
Design and Implementation of the NUMAchine Multiprocessor
�

A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux,
K. Loveless, N. Manjikian

�

, S. Srbljic
�

, M. Stumm, Z. Vranesic and Z. Zilic
�

Dept. of Electrical and Computer Engineering, University of Toronto, Canada

Abstract

This paper describes the design and implementation of
the NUMAchine multiprocessor. As the market for
CC-NUMA multiprocessors expands, this research
project provides a timely architectural design and
cost-effective prototype. The key to the successful
implementation of our 48-processor prototype is the use
of off-the-shelf components and programmable logic
devices. Since this machine will serve as a research
vehicle for parallel software development, a number of
hardware features to enhance experimentation have
been included in the design.

1 Introduction

This paper describes the hardware implementation of a multipro-
cessor called NUMAchine [7]. In NUMAchine, processors, caches,
and memory are physically distributed throughout the system. The
memory is shared by all processors, but the access latency depends
on location. Hardware automatically maintains coherent copies of
data throughout the system. This type of multiprocessor is known
as a CC-NUMA (Cache-Coherent Non-Uniform Memory Access)
distributed shared-memory multiprocessor. CC-NUMA multipro-
cessors are quickly gaining commercial acceptance for use as pow-
erful compute, file, network and web servers. The shared-memory
model eases the transition from uniprocessor-based software. In ad-
dition, multiprocessors that support sequential consistency provide
ease-of-programming by extending the already familiar uniproces-
sor programming model.

There has been considerable research interest into how to design
CC-NUMA multiprocessors to achieve maximum performance.
The Stanford DASH [5] multiprocessor is a mesh-based system
that uses separate request and response communication networks.
The follow-on project, FLASH [4], is centered around the MAGIC

�
This work was supported by the Strategic Grant #STR0149404 from the

Natural Sciences and Engineering Research Council of Canada�
now with Queen’s University at Kingston, Canada�
with University of Zagreb, Croatia�
now with Lucent Technologies, Allentown, PA, USA

Global Ring

Local Ring

Local Ring Side

Global Ring Side

Inter-Ring

Local

IRIIRI

IRIIRI

Ring
Controller

Station
3

Station
2

Station
1

Station
0

FIFO
FIFOInterface

(IRI)

Ring 0
Local
Ring 1

Local
Ring 3

Local
Ring 2

Ring
Controller

Figure 1: NUMAchine Architecture

chip, a customized RISC engine acting as coherence, network, and
memory controller. Both DASH and FLASH use MIPS-based com-
puting nodes. In contrast, the MIT Alewife project [1] uses the
custom-designed Sparcle processor that tolerates memory latency
by quickly switching among multiple threads.

In addition to high performance, we are also concerned with cost,
ease-of-programming and providing features for parallel software
research. The NUMAchine architecture is hierarchical and mod-
ular so that small systems can be affordably extended into larger
ones, up to a few hundred processors. A directory-based hardware
cache coherence protocol scales efficiently with system size by ex-
ploiting the hierarchical architecture. The architecture is also ex-
ploited to efficiently implement a sequentially-consistent memory
model. As well, NUMAchine includes novel hardware features that
enhance experimentation. First, non-coherent operations and direc-
tory manipulation features permit direct comparison between hard-
ware and software cache coherence. Second, block data transfers
and coherence operations reduce cache pollution, bandwidth use,
and overhead. Third, a hardware barrier register supports efficient
parallel synchronization. Fourth, flexible and non-intrusive perfor-
mance monitoring hardware improves the observability and accu-
racy of software-only measurement schemes.

The 48-processor prototype system is based on 150 MHz MIPS
R4400 processors. It has a peak performance of 1.7 GFLOPS and
a peak bandwidth of 400 MB/s at any point in the interconnection
network. The prototype is constructed entirely with off-the-shelf
components and programmable logic devices (PLDs) without com-
promising our goal of a 50 MHz system clock. The use of PLDs
allows for a low cost implementation and rapid resolution of prob-
lems. PLDs also provide the flexibility to implement new ideas by
modifying some of the novel hardware features described above.

2 NUMAchine Architecture

This section gives an overview of the NUMAchine multiprocessor.
Computing nodes are clustered into bus-based units called stations.



A NUMAchine station uses a bus to connect four processor mod-
ules, up to two memory modules, a network interface module, and
up to two I/O modules. Depending on the address, processors trans-
parently access either local or remote memory. Remote memory re-
quests are handled by the network interface, which routes them to
the correct remote station. The network interface also includes a
third-level network cache for holding data from remote memories.

Stations are interconnected by a hierarchical arrangement of uni-
directional bit-parallel rings, as shown in Figure 1. This architecture
provides modularity and flexibility because stations may be added
to rings as necessary, and the depth of the hierarchy can be extended
for more rings. Hierarchical rings, as an alternative to meshes, have
been shown to perform well for systems with up to 128 processors
and workloads with medium to high memory access locality [6].

A slotted-ring protocol transfers data packets across the network
and then reassembles these packets at the remote station. Each ring
packet is a portion of a bus transaction augmented with additional
routing information. The routing information is contained in a set of
routing masks, one for each level of the hierarchy [3]. The bits in a
routing mask correspond to siblings in that level of the hierarchy. If
a particular bit is set, a copy of the packet descends to the children in
that group. Packets only travel as high as necessary in the network
to reach all the targets. This routing mask mechanism provides a
concise way to multicast and broadcast data, and is used by the cache
coherence protocol to maintain the directories.

The choice of a ring topology for the interconnection network
provides three important benefits. First, the unique path between
any two points in the network maintains the relative ordering of
packets between the same source and destination. Second, the ring
topology provides an efficient method for multicasting and broad-
casting. Third, the point-to-point ring connections simplify wiring
and allow for a simple routing scheme. The first two benefits allow
for an efficient cache coherence implementation, while the third al-
lows fast data transmission rates.

The NUMAchine write-back/invalidate cache coherence proto-
col is hierarchical, ownership-based, and uses directories to main-
tain information on cache lines. The directories maintain cache line
state information and locations, represented by routing masks. The
routing mask scheme permits the directory to scale logarithmically
as the system size increases [3]. The protocol supports sequential
consistency by exploiting the order-preserving properties of the ring
hierarchy.

3 Design Methodology

Our design methodology relies on the use of commodity compo-
nents to satisfy cost constraints and to reduce design time. These
components include two types of PLDs: FPGAs and CPLDs. PLDs
permit hardware-software co-design and allow the hardware to be
later modified to support new features.

Our design flow consisted of multiprocessor simulations to de-
fine the architecture, design partitioning into multiple printed-circuit
boards (PCBs), and bottom-up design of each PCB. The simulations
guided the selection of architectural parameters, such as the number
of ring levels, stations per ring, and processors per station. These
parameters then guided the partitioning into multiple PCBs. The
bottom-up design methodology for each PCB consisted of the fol-
lowing steps: (1) logic partitioning, (2) assignment of logic to com-
modity components or PLDs, (3) design entry for PLDs, (4) high-
level schematic design entry, (5) board- and system-level simula-
tion, and (6) PCB layout.

The CAD tools used for hardware design were Cadence
Logic Workbench (LWB), Cadence Allegro Layout and Altera
MAX+plus II. The two Cadence tools provide a state-of-the-art
system for the implementation of digital systems. We used LWB
for board-level schematic capture and simulation, and Allegro for

External Agent

72

L2 Cache
64K × 144

MIPS

addrdata
16

144

Local Bus

FIFO
FIFO addr data

Local I/O72 72

72

72

1624

Station Bus

& Monitor

Bus Controller

R4400

addr/data

addr/data

Figure 2: Processor Board

PCB layout. MAX+plus II supports logic implementation in Altera
PLDs using graphical and text-based design entry methods, as well
as full timing simulation. The bottom-up PCB design approach
resulted from difficulties encountered in integrating LWB and
MAX+plus II, as documented in an earlier paper [2].

4 Hardware Implementation

Our overriding design goal is high performance within our cost con-
straints. All boards, busses, and rings operate at 50 MHz, and pro-
cessors run internally at 150 MHz. Achieving such speeds with cur-
rent PLDs is a major challenge: clever design methods and careful
hand-tuning of circuits is often necessary. Experience guides how
and when to apply these manual optimizations [8].

The use of field-programmable devices enabled the design of cus-
tom controllers without the higher cost of full-custom chip design.
Reprogrammability allowed rapid resolution of problems in the de-
sign. Furthermore, the rapid pace of technological improvement in
programmable devices enabled, as well as encouraged, prototyping
and revisions to integrate multichip designs into a single chip for
equivalent cost. The end result is an operational system in less time
and at a lower cost than full-custom design.

4.1 Processor Board
The NUMAchine processor board uses a MIPS R4400 64-bit pro-
cessor running at 150 MHz, with 1 MB of second-level (L2) cache
as shown in Figure 2. The 128-bit L2 cache interface runs at 75 MHz
and is controlled entirely by the processor, while the 64-bit1 exter-
nal (system) interface runs at 50 MHz. To communicate with ex-
ternal memory, the R4400 requires an External Agent (EA) circuit.
The EA accepts requests from the processor, and forwards external
requests for retrieving or invalidating L2 cache lines to the proces-
sor. The EA also serves as a bridge to an on-board local bus. The
FIFO buffers between the EA and the station bus hold bursts of in-
coming requests/responses and outgoing write-back data from the
processor. A mailbox register feature in the FIFOs allows a read re-
quest to bypass write-backs waiting in the queue. Read requests are
given higher priority and issued to the memory as soon as possible.
The bus controller manages data transfers between the FIFOs and
the station bus.

172-bit connections are shown in the figures. These include data and par-
ity/ECC bits



Special72

Interleaved

FIFO
FIFO

Master

72 72

Directory

addr

addr/

data

addr

data

addr/data

72

32

72

72 72

64

64

Bus Controller

Station Bus

data

Controller

Functions &
Monitor

Coherence
ControllerDRAM

32M × 72
2M × 16

Figure 3: Memory Board

The on-board local bus provides a serial port, boot PROM, lo-
cal hardware monitoring, and a connection to a diagnostic board for
bootstrap debugging. The local bus also contains interrupt and bar-
rier registers. The interrupt register provides an efficient mechanism
for externally-generated interrupts, while the barrier register sup-
ports efficient global synchronization for parallel applications.

4.2 Memory Board
A block diagram of the Memory board is shown in Figure 3. FIFOs
receive and send packets to the bus through the Bus Controller. The
Master Controller provides control signals for the FIFOs and coor-
dinates the other functional blocks. A DRAM controller manages up
to 256 MB of local DRAM. The Coherence Controller maintains
a directory in SRAM and implements all of the coherence actions
and state transitions for the cache coherence protocol. For 128-byte
cache lines, 4 MB of directory SRAM are needed for 256 MB of
DRAM. The Special Functions and Monitoring unit manages spe-
cial hardware functions on address ranges, described in Section 4.7,
and generates interrupts.

For high performance, the DRAM memory is 4-way interleaved.
Furthermore, data access is overlapped with cache coherence op-
erations, and successive memory requests are pipelined. For each
memory request, the master controller starts the Cache Coherence
and the DRAM controllers simultaneously. While the DRAM is ac-
cessed, the directory entry is updated and the header packet for the
response is placed in the outgoing FIFO. Data packets from DRAM
are then placed in the outgoing FIFO (64 bits every clock cycle).
There is sufficient buffering to permit processing of the next request
as soon as the directory entry has been updated for the previous re-
quest. A single memory board can nearly saturate the bus with re-
sponse data. When two memory boards are used together on a bus,
they are interleaved at the cache-line level to increase parallelism
and reduce total latency.

4.3 Network Interface Board
The main components of the Network Interface board are the BTOR
(Bus TO Ring) interface, the RTOB (Ring TO Bus) interface, and
the Network Cache, as shown in Figure 4. The Network Cache con-
sists of the Coherence Controller, 8 MB of SDRAM to cache data
from remote memories, and a directory (512 KB of SRAM). The
BTOR controller moves data from the incoming bus FIFO to the
outgoing ring FIFO or into the network cache input buffers. It also

Bus Controller

FIFO
FIFO

Coherence

Cache

72 72

Directory

FIFO

FIFO

Staging

FIFO

72

72 72

72

72 Network

BTOR
RTOB

Station Bus

Cache

Controller

1M × 72

128K × 32

SRAM
32K × 72

FIFO

Ring
Controller

Figure 4: Network Interface Board

moves data from the network cache output buffers to the outgoing
ring FIFO. The Ring Controller sends this data as individual 64-bit
ring packets mixed in with existing ring traffic. At the destination,
packets are transferred from the ring into the incoming ring FIFO.
These packets are reassembled into cache lines by the RTOB con-
troller in the Staging SRAM and then sent to the network cache input
buffers or to one of the outgoing bus FIFOs. The network cache al-
ternates packet processing between the two sides. On each request,
the Coherence Controller updates the directory information accord-
ing to the NUMAchine protocol and may generate responses to the
BTOR and/or RTOB sides.

The datapaths on the Network Interface board were initially im-
plemented using discrete buffers. The large number of components
required for this implementation complicated the layout of the PCB.
In the following revision of the board, we were able to implement
this datapath with FPGAs and realize a net savings in cost. This re-
design also yielded improved performance by adding more paral-
lelism to the datapaths.

4.4 I/O Board
The I/O board contains a 100 MHz MIPS R4650 processor, up to
32 MB of DRAM storage, 4 DMA channels, and a 33 MHz PCI bus.
The PCI bus connects up to 4 SCSI controllers and one PCI expan-
sion slot. The R4650 manages all data transfers and can also execute
protocols for parallel I/O and networking. The I/O board is designed
to facilitate parallel I/O research through a flexible bus interface and
efficient polling/interrupts.

4.5 Station Bus
We chose the Futurebus+ physical backplane for NUMAchine sta-
tions because it provides a wide bus with up to 14 card slots. We did
not, however, use the Futurebus+ protocol because it is overly com-
plex for our purposes. In addition, the Futurebus+ protocol chips
available during our early design work did not meet our 50 MHz
speed requirement. We designed a custom, synchronous, split-
transaction protocol with a centralized, pipelined arbiter. The core
datapath width is 64 bits; a 128-bit bus was considered, but architec-
tural simulations indicated that the marginal improvement in perfor-
mance did not justify the cost and complexity.

The synchronous protocols for NUMAchine necessitate low-
skew clock distribution. For each station, we generate a central
clock signal which is then replicated and distributed to all boards



using differential ECL for low-skew fanout and noise immunity.
Additionally, phase-locked loops are employed to reduce the clock
skew.

4.6 Rings
A local ring in NUMAchine is assembled by connecting together the
Network Interface boards of up to four stations with high-density,
controlled-impedance ribbon cables. The Ring Controller on the
Network Interface board adds only a single cycle delay to traffic
traveling to the next station. When a packet reaches its final desti-
nation, it is removed from the ring and a new packet can be injected
by the Ring Controller. In addition, it can simultaneously source and
sink data at the maximum link transmission rate of 400 MB/s.

The Ring Controller is implemented as a single CPLD and a num-
ber of discrete tri-state registers. The ring clock rate of 50 MHz is
limited by the speed at which our design can multiplex the data be-
tween the ring traffic and new traffic from the station. A full-custom
implementation would allow for a much faster ring clock rate.

To assemble a larger NUMAchine system, the ring hierarchy
must be expanded to another level. Rather than constructing four
Inter-Ring Interface boards as shown in Figure 1, which would be
limited to the same speed as the local rings, we decided to construct
it in a more centralized fashion. A Global Ring (GR) backplane
was designed with two types of daughter cards. A Local Ring Inter-
face (LRI) daughtercard provides the local ring controller. Signals
from four LRIs are redistributed on the GR backplane to six Data-
Path (DP) daughtercards and a central controller. Each DP imple-
ments an 18-bit slice of the global ring using FIFOs and an FPGA.
This organization clusters the global ring logic so that a clock rate
of 80 MHz can be achieved for a maximum data rate of 640 MB/s.

4.7 Novel Hardware Features
Dedicated monitoring circuitry is included in all parts of NUMA-
chine, including the processor, memory, and interconnect. Appli-
cations can reconfigure the FPGA-based monitoring hardware for
data collection without resetting the machine. Most of the moni-
toring circuits comprise a large FPGA, fast 64K � 32 SRAMs, and
supporting CPLDs. A novel concept that is included throughout the
monitor is that of a phaseID, which is derived from a writable 4-bit
register on each processor board. The phaseID, which is attached to
all transactions leaving the processor, can be used by an application
to separate performance data into fine-grained phases. The moni-
toring hardware on each processor board can separately count mon-
itoring events based on transaction type, phaseID, or address range.
The monitoring hardware on the memory board can use these filters
as well as the originating processor and cache line state.

Additional specialized hardware also provides uncached opera-
tions, non-coherent operations, and special functions. Uncached op-
erations bypass the secondary and network caches. Non-coherent
operations still use caches, but bypass the cache coherence pro-
tocol when transferring cache lines. Special functions provide
low-level control including directory read/write operations, return-
ing modified cache lines to memory, invalidating copies of cache
lines system-wide, multicasting of cache lines, block data transfers,
prefetching into network caches, and forced write-backs to home
memory. In addition, the prototype supports 64-byte or 128-byte
cache lines.

4.8 Performance
Table 1 gives the measured latency of read requests on the proto-
type hardware in 150 MHz processor cycles and 50 MHz system cy-
cles. Note that for remote requests, 1 hop across the ring was used
for the data in the table because the numbers were measured on a

Level of Procr. cycles Sys. cycles
hierarchy (6.67ns) (20ns)
L1 cache 1
L2 cache 6
Local memory 135 45
Local network cache 165 55
Other L2 cache 255 85
Rem. mem. (same ring) 594 198

Table 1: Measured memory access latencies

two-station system. Although not measured, the additional latency
to traverse the global ring is estimated to be 24 system cycles.

5 Current Status

Currently, a 4-station (16-processor) NUMAchine system is oper-
ational. Further information, including photographs, can be found
on the WWW.2 A custom parallel operating system with a UNIX-
like interface, called Tornado, has been developed. The operat-
ing system boots, allows logins, and runs various applications. All
of the boards for the NUMAchine prototype have been fabricated.
The hardware components are being integrated together to form the
complete system.

References

[1] A. Agarwal et al. The MIT Alewife Machine: Architecture and
Performance. In Proc. of the 22nd Annual ISCA, pages 2–13,
June 1995.

[2] S. Brown et al. Experience in Designing a Large-Scale Mul-
tiprocessor usign Field-Programmable Devces and Advanced
CAD Tools. In Proc. of the 33rd DAC, pages 427–432, Las Ve-
gas, NV, June 1996.

[3] K. Farkas, Z. Vranesic, and M. Stumm. Scalable cache consis-
tency for hierarchically-structured multiprocessors. J. of Super-
computing, pages 345–368, 1995.

[4] J. Kuskin et al. The Stanford FLASH Multiprocessor. In Proc.
of the 21st Annual ISCA, pages 302–313, Chicago, IL, May
1994.

[5] D. Lenoski et al. The DASH prototype: Implementation and
performance. In Proc. of the 19th Annual ISCA, pages 92–103,
Gold Coast, Australia, May 1992.

[6] G. Ravindran and M. Stumm. A Performance Comparison of
Hierarchical Ring- and Mesh-Connected Multiprocessor Net-
works. In Proc. of the Third International Symposium on
HPCA, pages 58–69, San Antonio, Texas, February 1997.

[7] Z. Vranesic et al. The NUMAchine Multiprocessor. Technical
Report CSRI-324, Computer Systems Research Institute, Uni-
versity of Toronto, 1995.

[8] Z. Zilic et al. Designing for High Speed-Performance in
CPLDs and FPGAs. In The 3rd Canadian Workshop on Field-
Programmable Devices (FPD’95), pages 108–113, May 1995.

2http://www.eecg.toronto.edu/parallel


