Two-Stage Physical Synthesis for FPGAS

(Invited Paper)

Deshanand P Singh, Valavan Manohararajah and Stephen D Brown
Altera Toronto, 151 Bloor St. West, Suite 200, Toronto, Ontario M5S1S4
Email: {dsingh,vmanohar,sbroy@altera.com

Abstract—This paper presents an overview of an industrial mapping. A coarse prediction technique is used to approximate
physical synthesis CAD flow for FPGAs. The flow provides delays for the routed connections, and coarse-grained restruc-
a performance speedup of10%-15% for most circuits, and a y,1ing operations are used to make relatively large scale circuit
significant number of circuits show a speedup 0f20%-180%. . . -

We describe the algorithms used to achieve this result including: changgs. Secondly, we usee PhYS'Ca' §ynthe5|sat a late
incremental retiming, BDD-based resynthesis, local rewiring, and Stage in the CAD flow that occurs immediately after placement
logic replication. The effectiveness of these operations dependsand just before routing. Of course, it would be advantageous
on the ability to accurately determine which portions of logic to perform local optimizations once routing has completed
are fiming critical at a stage of the CAD flow where there is 54 accurate routing delays are available. However, making
still freedom to perform logic restructuring. We show how this Lo . . .

problem can be effectively solved by inserting prediction and chang_es to the circuit during the routing step IS gxtremely
restrurcturing operations at multiple points of the FPGA CAD complicated. Instead we choose to perform local timing-driven
flow. optimizations at the placement step, which is sufficiently close
to the routing step that reasonably accurate delays are known.
Furthermore, small changes to the circuit can still be made by

Recent research effort iphysical synthesidias strived using a novel incremental placement technique [21].
to eliminate the artificial separation that exists between theThe remainder of this paper is organized as follows. First,
various steps in CAD. Most of the existing work is applicableve describe the target FPGA architectures used in this paper.
to ASIC CAD flows [16], [5], [12], [24], [25], [6], but a few of Next, we provide an overview of the coarse and fine phys-
the more recent efforts explore FPGA CAD flows [13], [22]ical synthesis techniques, and describe their integration with
[18]. Some have concentrated on making the synthesis stgping analysis and incremental placement. We then describe
more aware of what happens during placement and routifaur timing-driven circuit optimization techniques. Finally, we
[16], [13], while others have explored the use of synthesis typeesent experimental results, and conclude with remarks that
algorithms during placement and routing [5], [12], [24], [25]are directions for future research.

[6], [22], [18]. Our work builds upon both of these general

approaches to develop an effective suite of optimizations that
is able to improve the performance of circuits implemented in
FPGAs.

Most of the delays in an FPGA circuit are due to the pra
grammable routing network [19]. These delays cannot be d
termined with great certainty until the routing step complete
The traditional logic synthesis step of the FPGA CAD flo
is responsible for creating a circuit implementation that wi
realize the functionality of a designer’s hardware specificatior.
At this early stage of the CAD flow it is difficult to predict
the delays of the routed connections. It is for this reason;
that traditional logic synthesis may create circuit structures
that are suboptimal in terms of critical path performance. Fig. 1. Structure of the Stratix and Stratix Il FPGA architectures.
With perfect knowledge of the routed delays, the task of
optimizing the circuit structure to improve performance is well Altera’s Stratix [10] and Stratix Il [11] chips were used
studied. These optimizations includelay-driven resynthesis as the target for the experiments described in this paper. As
and sequential retimingThus, the great challenge of FPGAIllustrated in Figure 1, the high level structure of both chips
Physical Synthesis is the prediction of delays for use wifh similar. Both chips are comprised of I/O elements (IOEs),
these timing driven optimizations. logic array blocks (LABs), digital signal processing blocks

We use a two-stage approach to integrate delay predicti@SPs) and memory elements (M512, M4K and M-RAM).
and timing driven netlist optimizations. First, we usearse While DSPs and memory elements perform very specific roles
physical synthesisat an early stage in the FPGA CAD flowin the FPGA, the LABS can be configured to perform arbitrary
that occurs immediately after logic synthesis and technolotpgic functions. The LABs are also the source of significant

I. INTRODUCTION

Il. TARGETFPGA ARCHITECTURES

TIT]

LAB;

M-RAM

differences between the two architectures. A LAB in a Stratixf clusters. In both the Stratix and Stratix Il architectures, the
device containslO logic elements (LEs) while a LAB in a clustering step creates a set of LABs. Following clustering,
Stratix Il device contain® adaptive logic modules (ALMs). placement determines a position for each cluster in the circuit.
The Stratix LE, illustrated in Figure 2(a), contains a four-inpudnce placement is completed, a fine physical synthesis step is
lookup table (4-LUT), a register and some logic that facilitatgzerformed. Here timing driven optimizations use both timing
the creation of arithmetic circuits. Figure 2(b) illustrates thanalysis and incremental placement to restructure the logic on
Stratix [l ALM. It contains two registers, two sets of additiorthe critical path. Incremental placement is needed to integrate
circuitry and a combinational logic module that can implemetie modifications made by the timing driven optimizations into
two functions of varying complexity. The combinational logiche existing placement. The final step in the CAD flow, routing,
module can be configured to implement a single 6-LUT, or twaetermines the wires that will be used to connect the elements
LUTs with five or fewer inputs. If the module is configured tdhat make up the circuit.

implement two 5-LUTs, the LUTs must share at least two of
their inputs as there are ondyinputs connected to the module.

Design Entry

Synthesis

Technology Mapping

carry regchain
in addnsub in

LD Coarse Physical Synthesis
dataa Timing Driven Timing
datab ALUT D Qle> regout Optimizations Analysis
&
datac Carry Out
vic gl .
datad —> combout
|

l Fine Physical Synthesis
carry regchain
out out Incremental Timing Driven Timing
Placement Optimizations Analysis
(a) Stratix.

shared carry regchain Routing
in in in

combout0

Fig. 3. The two-stage physical synthesis CAD flow.

adder(0 D Q regout(

dataf0 —
datae) —

dataa —

A. Timing Analysis

D Qle> regoutl Timing Analysis provides the information needed so that
timing driven optimizations can identify which paths of a
circuit are performance critical. Although the delays within cir-
cuit components (logic delays) are known, the delays between
shared carry Jl circuit components (routing delays) are not known and must
oo be predicted. During coarse physical synthesis, we estimate
(b) Stratix II the delay of a connection between components to be the
Fig. 2. Logic Elements. average delay for a connection of thgbeobserved on a large
number of place and route experiments. A connection’s type is
identified by a four-tuple: driving component type, driving port
type, driven component type, and driven port type. During fine
physical synthesis, placement information is available, and we
Figure 3 illustrates the CAD flow used in our work. In theestimate the delay of a connection between two components to
first step, design entry, the design is described in terms lué the delay of the fastest route between the two components.
a hardware description language such as VHDL or Verilodglthough the assumption of the fastest route is inaccurate for
Logic synthesis optimizes the circuit obtained from desigmon-critical signals, it is accurate for critical and near-critical
entry. During logic synthesis the netlist is represented gonnections which tend to use fast routes when possible.
terms of a generic gate library. The technology mapping stageOnce the inter-component delays have been predicted, tim-
converts the netlist to use the logic elements available in they analysis determines ttatack[4] of every connection. The
target FPGA architecture. Following technology mapping, flack of a connection is defined to be the amount of delay that
coarse physical synthesis step is performed. Here timing drivean be added to the connection before it becowriscal.
optimizations work in concert with timing analysis to identifyA connection is critical if the length of a path it belongs
and restructure the logic on the critical path. Next, a clustering exceeds the path-length constraint set by the user. Timing
step is used to group the technology mapped circuit into a setalysis also determines sack ratio for each connection.

datab — Combinational

datac — Logic
adderl
datad —

datael —
datafl —

—> comboutl

Il. Two-STAGE CONSTRAINED PHYSICAL SYNTHESIS:
AN OVERVIEW

The slack ratio is a value betwe&nand 1 which indicates constraints ensure that the resulting circuit is functionally
the relative importance of each connection to overall circuiguivalent to the original, can be realized in the target architec-
timing. Connections that have a significant effect on circuitire, and meets user requirements. These constraints include:

timing have slack ratios closer €owhile connections that have
negligible effect on circuit timing have slack ratios closer to ®
1. A precise definition of slack ratios is beyond the scope of ®
this paper. However, from an optimization prespective, slack
ratios provide the most accurate information as the formulation
accounts for multi-cycle clock constraints, inverted clocks and *
skew.

B. Incremental Placement

The timing-driven optimizations that take place during fine ®
physical synthesis may create an invalid placement. For exam-
ple, a BDD-based resynthesis algorithm may create new wires
that violate the constraint on the number of wires entering
a LAB. A logic replication algorithm may create new LEs
or ALMs which would then require placement. Incremental
placement (ICP) is used to integrate the modifications made
by the timing-driven optimizations into the existing placement
while perturbing the existing placement as little as possible. A
brief overview of ICP is presented here. The interested reader
is referred to [21] for further details.

The primary goal of ICP is to resolve the architectural °
violations created when the circuit modifications are integrated
into the existing placement. Nearly all architectural constraints
in modern FPGAs [1] [27] are found in the clustered logic
blocks (LABs in our case). Some common constraints include:

o A limit on the number of logic elements within the

cluster.

« A limit on the number of distinct inputs to the cluster.

« A limit on the number of distinct control signals (e.g.

clock, reset) that can be used within the cluster.

The ICP algorithm uses an iterative improvement strategy

User defined timing constraints

User defined “dont't touch” constraintsA user may
specify that portions of the logic are not to be touched
regardless of potential benefits.

Area constraints This includes a global constraint on
the maximum area increase allowed. It may also include
constraints to ensure that registers are created evenly
across the design during retiming.

Architectural constraintsThese constraints define rules
for handling specialized structures in the target FPGA
architecture. For example, carry chains provide high
speed implementations of arithmetic logic, but signals
propagating along the chain must be strictly combina-
tional and must have a fanout of one. Thus, combinational
resynthesis algorithms must avoid modifying carry chains
unless they are capable of producing the highly special-
ized circuit topology required by the chain. Furthermore,
a retiming algorithm must ensure that a register does not
end up between the elements of a chain.

Implicit constraints These constraints are automatically
generated to ensure that the circuit functions correctly
after the application of the timing-driven optimizations.
An example of this constraint is shown in Figure 4.
In this example a register feeds the asynchronous reset
signal of several other registers in the design. Retiming
theory allows us to move the source register backwards.
However, doing so may introduce a glitch on the signal
that feeds the asynchronous lines. This situation could
potentially cause disasterous malfunctions. These types of
implict legality contraints are described in detail in [26].

where logic elements are moved according to a cost functiowith the exception of user defined timing constraints, the

This cost function consists of three components:

other constraints are handled as the optimizations take place.

« Cluster Legality Cost - Each cluster is penalized if it If a restructuring operation violates any of the constraints, it
contains any architectural violations. The cost is propots undone and the optimization process continues on another

tional to the total number of constraints violated.

part of the circuit. User defined timing constraints are handled

« Timing Cost - The timing cost is used to ensure thaby the timing analysis engine. The slack ratios produced
critical logic elements are not moved into locations thdly timing analysis are computed with respect to the user

would significantly increase the critical path delay.

defined timing constraints. Thus, as long as the optimization

« Wirelength Cost - Wirelength estimation is used toalgorithms use slack ratios to identify the parts of the circuit
ensure that the circuit is easily routable after the logi® be restructured, user timing constraints will be adhered to.

element moves.

The total cost is a weighted sum of these components. Cost-
lowering moves are made until no further illegalities exist in
the placement. A novel hillclimbing strategy is used to ensure
that the iterative improvement algorithm does not get stuck in
a local minima where none of the proposed moves seem to
improve the cost even though there is remaining illegality.

C. Physical Synthesis Constraints

The timing-driven optimizations that are applied to re-
structure the circuit are subject to several constraints. These

reset reset reset

oy S B

Fig. 4. An example of an asynchronous constraint.

3 | bestt— Tc'm'_g‘;f““ws's() containingn elements, with at most inputs, the worst-case

3 | for i« 1upto Mazlterations complexity of this optimal retiming algorithm 8 (n2log(n)).

. 5 CRmeALLoaIc() In contrast, we have implemented an incremental retiming
6 Circuit — OPTIMIZE(s) algorithm that is linear in complexity and produces results that
g fﬂg;‘E)LAENTALPLACEMENTO (if necessary) are very close to optimal [20]. The basic idea behind our re-
9 t — TIMINGANALYSIS () timing scheme is to perform a series of backward and forward
10 o= bestt retiming iterations. During a backward retiming iteration, we

12 bestc — Circuit identify registers whose inputs come from a critical or a near

end if
end for
Circuit < bestc

critical path. These registers are then pushed backwards across
the logic driving it as illustrated in Figure 6a. During a foward

retiming iteration, we identify registers whose outputs are
Fig. 5. A framework for timing-driven optimization circuit optimization. connected to a critical or a near critical path. These registers
are then pushed forwards across the logic being driven as
illustrated in Figure 6b. During both backward and forward
pushes we have to ensure that the functionality of the circuit

We now describe four timing-driven optimization algois unchanged during powerup and reset conditions. Registers
rithms. The first two, incremental retiming and BDD-baseith Stratix and Stratix Il are set to zero on powerup. Reset
resynthesis, are used during both coarse and fine physigigihals also set the register to zero. In Figure 6, following the
synthesis, and the last two, local rewiring and logic replicatiobackward and forward pushes, the functionality of LUfs
are used during fine physical synthesis only. There are slightand / is changed so as to preserve the powerup and reset
differences between the versions of the algorithms used duriigictionality expected of the subcircuits illustrated.
the two physical synthesis steps. The versions used during
coarse physical synthesis target a larger portion of the circuit
and have a greater freedom in restructuring the circuit than
the versions used during fine physical synthesis.

All four timing-driven optimizations use the algorithmic
layout illustrated in Figure 5. A call to timing analysis is
the first major task performed by each algorithm. In addition
to helping determine the slacks and slack ratios for each
connection in the circuit, timing analysis returns the minimum
slack in the circuit. We use the minimum slack to judge the
quality of a circuit during the optimizations. Each iteration
begins by identifying the critical and near critical logic in
the circuit (line 4). We then perform optimizations on the
selected logic (line 6). This is the step where each of the four
optimization techniques perform different operations. If any
of the physical synthesis constraints are violated during an Fig. 6. An example of backward and forward retiming pushes.
optimization, the optimization is undone and an unmodified
circuit is returned. Following the optimizations, incremental The worst case complexity of our retiming algorithm is
placement is used to integrate the changes made to the cir€#n), where K is the number of retiming iterations and
into the existing placement. This call is used only during is the number of nodes in the circuit. Given thit is a
the fine physical synthesis step. At the end of each iteratioanstant, the algorithm has linear time complexityn).

(lines 10-13), the modified circuit is saved if timing has been

IV. TIMING-DRIVEN CIRCUIT OPTIMIZATIONS

improved. Once all iterations have completed, the best circuit Y

discovered during the iterations replaces the initial circuit. e
- P 7

A. Incremental Retiming ﬁS_

Sequential retiming is a powerful logic optimization tech-

mrom
wr |l 5
-1 P

nique for synchronous circuits which uses the property that f\
flip flops can be taken from the outputs of gates and moved to 1| -

their inputs, or vice versa. Using these moves in combination, —4
one can attempt to maximize circuit speed and minimize area. ﬁS_ non-critical
This technique was first introduced in the early 1980’s by Tlwrll pg
Leiserson and Saxe [8] [9] where an optimal solution to the ") bn

retiming problem is presented. The solution involves solving
a system of difference equations. For an FPGA circuit netlist Fig. 7. Backward Push across a Carry Chain.

subfunctions
gl(Y)792(Y)> e agk(y)

such thatf can be re-expressed in terms of e

f(X,01(Y), 92(Y), -+, gx(Y))

The set of variableX is referred to as th&ree setand the set

® ® of variablesY is referred to as theound setlf there are no
variables common td&X andY’, the decomposition is said to
be disjoint Otherwise the decomposition mon-disjoint We
consider both disjoint and non-disjoint decompositions during

. . : . synthesis.
One of the complexities of implementing this incrementdf . . .
retiming algorithm for FPGAs lies in handling the com- The LUTs in an FPGA are capable of implementing any

plexities of carry chains. These chains provide high-speg“wcnon of k vanablgs. Thus, fun_c_tlonal decomposition (a_s
opposed to algebraic decomposition) can be used to find

implementations of arithmetic logic and our internal experi- bfuncti that fit naturally into LUTS. The struct fth
ments indicate that they are often involved in performanc dotunctions that it naturafly nto s. 1he structure ot the
ecomposition may have a significant impact on timing. Our

critical regions of logic. The most important constraint tha . . o
9 9 P gcomposmon technique attempts to structure the circuit in

we must observe is that the carry chain cannot provi h to minimize th ber of logic levels t d
registered versions of the carry signal propagating betwegh! & Way as 1o minimize the nUMBET ot logic [evels traverse

elements. These carry connections must be strictly combir?g-;m'calgs.'ﬁnatls‘t th f thesis. First a LUT
tional. This restriction prevents our algorithm from pushin gure = 1ustrates the process of resyntnesis. Frst, a

registers across individual elements of any particular chai ywth critical inputs is identified. Next, a cone of logic rooted

Instead, we perform “group pushes” across entire chains. Tﬁ]tsg IS gg)l\gm'z-rhe cone tl's thtehn cfolla[t)_sed I!'?to ?timgle LU.T
ensures that the chain remains in a legal configuration aftefd ? red [F] rer;reselndlng € u.?.c lonal ny edcg.ne Itls
register push. Figure 7 illustrates this situation. Suppose gfgpstructed. Functional decomposition 1s performed directly
the registerry has a critical input. We can then perform En the BDD [7]. At each step of the decomposition, a single

Fig. 8. Incompatible Secondary Signals.

backwards group push across the entire chain where regis H[})S-E) swtdalilr? f%rDtge_ target archlte(;:t_uret IS extr?c;thed frc;m tth?j
ro...r3 are moved backwards to the inputs of the chai and the IS reexpressed In terms ot the extracte

Notice that register, is not fed directly by the chain and isLUT' This procedure is continued until the remaining BDD

fed by a non-critical connection. Normally, this register wouIHtS into a single LUT.

never be moved backward because it isn’t directly involved

with a timing-critical path; however, we actively search for m

these types of situations to enable a legal group push. ﬂ :Dib
Another complexity introduced by our FPGA architectures , ﬂ;

is the diverse functionality provided by the configurable regis- :Ddf

ters. These registers offer features such as clock enables, syn-

chronous clears/loads and asychronous clears/loads. Registers ﬂj

Fig. 9. The BDD-based resynthesis operation.

can only be pushed across a logic element if they contain
exactly the same set of these secondary control signals [3].
There are many situations where critical pushes may involve

registers that have incompatible control signals. Consider they, example of BDD-based functional decomposition is

case shown in Figure 8(a). Suppose that the registétas gien in Figure 10. The figure illustrates a reduced, ordered
a critical output, but the clock enable signais; and en; gpp for the function

are distinct. Retiming theory would disallow a seemingly -
beneficial forward push; however, we attack this problem by f=p@+q+r)s+ (p+q+r)(st+35u+ sta)

decomposing the registers and r; into simpler forms that . . .
b g gisters " b ere, we have chosen an alphabetical ordering of the variables

contain explicit enable logic as shown in Figure 8(b). ThiF ; :
decomposition now allows us to push the registers forwa?%rt the BDD of . However, during resynthesis, we use a

sifting [17] procedure that helps move non-critical variables

to the top of the BDD. Acut in the BDD establishes two

B. BDD-Based Resynthesis sets of variables. The_variables above the cut c_onstitute the
’ bound set and the variables below the cut constitute the free
The BDD-based resynthesis algorithm finds alternativeet. Figure 10 illustrates a cut ifi that separates the bound

functional decompositions for the critical or near critical logiset, {p, ¢, 7}, from the free set{s,¢,u}. The portion of the

in the circuit. Given a functionf(X,Y") defined over two BDD above the cut references two distinct functiofis,and

sets of variablesX and Y, functional decomposition finds f;, below the cut. Thus, the portion of the BDD above the cut

and improve the critical path.

can be replaced by a single boolean variapthat determines
whetherf, or f; is to be selected. A separate BDD computes
the value forg, and in the new BDD forf, f, is selected
wheng = 0 and f; is selected whery = 1. Note that this
encoding is abitrary. We could have just as easily sele¢ged 9

wheng = 1 and f; wheng = 0. The resulting decomposition v
can be expressed as

(a) Local Rewiring. (b) Logic Replication
g = prg+r : . .
Fo= g5+ §(§t L ut sfﬂ) Fig. 11. Rewiring and Replication
g to the target ofc. The logic replication algorithm performs
this transformation on critical signals driven by multi-fanout
sources.

V. RESULTS

In this section, we provide experimental results illustrating
the predictive power of both coarse and fine physical synthesis.
In addition, we demonstrate the effeciveness of our two-stage
approach for performance optimization of a large industrial
benchmark suite.

A. Coarse Prediction

3500

3000

2500

Fig. 10. An example of BDD-based decomposition.

2000

d Delay (ps)

We refer the interested reader to [15] for a description of ; **
heuristics used for cone expansion and subfunction extraction.

C. Local Rewiring 500

Figure 11(a) illustrates the local rewiring optimization [14]. : —Aoproximate Gain
We identify a pair of LUTsf and g connected by a critical s + Post-Routing Gain
signalc. Using functional decomposition techniques, we deter-
mine if the overall timing of the two LUTs can be improved
by swapping some of the non-critical signals attachedf to Fig. 12. Coarse Physical Synthesis.
with some of the critical signals attached to Although
local rewiring and BDD-based resynthesis use functional de-As discussed previously, the coarse prediction techniques
composition techniques, they operate on two different scalessign a delay value to a connection based on characteristics
Local wiring considers two LUTs at a time while BDD-of the source and sink. These delay values are determined
based resynthesis considers entire cones. The result is thatthecomputing the average delay for each connection type
operations carried out during local retiming have much momwer a large number of benchmark circuits and a number of
predictable timing changes and introduce very little illegalitplace and route runs. Figure 12(a) demonstrates the effect of

(a) Delay Prediction. (b) Correlation Results.

into the existing circuit. this approximation technique on a single benchmark circuit.
) o We plot the final routed delay vs. the approximate delay for
D. Logic Replication each connection in the netlist. This graph shows a number

Following placement, a LUT that drives a signal with severalf vertical “delay bands.” The banding results from the fact
fanouts may be placed at a location that is not ideally suitdltht we assign a single delay value to each connection type;
for any of its fanouts. For example, in Figure 11(b), LUThowever, each of these connection types are likely to have
h drives two LUTsi and j, and it has been placed at adifferent placements as well as routings.
location that balances its need to drive both LUTs at the sameThe test of any approximation technique lies in its predictive
time. However, if connectior: is critical, we can replicate power. Figure 12(b) illustrates the predictive power of the
h to produce a new LUTh' which can be placed closercoarse physical synthesis approach. The graph shows the

approximate performance gains predicted by using our timinG- Results on Industrial Circuits
driven netlist optimizations in conjunction with the coarse

prediction technique for approximately 100 industrial circuits
A second curve shows the actual gain that results po
routing. The general trend shows that a prediction of a lar
performance gain usually results in a significant performan
gain after place and route. The correlation coefficigkt i6 a
statistical measure that expresses how closely two variables
linearly related. Predictive strength is computed by measuri
the correlation coefficient between the approximate gains &

180%

160%

140%

120%

100%

80%

Performance Improvement

post-routing gains. We find tha,,.,.sc = 0.5. A value of 0 o Geometric Average = +13.1% il
! I .) A 20% eometric Average = +13.1% |||II||”|I
Lgdg;aﬁzitn;epéi?iﬁve power, while a value lotorresponds o sesnneeeeesat T EEEITITIIE

Circuit

B. Fine Prediction

Fig. 14. Physical Synthesis Results.

7000

6000

Although, we have greater predictive power using our fine
physical synthesis approach there is a limitation in the amount
of restructuring that is possible since we must incrementally
sift modifications into the existing placement. Therefore, our
approach involves making large scale and aggressive circuit
optimizations during coarse physical synthesis. During late
physical synthesis, we attempt to use the greater predictive
power to “fix” any paths that were missed during the coarse
optimizations. Figure 14 demonstrates the performance gains

5000

4000

d Delay (ps)

3

t

5 3000
3
€

2000

1000

e e e e - Approximate Gain that were obtained using our two-stage flow on a Stratix Il
Approximate Delay (ps) -~ Post-Routing Gain . . N . ;

o _ industrial benchmark suite (design sizes range from 5000—

(&) Delay Prediction. (b) Correlation Results. 110000+ LEs). We find that the average performance gain

Fig. 13. Fine Physical Synthesis. is approximately 13%. For this performance gain, the area

penalty is a relatively small 3.6% increase in logic elements.

Once placement is completed, the timing-driven optimizz}-h('js_ res_ult_l IS cons(letent ?CLOST a_II AIteLa '_:PGAl families
tion techniques discussed previously are used to impro@ is similar regardless of the logic synthesis tool (Quartus

the circuit’s critical path. Since placement is completed, tHQtegrated Synthsis or leading third party solutions).

delay of every connection can be estimated by computing an
approximate route for the connection. The approximation that VI. CONCLUSIONS
we use is to assume that the fastest possible route is available
from the source to the sink. This calculation is extremely We have presented a two-stage physical synthesis approach
fast since it can be efficiently cached and it is reasonaf§f FPGAs. These techniques typically provide a 10%-15%
accurate. Critical connections tend to be assigned to the fasR&formance improvement for an “average” circuit and a
possible route since the Quartus Il router will attempt tgignificant fraction of the circuits have a gain between 20%
optimize timing as much as possible. Our approximation is n@fd 180%.
accurate for non-critical signals since the router may use non-Our future research will focus on two areas. The first is
optimal paths to avoid congestion; however, our timing-drivemproved prediction in coarse physical synthesis by examining
optimizations generally target regions of the circuit involvingetlist structure or performing coarse and quick placement. All
the most timing critical logic. As before, Figure 13(a) depictsf these techniques will attempt to assign predicted delays to
this effect for a single benchmark circuit. Clearly, our fineonnections; however, we feel that path-based prediction may
physical synthesis approximation is very close for the majorityffer the greatest opportunities. Path-based schemes would
of connections. attempt to predict the criticality of entire paths early in the
Figure 13(b) demonstrates the predictive power of the fifgAD flow rather than attempting to accurately compute the
physical synthesis techniques. We find thag;,. = 0.8. delay of each connection.
Clearly, our approximations are always optimistic. However, The second area of research involves additional physical
the general trend shows that we have greater fidelity betwesmthesis stages. For example, there are certain constrained
our prediction and the post-routing result than the coarsetimizations [23] that can occur after routing and take ad-
physical synthesis approach. vantage of the greatest possible timing predictability.

[1]
[2]

3]
[4]
[5]

[6]

[71

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES

Altera. Altera Databook

R. E. Bryant. Graph-Based Algorithms for Boolean Function ManipulatiB&E
Transactions to Computer¥ol. C-35, No. 8, Aug. 1986, pp. 677-691.

K. Eckl, J.C. Madre, P. Zepter and C. Legl. A Practical Approach to Multiple-Class
Retiming. DAC, 1999.

R. Hitchcock, G. Smith and D. Cheng. Timing Analysis of Computer-Hardware.
IBM Journal of Research and Developmedan. 1983, pp. 100-105.

Y. Jiang, A. Krstic, K. Cheng and M. Marek-Sadowska. Post-Layout Logic
Restructuring for Performance Optimization. Rroceedings of the Design Au-
tomation ConferenceAnaheim, CA, June, 1997, pp. 662—665.

L. Kannan, P. Suaris and H. Fang. A Methodology and Algorithms for Post-
Placement Delay Optimization. IAroceedings of the Design Automation Confer-
ence San Diego, CA, June 1994, pp. 327-332.

Y-T. Lai, K-R. Pan and M. Pedram. OBDD-Based Functional Decomposition:
Algorithms and ImplementatiodEEE Trans. On Computer Aided Desjgwol.

15, No. 8, 1996, pp. 977-990.

C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circddwynal of
VLSI and Computer Systensages 41-67, 1983.

C. Leiserson and J. Saxe. Retiming synchronous circuitgorithmicg 6(1):5—

35, 1991.

D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C.
McClintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and J. Rose.
The Stratix Routing and Logic Architecture FPGA '03, ACM. Symp. FPGAs
pages 15-20, 2003.

D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M.Bourgeault, D. Cashman, D.
Galloway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock,
K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens,
R. Yuan, R. Cliff and J. Rose. The Stratix Il Logic and Routing Architecture. In
FPGA '05, ACM Symposium on FPGAsages 14—20, 2005.

Y. Lian and Y. Lin. Layout-based Logic Decomposition for Timing Optimization.
In Proceedings of the Asia Pacific Design Automation ConfereHomg Kong,
Hong Kong, Jan. 1999.

J. Y. Lin, A. Jagannathan and J. Cong. Placement-Driven Technology Mapping
for LUT-Based FPGAs. InProceedings of the ACM Int. Syposium on FPGAs
Monterey, CA, Feb. 2003, pp. 121-126.

V. Manohararajah, D. P. Singh, S. D. Brown and Z. G. Vranesic. Post-Placement
Functional Decomposition for FPGAs. FProceedings of the International Work-
shop on Logic Synthesiemecula, CA, June 2004, pp. 114-118.

V. Manohararajah, D. Singh and S. Brown. Timing Driven Functional Decompo-
sition for FPGAs. To appear iWLS'2005

M. Pedram and N. Bhat. Layout Driven Logic Restructuring/Decomposition. In
Proceedings of the Int. Conf. on Computer-Aided Desigan Jose, CA, Nov.
1991, pp. 134-137.

R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
Proceedings of the Int. Conf. on Computer Aided Desfggmta Clara, CA, 1993,
pp. 42-47.

K. Schabas and S. D. Brown. Using Logic Duplication to Improve Performance
in FPGAs. InProceedings of the ACM Int. Syposium on FPGMenterey, CA,
Feb. 2003, pp. 136-142.

M. Sheng and J. Rose. Mixing Buffers and Pass Transistors in FPGA Routing
Architectures. InProceedings of the ACM Int. Symposium on FPG¥enterey,

CA, Feb. 2001, pp. 75-84.

D. Singh, V. Manohararajah, S. Brown. Incremental Retiming for FPGA Physical
Synthesis. To appear iDAC'2005

D. P. Singh and S. D. Brown. Incremental Placement for Layout-Driven Optimiza-
tions on FPGAs. IrProceedings of the Int. Conf. on Computer-Aided Desam
Jose, CA, 2002, pp. 752—-759.

D. Singh and S. Brown. Integrated Retiming and Placement for Field Program-
mable Gate Arrays. IRroceedings of the ACM Int. Syposium on FPG#snterey,

CA, Feb. 2002, pp. 67-76.

D. Singh and S. Brown. Constrained Clock Shifting for Field Programmable Gate
Arrays. InProceedings of the ACM Int. Syposium on FPGMsnterey, CA, Feb.
2002, pp. 121-126.

G. Stenz, B. Riess, B. Rohfleisch and F. Johannes. Timing Driven Placement in
Interaction with Netlist Transformations. International Symposium on Physical
Design Napa Valley, CA, 1997, pp. 36—41.

T. Tien, H. Su and Y. Tsay. Integrating Logic Retiming and Register Placement.
In Proceedings of the Int. Conf. on Computer-Aided Desiggn Jose, CA, 1998,
pp. 136-139.

B. van Antwerpen, M. Hutton, G. Baeckler and R. Yuan. A Safe and Complete
Gate-Level Register Retiming Algorithm. IWLS 2003 pages 140-147, 2003.
Xilinx. Xilinx Databook

