin, oSty >«— MINCUTCOSTRECUR(fy (b = 0))

9 < CPmin, costp >«— MINCUTCOSTRECUR(fy(b = 1))
10 costp < costp + GETNODECOST(b)
11 if costn, < costp

12 return < cn,,in, COStn >
13 else

14 fo < BDDAND(CPmin, b)
15 return < f;,cost, >

Fig. 8. Find the minimum cost cut in a given cut set.

checks if this cut set has been visited already, and if so, re-
turns the cached information (line 6-7). This step prevents the
need to explicitly enumerate all cuts and dramatically reduces
the runtime. If not visited, the algorithm recursively finds the
minimum cost cut for the positive and negative cofactors (line
8-10) and returns the cube representing the minimum cost cut
(although not shown, the algorithm should also check if the cut
is a valid cut).

IV. COVERING PROBLEM APPLIED TO ELIMINATION

Applying the covering problem to elimination allows us to
treat elimination as a global optimization problem and can dra-
matically reduce the runtime of elimination in BDD based syn-
thesis engines. As illustrated in Fig. 1, the covering problem
attempts to cover a given graph with a set of cones such that
the covering minimizes a cost metric. A common framework
to solve the covering problem is described in [2] and is not
described here. When applied to elimination, each cover is col-
lapsed into a single node to remove any redundancies. Since
each cover is fairly large (up to 10 inputs), without our scal-
able cut generation approach, applying the covering problem
to elimination would not be practical.

V. RESULTS
TABLE I
DETAILED COMPARISON OF BDDCUT CUT GENERATION TIME AGAINST
ABC.
K =8 (sec) K=9 (sec) K=10 (sec)

Circuit BddCut | ABC | BddCut | ABC | BddCut ABC
C6288 2.5 14.5 9.9 150.1 41.9 1758.4
des 9.1 10.7 74.7 105.2 828.4 1126.5
i10 2.8 6.1 11.4 57.2 50.8 581.1
b20 42.0 73.5 200.3 889.9 895.6 n/a
b21 44.0 80.3 205.2 942.8 920.2 n/a
b22_1 41.2 84.3 180.5 924.3 766.6 n/a
$15850.1 1.0 7.6 4.1 16.6 17.9 192.7
s38417 4.3 6.2 14.2 58.1 48.0 536.8
s4863 1.5 5.0 6.5 50.7 30.8 555.6
56669 1.2 3.5 5.9 32.6 31.6 295.4
Ratio

Geomean 2.5x 4.9x 10x

We evaluate the proposed method in two aspects. Since Bd-

dCut can be plugged into any iterative technology mapper to
generate cuts and achieve exactly the same area and delay, our
first evaluation focuses on its scalability against two represen-
tative, state-of-the-art mappers: IMap, one of the earliest map-
pers to use an iterative strategy; and ABC, the most recently
reported iterative mapper that employs a scalable cut genera-
tion algorithm. Our second evaluation attempts to measure the
benefits of the proposed method under the context of a com-
plete logic synthesis flow. To this end, we embed BddCut as a
replacement of the elimination procedure in FBDD, and eval-
uate its impact on runtime and area. All of our experiments
were run on a Pentium D 3.2 GHz machine with 2GB of RAM.
We used the Somenzi’s CUDD BDD package [15] and applied
our algorithms to the MCNC [16] and IWLS [17] benchmark
(includes ISCAS89, ITC, and several large circuits) suite.

A. Cut Generation

To investigate our symbolic approach to cut generation, we
compare the cut generation time of BddCut against IMap’s [2]
and ABC’s [9] cut generation time. Note that all technology
mappers were set to generate all possible cuts (i.e. no prun-
ing) and there was no sacrifice to solution quality, hence final
mapping results are omitted. Table I shows detailed results for
select circuits, followed by Table II and III with summarized
results for the entire ITC and ISCAS89 benchmark suite. In
cases that the technology mapper ran out of memory, the cir-
cuit time is marked as n/a.

TABLE I
Bjﬁgﬁt CUT GENERATION TIMES. IMAP COULD NOT
BE RUN FOR K > 8.

AVERAGE RATIO OF

Benchmark | K=6 K=7
ITC 27.8x | 46.5x
ISCAS89 12.2x | 26.5x
TABLE IIT
ABC
AVERAGE RATIO OF BddCut CUT GENERATION TIMES.
Benchmark K=6 K=7 K=8 K=9 | K=10
ITC 0.512x | 1.07x | 1.77x | 4.25x 11.2x
ISCAS89 0.781 1.08x | 1.59x | 2.39x | 4.87x

The results in the previous table clearly indicate that due to
subcut sharing and redundant cut removal, our symbolic ap-
proach scales better than traditional techniques where IMap
is more than an order of magnitude slower. When compared
against ABC, our technique scales much better where our av-
erage speedup improves as K gets larger. Also, for K=10, be-
cause ABC does not share any subcuts, it runs out of memory
for a few of the larger benchmark circuits. Fortunately, ABC
supports cut dropping which has proven to reduce the memory
usage by several fold, but, from our experience, cut dropping
increases the cut computation time so we did not turn on this
feature. For example, with cut dropping enabled, ABC took
more than 12 hours to generate 10-input cuts for circuit b20,
whereas BddCut takes less than 15 minutes.

Although ABC outperforms BddCut for small cut sizes, the
longest 6-input cut generation time in BddCut was 2.8 sec-
onds. For small cut sizes, the overhead in storing and gener-
ating BDDs is not amortized when generating cut sets symbol-

ically, thus ABC is still the better approach for smaller values
of K. The exception to this trend occurs for circuits with a high
degree of reconvergence such as for circuit C6288 (C6288 is
a multiplier). For these circuits, our relative speedup is much
larger for all values of K because reconvergent paths dramat-
ically increase the number of cut duplications in conventional
cut generation methods.

One concern one could raise with our symbolic approach is
the effect of BDD representation of cuts on the cache. Since
the CUDD package represents BDDs as a set of pointers, the
nodes in each BDD may potentially be scattered throughout
memory. Thus, any BDD traversal would lead to cache thrash-
ing, which would dramatically hurt the performance of our al-
gorithm. However, CUDD allocates BDD nodes from a con-
tinuous memory pool leading to BDDs that exhibit good spatial
locality. Our competitive results support this claim and indicate
that good cache behaviour is maintained with CUDD.

B. Elimination
B.1 Area and Runtime Impact

After ensuring our symbolic cut generation approach suited our
needs for elimination, we evaluated our elimination scheme
against greedy based elimination schemes. To compare the two
approaches, we replaced the folded elimination step in FBDD
with our covering-based elimination algorithm and compared
both the area and runtime of the original FBDD flow against
our new flow. As mentioned in section C, logic folding has
a huge impact on runtime where it has been shown to re-
duce the number of elimination operations by 60% on aver-
age. Thus, comparing against the folded version of elimina-
tion has much more value. We also compare against SIS for
a common reference point. For ease of readability, we will
refer to our flow which uses covering-based elimination as
FBDD,.,. Starting with unoptimized benchmark circuits,
we optimized the circuits with F BDD,,.,,, FBDD, and SIS.
To compare their area results, we technology mapped our opti-
mized circuits to two technologies: the SIS standard cell library
(map) [3] and 4-LUTs using the technology mapping algorithm
described in [2]. When optimizing the circuits in SIS, we used
script.rugged [3]. Table IV illustrates detailed results for a
few benchmark circuits. Column Circuit lists the circuit name,
column Time lists the total runtime in seconds, column Std Cell
lists the standard cell area when mapped to SIS’ default stan-
dard cell library, and column 4-LUT lists the 4-LUT count.
Note a few circuits caused SIS to run out of memory and are
marked as n/a. The final row lists the geometric mean of the
ratio when compared against F'BD D¢, .

For the circuits shown in Table IV, our new flow is signifi-
cantly faster than the original FBDD with an average speedup
of over 5x and an order of magnitude speedup over SIS. The
results also show that this speedup comes with no area penalty.

We also explored the effect of the maximum cut size used in
our elimination algorithm on runtime and area where we varied
the cut size from 4 to 10. This is shown in Table V where we
applied our new flow to the entire ITC benchmarks and take
the geometric mean ratio of the FBDD result over F BD D,y -
Column K lists the cut size used in FBDD,.,, when gener-
ating resynthesis regions, column 7ime is the time ratio, col-
umn Std Cell is the final standard cell area ratio, and column 4-

TABLE IV
DETAILED COMPARISON OF AREA AND RUNTIME OF F'BD D ey AGAINST FBDD AND SIS FOR K = 8.

Time (sec) Std Cell Area 4-LUT Area
Circuit FBDDnew FBDD SIS | FBDDpew FBDD SIS | FBDDpew FBDD SIS
538417 1.9 72 58.0 15992 15711 18617 3560 3559 4052
s38584 3.0 13.7 3927.3 17388 17783 16846 4289 4152 4174
$35932 39 4.1 n/a 18630 17806 n/a 3264 3360 n/a
515850 0.8 9.1 68.8 5707 5605 5735 1282 1270 1329
b20 5.5 44.8 154.5 20280 20002 20776 4514 4324 4773
0221 6.2 384 2024 26402 29725 25265 5788 6505 5664
bl7 8.9 102.8 583.1 44355 41115 46701 10722 9896 11574
systemcdes 3.1 113 123.1 5582 5683 5276 1152 1207 1143
vga-lcd 389 585.2 n/a 18435 178033 n/a 40680 40676 n/a
wb_conmax 18.6 1042 13135 76719 82514 77329 19135 19479 19726
Ratio Geomean 5.7x 70x 1.00 1.01 1.00 1.03
LUT is the final 4-LUT area ratio. Each ratio column is given REFERENCES

a benchmark heading indicating the benchmark suite used. As

TABLE V
COMPARISON OF AREA AND RUNTIME OF FBDD AGAINST F'BD Dy ew
FOR VARIOUS VALUES OF K ON THE ITC BENCHMARKS.

K Time Std Cell | 4-LUT
4 12.4x 0.978 1.001
6 8.76x 1.00 1.00
8 6.16x 0.995 1.00
10 | 2.55x 1.02 0.991

Table V shows, it appears that using a cut size of 4 or 6 has
a substantial speedup of more than 10x in many cases; how-
ever, this comes with an area penalty, particularly in the IWLS
benchmarks. This implies that the elimination regions created
with these cut sizes are too small and does not capture large
enough resynthesis regions in a single cone. In contrast, a cut
size of 8 still maintains a significant average speedup of more
than 6x for all benchmarks with negligible impact on the final
area when compared to the original FBDD.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a scalable symbolic ap-
proach to cut generation using BDDs. We have shown that
using BDDs to generate and store cut sets for /{-LUT tech-
nology mappers has a significant speedup in terms of runtime
when compared against current methods and thus is scalable
to large cut sizes. As a result, we have been able to apply the
covering problem to elimination and we have shown that our
approach is competitive with current synthesis tools in terms
of both area and runtime where we get a more than 6x speedup
with no area penalty when applied to FBDD and an order of
magnitude speedup over SIS.

As an additional step, we would like to explore resynthe-
sis region identification for timing driven synthesis using our
cover-based elimination. The hope is that we could adapt the
elimination algorithm to optimize for circuit delay, rather than
solely optimize for area. In conclusion, we have found a scal-
able approach to cut generation and as a result have found an
interesting and useful application of the covering problem to
synthesis elimination.

[1] D. Chen andJ. Cong, “DAOmap: a depth-optimal area optimization map-
ping algorithm for FPGA designs,” in ICCAD ’04, Washington, DC, USA,
2004, pp. 752-759.

[2] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for Area
Minimization in LUT-Based FPGA Technology mapping,” IEEE Trans.
Computer-aided Design, vol. 25, no. 11, pp. 2331-2340, Nov. 2006.

[3] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit
synthesis,” Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley, Tech. Rep., 1992. [Online]. Available:
citeseer.ist.psu.edu/sentovich92sis.html

[4] D. Wu and J. Zhu, “FBDD: A folded logic synthesis system,” in Interna-
tional Conference on ASIC, Shanghai, China, Oct. 2005.

[5] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA tech-
nology mapping,” in Design Automation Conference, 1993, pp. 213-218.
[Online]. Available: citeseer.ist.psu.edu/article/cong94areadepth.html

[6] ——, “FlowMap: An optimal technology mapping algorithm for de-
lay optimization in lookup-table based FPGA designs,” IEEE Trans.
Computer-aided Design, vol. 13, no. 1, pp. 1-13, Jan. 1994.

[7] J. Cong and Y.-Y. Hwang, “Simultaneous depth and area minimization in
LUT-based FPGA mapping,” in FPGA, 1995, pp. 68-74.

[8] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: enabling a gen-
eral and efficient FPGA mapping solution,” in FPGA’99. ACM Press,
1999, pp. 29-35.

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to tech-
nology mapping for LUT-based FPGAs,” in FPGA’06. ACM Press,
2006.

[10] Altera Corporation, Stratix II Device Handbook, Oct. 2004.

[11] C. Yang, M. J. Ciesielski, and V. Singhal, “BDS: a BDD-based logic
optimization system,” in DAC, 2000, pp. 92-97.

[12] R.Bryant “ Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Computer, vol. 35, no. 8, pp. 677-691, 1986.

[13] F. Somenzi, “Binary decision diagrams,” pp. 303-366, 1999. [Online].
Available: citeseer.ist.psu.edu/somenzi99binary.html

[14] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” pp. 501-525, 2000.

[15] F. Somenzi, “CUDD: CU decision diagram package release,” 1998.

[16] S. Yang, “Logic synthesis and optimization benchmarks user guide ver-
sion,” 1991.

[17] “IWLS 2005 Benchmarks.” Available:

http://iwls.org/iwls2005/benchmarks.html

[Online].

