
Two-Stage Physical Synthesis for FPGAs
(Invited Paper)

Deshanand P Singh, Valavan Manohararajah and Stephen D Brown
Altera Toronto, 151 Bloor St. West, Suite 200, Toronto, Ontario M5S1S4

Email: {dsingh,vmanohar,sbrown}@altera.com

Abstract— This paper presents an overview of an industrial
physical synthesis CAD flow for FPGAs. The flow provides
a performance speedup of10%–15% for most circuits, and a
significant number of circuits show a speedup of20%–180%.
We describe the algorithms used to achieve this result including:
incremental retiming, BDD-based resynthesis, local rewiring, and
logic replication. The effectiveness of these operations depends
on the ability to accurately determine which portions of logic
are timing critical at a stage of the CAD flow where there is
still freedom to perform logic restructuring. We show how this
problem can be effectively solved by inserting prediction and
restrurcturing operations at multiple points of the FPGA CAD
flow.

I. I NTRODUCTION

Recent research effort inphysical synthesishas strived
to eliminate the artificial separation that exists between the
various steps in CAD. Most of the existing work is applicable
to ASIC CAD flows [16], [5], [12], [24], [25], [6], but a few of
the more recent efforts explore FPGA CAD flows [13], [22],
[18]. Some have concentrated on making the synthesis step
more aware of what happens during placement and routing
[16], [13], while others have explored the use of synthesis type
algorithms during placement and routing [5], [12], [24], [25],
[6], [22], [18]. Our work builds upon both of these general
approaches to develop an effective suite of optimizations that
is able to improve the performance of circuits implemented in
FPGAs.

Most of the delays in an FPGA circuit are due to the pro-
grammable routing network [19]. These delays cannot be de-
termined with great certainty until the routing step completes.
The traditional logic synthesis step of the FPGA CAD flow
is responsible for creating a circuit implementation that will
realize the functionality of a designer’s hardware specification.
At this early stage of the CAD flow it is difficult to predict
the delays of the routed connections. It is for this reason
that traditional logic synthesis may create circuit structures
that are suboptimal in terms of critical path performance.
With perfect knowledge of the routed delays, the task of
optimizing the circuit structure to improve performance is well
studied. These optimizations includedelay-driven resynthesis
and sequential retiming. Thus, the great challenge of FPGA
Physical Synthesis is the prediction of delays for use with
these timing driven optimizations.

We use a two-stage approach to integrate delay prediction
and timing driven netlist optimizations. First, we usecoarse
physical synthesisat an early stage in the FPGA CAD flow
that occurs immediately after logic synthesis and technology

mapping. A coarse prediction technique is used to approximate
delays for the routed connections, and coarse-grained restruc-
turing operations are used to make relatively large scale circuit
changes. Secondly, we usefine physical synthesisat a late
stage in the CAD flow that occurs immediately after placement
and just before routing. Of course, it would be advantageous
to perform local optimizations once routing has completed
and accurate routing delays are available. However, making
changes to the circuit during the routing step is extremely
complicated. Instead we choose to perform local timing-driven
optimizations at the placement step, which is sufficiently close
to the routing step that reasonably accurate delays are known.
Furthermore, small changes to the circuit can still be made by
using a novel incremental placement technique [21].

The remainder of this paper is organized as follows. First,
we describe the target FPGA architectures used in this paper.
Next, we provide an overview of the coarse and fine phys-
ical synthesis techniques, and describe their integration with
timing analysis and incremental placement. We then describe
four timing-driven circuit optimization techniques. Finally, we
present experimental results, and conclude with remarks that
are directions for future research.

II. TARGET FPGA ARCHITECTURES

M512

M512

M512

M512

M512

M512

M512

M512

M512

M512

DSP

DSP

DSP

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

IOEs

M4K

M4K

M4K

M4K

M4K

M4K

M4K

M4K

M4K

M4K

M-RAM

M512 M512

M512 M512

M512 M512

M512 M512

LABs

IOEs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

LABs

IOEs

LABs

LABs

LABs

Fig. 1. Structure of the Stratix and Stratix II FPGA architectures.

Altera’s Stratix [10] and Stratix II [11] chips were used
as the target for the experiments described in this paper. As
illustrated in Figure 1, the high level structure of both chips
is similar. Both chips are comprised of I/O elements (IOEs),
logic array blocks (LABs), digital signal processing blocks
(DSPs) and memory elements (M512, M4K and M-RAM).
While DSPs and memory elements perform very specific roles
in the FPGA, the LABS can be configured to perform arbitrary
logic functions. The LABs are also the source of significant



differences between the two architectures. A LAB in a Stratix
device contains10 logic elements (LEs) while a LAB in a
Stratix II device contains8 adaptive logic modules (ALMs).
The Stratix LE, illustrated in Figure 2(a), contains a four-input
lookup table (4-LUT), a register and some logic that facilitates
the creation of arithmetic circuits. Figure 2(b) illustrates the
Stratix II ALM. It contains two registers, two sets of addition
circuitry and a combinational logic module that can implement
two functions of varying complexity. The combinational logic
module can be configured to implement a single 6-LUT, or two
LUTs with five or fewer inputs. If the module is configured to
implement two 5-LUTs, the LUTs must share at least two of
their inputs as there are only8 inputs connected to the module.

D Q

reg1

regchain
in

4-LUT
&

Carry Out
Logic

datad

datab

datac

carry
in

dataa

addnsub

regchain
out

regout

combout

carry
out

(a) Stratix.

Combinational
Logic

dataf0
datae0
dataa
datab
datac
datad
datae1
dataf1

adder0

adder1

D Q

reg0

D Q

reg1

carry
out

shared
out

shared
in

carry
in

regchain
in

regchain
out

combout1

combout0
regout0

regout1

(b) Stratix II.

Fig. 2. Logic Elements.

III. T WO-STAGE CONSTRAINED PHYSICAL SYNTHESIS:
AN OVERVIEW

Figure 3 illustrates the CAD flow used in our work. In the
first step, design entry, the design is described in terms of
a hardware description language such as VHDL or Verilog.
Logic synthesis optimizes the circuit obtained from design
entry. During logic synthesis the netlist is represented in
terms of a generic gate library. The technology mapping stage
converts the netlist to use the logic elements available in the
target FPGA architecture. Following technology mapping, a
coarse physical synthesis step is performed. Here timing driven
optimizations work in concert with timing analysis to identify
and restructure the logic on the critical path. Next, a clustering
step is used to group the technology mapped circuit into a set

of clusters. In both the Stratix and Stratix II architectures, the
clustering step creates a set of LABs. Following clustering,
placement determines a position for each cluster in the circuit.
Once placement is completed, a fine physical synthesis step is
performed. Here timing driven optimizations use both timing
analysis and incremental placement to restructure the logic on
the critical path. Incremental placement is needed to integrate
the modifications made by the timing driven optimizations into
the existing placement. The final step in the CAD flow, routing,
determines the wires that will be used to connect the elements
that make up the circuit.

Design Entry

Synthesis

Technology Mapping

Clustering

Placement

Routing

Coarse Physical Synthesis
Timing Driven
Optimizations

Timing
Analysis

Fine Physical Synthesis
Incremental
Placement

Timing Driven
Optimizations

Timing
Analysis

Fig. 3. The two-stage physical synthesis CAD flow.

A. Timing Analysis

Timing Analysis provides the information needed so that
timing driven optimizations can identify which paths of a
circuit are performance critical. Although the delays within cir-
cuit components (logic delays) are known, the delays between
circuit components (routing delays) are not known and must
be predicted. During coarse physical synthesis, we estimate
the delay of a connection between components to be the
average delay for a connection of thattypeobserved on a large
number of place and route experiments. A connection’s type is
identified by a four-tuple: driving component type, driving port
type, driven component type, and driven port type. During fine
physical synthesis, placement information is available, and we
estimate the delay of a connection between two components to
be the delay of the fastest route between the two components.
Although the assumption of the fastest route is inaccurate for
non-critical signals, it is accurate for critical and near-critical
connections which tend to use fast routes when possible.

Once the inter-component delays have been predicted, tim-
ing analysis determines theslack [4] of every connection. The
slack of a connection is defined to be the amount of delay that
can be added to the connection before it becomescritical.
A connection is critical if the length of a path it belongs
to exceeds the path-length constraint set by the user. Timing
analysis also determines aslack ratio for each connection.



The slack ratio is a value between0 and 1 which indicates
the relative importance of each connection to overall circuit
timing. Connections that have a significant effect on circuit
timing have slack ratios closer to0 while connections that have
negligible effect on circuit timing have slack ratios closer to
1. A precise definition of slack ratios is beyond the scope of
this paper. However, from an optimization prespective, slack
ratios provide the most accurate information as the formulation
accounts for multi-cycle clock constraints, inverted clocks and
skew.

B. Incremental Placement

The timing-driven optimizations that take place during fine
physical synthesis may create an invalid placement. For exam-
ple, a BDD-based resynthesis algorithm may create new wires
that violate the constraint on the number of wires entering
a LAB. A logic replication algorithm may create new LEs
or ALMs which would then require placement. Incremental
placement (ICP) is used to integrate the modifications made
by the timing-driven optimizations into the existing placement
while perturbing the existing placement as little as possible. A
brief overview of ICP is presented here. The interested reader
is referred to [21] for further details.

The primary goal of ICP is to resolve the architectural
violations created when the circuit modifications are integrated
into the existing placement. Nearly all architectural constraints
in modern FPGAs [1] [27] are found in the clustered logic
blocks (LABs in our case). Some common constraints include:

• A limit on the number of logic elements within the
cluster.

• A limit on the number of distinct inputs to the cluster.
• A limit on the number of distinct control signals (e.g.

clock, reset) that can be used within the cluster.

The ICP algorithm uses an iterative improvement strategy
where logic elements are moved according to a cost function.
This cost function consists of three components:

• Cluster Legality Cost - Each cluster is penalized if it
contains any architectural violations. The cost is propor-
tional to the total number of constraints violated.

• Timing Cost - The timing cost is used to ensure that
critical logic elements are not moved into locations that
would significantly increase the critical path delay.

• Wirelength Cost - Wirelength estimation is used to
ensure that the circuit is easily routable after the logic
element moves.

The total cost is a weighted sum of these components. Cost-
lowering moves are made until no further illegalities exist in
the placement. A novel hillclimbing strategy is used to ensure
that the iterative improvement algorithm does not get stuck in
a local minima where none of the proposed moves seem to
improve the cost even though there is remaining illegality.

C. Physical Synthesis Constraints

The timing-driven optimizations that are applied to re-
structure the circuit are subject to several constraints. These

constraints ensure that the resulting circuit is functionally
equivalent to the original, can be realized in the target architec-
ture, and meets user requirements. These constraints include:

• User defined timing constraints.
• User defined “dont’t touch” constraints. A user may

specify that portions of the logic are not to be touched
regardless of potential benefits.

• Area constraints. This includes a global constraint on
the maximum area increase allowed. It may also include
constraints to ensure that registers are created evenly
across the design during retiming.

• Architectural constraints. These constraints define rules
for handling specialized structures in the target FPGA
architecture. For example, carry chains provide high
speed implementations of arithmetic logic, but signals
propagating along the chain must be strictly combina-
tional and must have a fanout of one. Thus, combinational
resynthesis algorithms must avoid modifying carry chains
unless they are capable of producing the highly special-
ized circuit topology required by the chain. Furthermore,
a retiming algorithm must ensure that a register does not
end up between the elements of a chain.

• Implicit constraints. These constraints are automatically
generated to ensure that the circuit functions correctly
after the application of the timing-driven optimizations.
An example of this constraint is shown in Figure 4.
In this example a register feeds the asynchronous reset
signal of several other registers in the design. Retiming
theory allows us to move the source register backwards.
However, doing so may introduce a glitch on the signal
that feeds the asynchronous lines. This situation could
potentially cause disasterous malfunctions. These types of
implict legality contraints are described in detail in [26].

With the exception of user defined timing constraints, the
other constraints are handled as the optimizations take place.
If a restructuring operation violates any of the constraints, it
is undone and the optimization process continues on another
part of the circuit. User defined timing constraints are handled
by the timing analysis engine. The slack ratios produced
by timing analysis are computed with respect to the user
defined timing constraints. Thus, as long as the optimization
algorithms use slack ratios to identify the parts of the circuit
to be restructured, user timing constraints will be adhered to.

D Q

D Q

reset

D Q

reset

D Q

reset
LUT

Fig. 4. An example of an asynchronous constraint.



1 bestt ← TIMING ANALYSIS()
2 bestc ← Circuit
3 for i ← 1 upto MaxIterations
4 S ← CRITICAL LOGIC()
5 for s ∈ S
6 Circuit ← OPTIMIZE(s)
7 end for
8 INCREMENTALPLACEMENT() (if necessary)
9 t ← TIMING ANALYSIS()
10 if t ≥ bestt
11 bestt ← t
12 bestc ← Circuit
13 end if
14 end for
15 Circuit ← bestc

Fig. 5. A framework for timing-driven optimization circuit optimization.

IV. T IMING -DRIVEN CIRCUIT OPTIMIZATIONS

We now describe four timing-driven optimization algo-
rithms. The first two, incremental retiming and BDD-based
resynthesis, are used during both coarse and fine physical
synthesis, and the last two, local rewiring and logic replication,
are used during fine physical synthesis only. There are slight
differences between the versions of the algorithms used during
the two physical synthesis steps. The versions used during
coarse physical synthesis target a larger portion of the circuit
and have a greater freedom in restructuring the circuit than
the versions used during fine physical synthesis.

All four timing-driven optimizations use the algorithmic
layout illustrated in Figure 5. A call to timing analysis is
the first major task performed by each algorithm. In addition
to helping determine the slacks and slack ratios for each
connection in the circuit, timing analysis returns the minimum
slack in the circuit. We use the minimum slack to judge the
quality of a circuit during the optimizations. Each iteration
begins by identifying the critical and near critical logic in
the circuit (line 4). We then perform optimizations on the
selected logic (line 6). This is the step where each of the four
optimization techniques perform different operations. If any
of the physical synthesis constraints are violated during an
optimization, the optimization is undone and an unmodified
circuit is returned. Following the optimizations, incremental
placement is used to integrate the changes made to the circuit
into the existing placement. This call is used only during
the fine physical synthesis step. At the end of each iteration
(lines 10–13), the modified circuit is saved if timing has been
improved. Once all iterations have completed, the best circuit
discovered during the iterations replaces the initial circuit.

A. Incremental Retiming

Sequential retiming is a powerful logic optimization tech-
nique for synchronous circuits which uses the property that
flip flops can be taken from the outputs of gates and moved to
their inputs, or vice versa. Using these moves in combination,
one can attempt to maximize circuit speed and minimize area.
This technique was first introduced in the early 1980’s by
Leiserson and Saxe [8] [9] where an optimal solution to the
retiming problem is presented. The solution involves solving
a system of difference equations. For an FPGA circuit netlist

containingn elements, with at mostk inputs, the worst-case
complexity of this optimal retiming algorithm isO(n2log(n)).

In contrast, we have implemented an incremental retiming
algorithm that is linear in complexity and produces results that
are very close to optimal [20]. The basic idea behind our re-
timing scheme is to perform a series of backward and forward
retiming iterations. During a backward retiming iteration, we
identify registers whose inputs come from a critical or a near
critical path. These registers are then pushed backwards across
the logic driving it as illustrated in Figure 6a. During a foward
retiming iteration, we identify registers whose outputs are
connected to a critical or a near critical path. These registers
are then pushed forwards across the logic being driven as
illustrated in Figure 6b. During both backward and forward
pushes we have to ensure that the functionality of the circuit
is unchanged during powerup and reset conditions. Registers
in Stratix and Stratix II are set to zero on powerup. Reset
signals also set the register to zero. In Figure 6, following the
backward and forward pushes, the functionality of LUTsf ,
g, andh is changed so as to preserve the powerup and reset
functionality expected of the subcircuits illustrated.

LUT
f

LUT
g

LUT
h

D Q

D Q
LUT
f

LUT
g

LUT
h

D Qr0

r1

(b)

LUT
f

LUT
h

LUT
g D Q

r0
D Q
r1

LUT
f

D Q

D Q

LUT
g

LUT
h

(a)

Fig. 6. An example of backward and forward retiming pushes.

The worst case complexity of our retiming algorithm is
O(Kn), where K is the number of retiming iterations and
n is the number of nodes in the circuit. Given thatK is a
constant, the algorithm has linear time complexityO(n).

LUT
m D Q

r0

LUT
n D Q

r1

LUT
o D Q

r2

LUT
p D Q

r3

LUT
q

non-critical

Fig. 7. Backward Push across a Carry Chain.



LUT
f

D Q
ri

(b)(a)

en

D Q
rj

en

eni

enj

sj

LUT
f

D Q
ri

D Q
rj

eni

enj
sj

si si

Fig. 8. Incompatible Secondary Signals.

One of the complexities of implementing this incremental
retiming algorithm for FPGAs lies in handling the com-
plexities of carry chains. These chains provide high-speed
implementations of arithmetic logic and our internal experi-
ments indicate that they are often involved in performance-
critical regions of logic. The most important constraint that
we must observe is that the carry chain cannot provide
registered versions of the carry signal propagating between
elements. These carry connections must be strictly combina-
tional. This restriction prevents our algorithm from pushing
registers across individual elements of any particular chain.
Instead, we perform “group pushes” across entire chains. This
ensures that the chain remains in a legal configuration after a
register push. Figure 7 illustrates this situation. Suppose that
the registerr0 has a critical input. We can then perform a
backwards group push across the entire chain where registers
r0 . . . r3 are moved backwards to the inputs of the chain.
Notice that registerr2 is not fed directly by the chain and is
fed by a non-critical connection. Normally, this register would
never be moved backward because it isn’t directly involved
with a timing-critical path; however, we actively search for
these types of situations to enable a legal group push.

Another complexity introduced by our FPGA architectures
is the diverse functionality provided by the configurable regis-
ters. These registers offer features such as clock enables, syn-
chronous clears/loads and asychronous clears/loads. Registers
can only be pushed across a logic element if they contain
exactly the same set of these secondary control signals [3].
There are many situations where critical pushes may involve
registers that have incompatible control signals. Consider the
case shown in Figure 8(a). Suppose that the registerri has
a critical output, but the clock enable signalseni and enj

are distinct. Retiming theory would disallow a seemingly
beneficial forward push; however, we attack this problem by
decomposing the registersri and rj into simpler forms that
contain explicit enable logic as shown in Figure 8(b). This
decomposition now allows us to push the registers forward
and improve the critical path.

B. BDD-Based Resynthesis

The BDD-based resynthesis algorithm finds alternative
functional decompositions for the critical or near critical logic
in the circuit. Given a functionf(X, Y ) defined over two
sets of variablesX and Y , functional decomposition finds

subfunctions
g1(Y ), g2(Y ), . . . , gk(Y )

such thatf can be re-expressed in terms of thegs:

f(X, g1(Y ), g2(Y ), . . . , gk(Y ))

The set of variablesX is referred to as thefree setand the set
of variablesY is referred to as thebound set. If there are no
variables common toX andY , the decomposition is said to
be disjoint. Otherwise the decomposition isnon-disjoint. We
consider both disjoint and non-disjoint decompositions during
resynthesis.

The LUTs in an FPGA are capable of implementing any
function of k variables. Thus, functional decomposition (as
opposed to algebraic decomposition) can be used to find
subfunctions that fit naturally into LUTs. The structure of the
decomposition may have a significant impact on timing. Our
decomposition technique attempts to structure the circuit in
such a way as to minimize the number of logic levels traversed
by critical signals.

Figure 9 illustrates the process of resynthesis. First, a LUT
f with critical inputs is identified. Next, a cone of logic rooted
at f is grown. The cone is then collapsed into a single LUT
and a BDD [2] representing the functionality of the cone is
constructed. Functional decomposition is performed directly
on the BDD [7]. At each step of the decomposition, a single
LUT suitable for the target architecture is extracted from the
BDD and the BDD is reexpressed in terms of the extracted
LUT. This procedure is continued until the remaining BDD
fits into a single LUT.

b
c

d

e

a

b
c

d

e

a

f f

Fig. 9. The BDD-based resynthesis operation.

An example of BDD-based functional decomposition is
given in Figure 10. The figure illustrates a reduced, ordered
BDD for the function

f = (p + q + r)s + (p + q + r)(st + su + stu)

Here, we have chosen an alphabetical ordering of the variables
for the BDD of f . However, during resynthesis, we use a
sifting [17] procedure that helps move non-critical variables
to the top of the BDD. Acut in the BDD establishes two
sets of variables. The variables above the cut constitute the
bound set and the variables below the cut constitute the free
set. Figure 10 illustrates a cut inf that separates the bound
set, {p, q, r}, from the free set,{s, t, u}. The portion of the
BDD above the cut references two distinct functions,f0 and
f1, below the cut. Thus, the portion of the BDD above the cut



can be replaced by a single boolean variableg that determines
whetherf0 or f1 is to be selected. A separate BDD computes
the value forg, and in the new BDD forf , f0 is selected
when g = 0 and f1 is selected wheng = 1. Note that this
encoding is abitrary. We could have just as easily selectedf0

wheng = 1 andf1 wheng = 0. The resulting decomposition
can be expressed as

g = p + q + r

f = gs + g(st + su + stu)

1 0

u u

t t

s s

r

q

p0-edge
1-edge

cut
f0 f1

f

r

q

p

g

0 1

1 0

u u

t t

s sf0 f1

g

f

Fig. 10. An example of BDD-based decomposition.

We refer the interested reader to [15] for a description of
heuristics used for cone expansion and subfunction extraction.

C. Local Rewiring

Figure 11(a) illustrates the local rewiring optimization [14].
We identify a pair of LUTsf and g connected by a critical
signalc. Using functional decomposition techniques, we deter-
mine if the overall timing of the two LUTs can be improved
by swapping some of the non-critical signals attached tof
with some of the critical signals attached tog. Although
local rewiring and BDD-based resynthesis use functional de-
composition techniques, they operate on two different scales.
Local wiring considers two LUTs at a time while BDD-
based resynthesis considers entire cones. The result is that the
operations carried out during local retiming have much more
predictable timing changes and introduce very little illegality
into the existing circuit.

D. Logic Replication

Following placement, a LUT that drives a signal with several
fanouts may be placed at a location that is not ideally suited
for any of its fanouts. For example, in Figure 11(b), LUT
h drives two LUTs i and j, and it has been placed at a
location that balances its need to drive both LUTs at the same
time. However, if connectionc is critical, we can replicate
h to produce a new LUTh′ which can be placed closer

LUT
g LUT

f

c

(a) Local Rewiring.

LUT
f

LUT
g

LUT
h

LUT
i

LUT
j

LUT
h'

c

(b) Logic Replication

Fig. 11. Rewiring and Replication

to the target ofc. The logic replication algorithm performs
this transformation on critical signals driven by multi-fanout
sources.

V. RESULTS

In this section, we provide experimental results illustrating
the predictive power of both coarse and fine physical synthesis.
In addition, we demonstrate the effeciveness of our two-stage
approach for performance optimization of a large industrial
benchmark suite.

A. Coarse Prediction

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000

Approximate Delay (ps)

R
o

u
te

d
 D

el
ay

 (
p

s)

(a) Delay Prediction.

-50%

0%

50%

100%

150%

200%

Approximate Gain
Post-Routing Gain

(b) Correlation Results.

Fig. 12. Coarse Physical Synthesis.

As discussed previously, the coarse prediction techniques
assign a delay value to a connection based on characteristics
of the source and sink. These delay values are determined
by computing the average delay for each connection type
over a large number of benchmark circuits and a number of
place and route runs. Figure 12(a) demonstrates the effect of
this approximation technique on a single benchmark circuit.
We plot the final routed delay vs. the approximate delay for
each connection in the netlist. This graph shows a number
of vertical “delay bands.” The banding results from the fact
that we assign a single delay value to each connection type;
however, each of these connection types are likely to have
different placements as well as routings.

The test of any approximation technique lies in its predictive
power. Figure 12(b) illustrates the predictive power of the
coarse physical synthesis approach. The graph shows the



approximate performance gains predicted by using our timing-
driven netlist optimizations in conjunction with the coarse
prediction technique for approximately 100 industrial circuits.
A second curve shows the actual gain that results post-
routing. The general trend shows that a prediction of a large
performance gain usually results in a significant performance
gain after place and route. The correlation coefficient (R) is a
statistical measure that expresses how closely two variables are
linearly related. Predictive strength is computed by measuring
the correlation coefficient between the approximate gains and
post-routing gains. We find thatRcoarse = 0.5. A value of 0
indicates no predictive power, while a value of1 corresponds
to perfect prediction.

B. Fine Prediction

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000

Approximate Delay (ps)

R
o

u
te

d
 D

el
ay

 (
p

s)

(a) Delay Prediction.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Approximate Gain
Post-Routing Gain

(b) Correlation Results.

Fig. 13. Fine Physical Synthesis.

Once placement is completed, the timing-driven optimiza-
tion techniques discussed previously are used to improve
the circuit’s critical path. Since placement is completed, the
delay of every connection can be estimated by computing an
approximate route for the connection. The approximation that
we use is to assume that the fastest possible route is available
from the source to the sink. This calculation is extremely
fast since it can be efficiently cached and it is reasonably
accurate. Critical connections tend to be assigned to the fastest
possible route since the Quartus II router will attempt to
optimize timing as much as possible. Our approximation is not
accurate for non-critical signals since the router may use non-
optimal paths to avoid congestion; however, our timing-driven
optimizations generally target regions of the circuit involving
the most timing critical logic. As before, Figure 13(a) depicts
this effect for a single benchmark circuit. Clearly, our fine
physical synthesis approximation is very close for the majority
of connections.

Figure 13(b) demonstrates the predictive power of the fine
physical synthesis techniques. We find thatRfine = 0.8.
Clearly, our approximations are always optimistic. However,
the general trend shows that we have greater fidelity between
our prediction and the post-routing result than the coarse
physical synthesis approach.

C. Results on Industrial Circuits

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

Circuit

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

Geometric Average = +13.1%

Fig. 14. Physical Synthesis Results.

Although, we have greater predictive power using our fine
physical synthesis approach there is a limitation in the amount
of restructuring that is possible since we must incrementally
sift modifications into the existing placement. Therefore, our
approach involves making large scale and aggressive circuit
optimizations during coarse physical synthesis. During late
physical synthesis, we attempt to use the greater predictive
power to “fix” any paths that were missed during the coarse
optimizations. Figure 14 demonstrates the performance gains
that were obtained using our two-stage flow on a Stratix II
industrial benchmark suite (design sizes range from 5000–
110000+ LEs). We find that the average performance gain
is approximately 13%. For this performance gain, the area
penalty is a relatively small 3.6% increase in logic elements.
This result is consistent across all Altera FPGA families
and is similar regardless of the logic synthesis tool (Quartus
Integrated Synthsis or leading third party solutions).

VI. CONCLUSIONS

We have presented a two-stage physical synthesis approach
for FPGAs. These techniques typically provide a 10%–15%
performance improvement for an “average” circuit and a
significant fraction of the circuits have a gain between 20%
and 180%.

Our future research will focus on two areas. The first is
improved prediction in coarse physical synthesis by examining
netlist structure or performing coarse and quick placement. All
of these techniques will attempt to assign predicted delays to
connections; however, we feel that path-based prediction may
offer the greatest opportunities. Path-based schemes would
attempt to predict the criticality of entire paths early in the
CAD flow rather than attempting to accurately compute the
delay of each connection.

The second area of research involves additional physical
synthesis stages. For example, there are certain constrained
optimizations [23] that can occur after routing and take ad-
vantage of the greatest possible timing predictability.



REFERENCES

[1] Altera. Altera Databook.
[2] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE

Transactions to Computers, Vol. C-35, No. 8, Aug. 1986, pp. 677–691.
[3] K. Eckl, J.C. Madre, P. Zepter and C. Legl. A Practical Approach to Multiple-Class

Retiming. DAC, 1999.
[4] R. Hitchcock, G. Smith and D. Cheng. Timing Analysis of Computer-Hardware.

IBM Journal of Research and Development, Jan. 1983, pp. 100–105.
[5] Y. Jiang, A. Krstic, K. Cheng and M. Marek-Sadowska. Post-Layout Logic

Restructuring for Performance Optimization. InProceedings of the Design Au-
tomation Conference, Anaheim, CA, June, 1997, pp. 662–665.

[6] L. Kannan, P. Suaris and H. Fang. A Methodology and Algorithms for Post-
Placement Delay Optimization. InProceedings of the Design Automation Confer-
ence, San Diego, CA, June 1994, pp. 327–332.

[7] Y-T. Lai, K-R. Pan and M. Pedram. OBDD-Based Functional Decomposition:
Algorithms and Implementation.IEEE Trans. On Computer Aided Design, Vol.
15, No. 8, 1996, pp. 977–990.

[8] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry.Journal of
VLSI and Computer Systems, pages 41–67, 1983.

[9] C. Leiserson and J. Saxe. Retiming synchronous circuitry.Algorithmica, 6(1):5–
35, 1991.

[10] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C.
McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and J. Rose.
The Stratix Routing and Logic Architecture InFPGA ’03, ACM. Symp. FPGAs,
pages 15–20, 2003.

[11] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M.Bourgeault, D. Cashman, D.
Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock,
K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,
R. Yuan, R. Cliff and J. Rose. The Stratix II Logic and Routing Architecture. In
FPGA ’05, ACM Symposium on FPGAs, pages 14–20, 2005.

[12] Y. Lian and Y. Lin. Layout-based Logic Decomposition for Timing Optimization.
In Proceedings of the Asia Pacific Design Automation Conference, Hong Kong,
Hong Kong, Jan. 1999.

[13] J. Y. Lin, A. Jagannathan and J. Cong. Placement-Driven Technology Mapping
for LUT-Based FPGAs. InProceedings of the ACM Int. Syposium on FPGAs,
Monterey, CA, Feb. 2003, pp. 121–126.

[14] V. Manohararajah, D. P. Singh, S. D. Brown and Z. G. Vranesic. Post-Placement
Functional Decomposition for FPGAs. InProceedings of the International Work-
shop on Logic Synthesis, Temecula, CA, June 2004, pp. 114–118.

[15] V. Manohararajah, D. Singh and S. Brown. Timing Driven Functional Decompo-
sition for FPGAs. To appear inIWLS’2005.

[16] M. Pedram and N. Bhat. Layout Driven Logic Restructuring/Decomposition. In
Proceedings of the Int. Conf. on Computer-Aided Design, San Jose, CA, Nov.
1991, pp. 134–137.

[17] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
Proceedings of the Int. Conf. on Computer Aided Design, Santa Clara, CA, 1993,
pp. 42–47.

[18] K. Schabas and S. D. Brown. Using Logic Duplication to Improve Performance
in FPGAs. InProceedings of the ACM Int. Syposium on FPGAs, Monterey, CA,
Feb. 2003, pp. 136–142.

[19] M. Sheng and J. Rose. Mixing Buffers and Pass Transistors in FPGA Routing
Architectures. InProceedings of the ACM Int. Symposium on FPGAs, Monterey,
CA, Feb. 2001, pp. 75–84.

[20] D. Singh, V. Manohararajah, S. Brown. Incremental Retiming for FPGA Physical
Synthesis. To appear inDAC’2005.

[21] D. P. Singh and S. D. Brown. Incremental Placement for Layout-Driven Optimiza-
tions on FPGAs. InProceedings of the Int. Conf. on Computer-Aided Design, San
Jose, CA, 2002, pp. 752–759.

[22] D. Singh and S. Brown. Integrated Retiming and Placement for Field Program-
mable Gate Arrays. InProceedings of the ACM Int. Syposium on FPGAs, Monterey,
CA, Feb. 2002, pp. 67–76.

[23] D. Singh and S. Brown. Constrained Clock Shifting for Field Programmable Gate
Arrays. InProceedings of the ACM Int. Syposium on FPGAs, Monterey, CA, Feb.
2002, pp. 121–126.

[24] G. Stenz, B. Riess, B. Rohfleisch and F. Johannes. Timing Driven Placement in
Interaction with Netlist Transformations. InInternational Symposium on Physical
Design, Napa Valley, CA, 1997, pp. 36–41.

[25] T. Tien, H. Su and Y. Tsay. Integrating Logic Retiming and Register Placement.
In Proceedings of the Int. Conf. on Computer-Aided Design, San Jose, CA, 1998,
pp. 136–139.

[26] B. van Antwerpen, M. Hutton, G. Baeckler and R. Yuan. A Safe and Complete
Gate-Level Register Retiming Algorithm. InIWLS 2003, pages 140–147, 2003.

[27] Xilinx. Xilinx Databook.


