
Abstract
This paper provides a case study that shows how a demanding
application stresses the capabilities of today’s CAD tools, espe-
cially in the integration of products from multiple vendors. We
relate our experiences in the design of a large, high-speed multi-
processor computer, using state of the art CAD tools. All logic cir-
cuitry is targeted to field-programmable devices (FPDs). This
choice amplifies the difficulties associated with achieving a high-
speed design, and places extra requirements on the CAD tools.
Two main CAD systems are discussed in the paper: Cadence Logic
Workbench (LWB) is employed for board-level design, and Altera
MAX+plusII is used for implementation of logic circuits in FPDs.
Each of these products is of great value for our project, but the
integration of the two is less than satisfactory. The paper describes
a custom procedure that we developed for integrating sub-designs
realized in FPDs (via MAX+plusII) into our board-level designs in
LWB. We also discuss experiences with Logic Modelling Smart
Models, for simulation of FPDs and other types of chips.

1  Introduction

This paper describes experiences designing a large-scale multipro-
cessor computer using state-of-the-art CAD for: (1) high-level def-
inition of the computer architecture, (2) detailed design entry of
prototype modules, (3) implementation of control circuitry in field-
programmable devices, (4) chip-level and board-level simulation,
and (5) printed circuit board layout. The focus of the paper is on
problems encountered because of limitations of the CAD tools and
difficulties of integrating CAD products from multiple vendors.

Our silicon strategy is based on two types of field-programma-
ble devices (FPDs): field-programmable gate arrays (FPGAs) and
complex programmable logic devices (CPLDs). These high-capac-
ity user-programmable devices were selected for their practical
advantages: low cost, instant manufacturing turnaround, and ease
of design modification. However, FPDs complicate the design in
two ways: (1) they are slower than custom-designed alternatives,
requiring more careful design techniques to achieve the desired
speed requirements, and (2) they have lower density than other
technologies, and hence consume more board area. In addition,
and particularly relevant for this paper, FPD-based design requires
a separate set of CAD tools, and we encountered major problems
with the integration of these tools with our main CAD system.

 A major challenge of our multiprocessor project is achieving
the goal of a 50 MHz clock rate for all system components, and
200 MHz for the processors. The difficulties of reaching such
speeds is exacerbated by our decision to use FPGAs and CPLDs.
The paper discusses these issues, such as the need for hand-tuning
of designs to assist the CAD tools, and the difficulty of obtaining
simulation models for the most recent, fastest FPDs.

The paper is organized as follows. Section 2 provides an over-
view of our CAD flow, and gives a general evaluation of the major
products used. In Section 3 the multiprocessor being designed is
briefly described. Section 4 focuses on design entry at both the
board and chip (FPD) levels, and Section 5 discusses our simula-
tion strategy. Section 6 is dedicated to PCB layout, and Section 7
concludes.

2  Overview of CAD Tools

An overview of our CAD flow is shown in Fig. 1. The starting
point is a custom-built multiprocessor evaluation tool that we cre-
ated to explore various architectural parameters of the machine.
After selection of parameters for a prototype implementation, the
machine was manually partitioned into multiple PCBs. As the fig-
ure shows, for each PCB there are two distinct types of compo-
nents: (i) commodity chips that are simply entered into a board-
level schematic, and (ii) FPDs to hold custom-designed logic cir-
cuitry. For (i) there is a direct path to Cadence Logic WorkBench
(LWB) [1]. LWB is the main tool in the CAD flow, providing
design entry, simulation, and layout of PCBs. Cadence Concept
was used to create a schematic of each board, and the boards were
simulated with the OpenSim backplane, which can link together
different types of simulation models for various chips. Most chips
were simulated using Verilog timing models, but for some devices
Logic Modelling Corp.’s1 Smart Models [2] library was employed.
Final PCB layout was accomplished with Cadence Allegro.

For components designated as (ii) above, a separate CAD sys-
tem was needed for logic design. The FPDs used include both
SRAM-based FPGAs and EEPROM-based CPLDs from Altera
Corp. [3]. Altera’s MAX+plusII CAD system was used for design
entry of all logic circuitry, simulation and debugging of each FPD,
generation of Verilog for board-level simulation in LWB, and out-
put of bit-patterns for programming the FPGAs and CPLDs.
Although MAX+plusII is also capable of automatically partition-
ing logic into multiple devices, we chose to do this by hand to bet-
ter control the assignment of board-level signals to individual
chips. Integration of MAX+plusII with LWB proved to be difficult,
as discussed in Section 4.

The following subsections provide general comments on our
experiences with each of the CAD tools in Fig. 1.

2.1  Cadence Logic WorkBench

LWB is a state-of-the-art CAD system for physical implementation
of digital systems. Based on our experience, a few preliminary
comments on this product are given below:

• LWB is comprehensive, offering most of the required design
tools. However, because LWB includes a large number of
inter-related options that can subtly affect performance, the
learning curve is steep and several months are needed to
become productive with the entire package.

1.  Logic Modelling Corp. merged with Synopsys in 1994.

Experience in Designing a Large-scale Multiprocessor
using Field-Programmable Devices and Advanced CAD Tools

S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat, K. Loveless, Z. Zilic, and S. Srbljic
Dept. of Electrical and Computer Engineering, University of Toronto, Canada

Email: brown@eecg.toronto.edu

33rd Design Automation Conference ®
Permission to  make digital/hard  copy of all  or part of this work  for personal or class-room use is granted without fee provided that copies are  not made 
or distributed for profit or commercial advantage, the  copyright notice, the title of the  publication and its date appear,  and notice is given that  copying is 
by permission of ACM, Inc. To copy otherwise, or to republish, to post on servers or to redistribute to lists,  requires prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA ©1996 ACM, Inc. 0-89791-833-9/96/0006.. $3.50



• Technical support for LWB itself is superb. The easiest way to
get help is to send Cadence electronic mail, which is usually
answered quickly. However, we did not experience the same
level of assistance for inquires related to interfacing LWB to
third-party software.

• The quality of on-line documentation for LWB varies. Some
packages were acquired from other organizations that were
once separate entities, but are now part of Cadence, and some
of the documentation has not been updated to match the LWB
environment. Also, some documentation is duplicated (with
differing content) and some documentation is present for non-
existent products.

2.2  Altera MAX+plusII

MAX+plusII, as shown in Fig. 2, comprises all tools needed to
implement circuits in Altera devices. Design entry may be per-
formed using schematic capture, waveform entry, Altera HDL
(AHDL), VHDL, or Verilog. Designs are automatically mapped
into any Altera FPD and full timing simulation is available. Some
general comments on this system are listed below:

• MAX+plusII is easy to learn, easy to use, and powerful. On-
line help is excellent.

• Technical support from Altera is inconsistent; we were some-
times able to get quick answers to questions, but support is
lacking with respect to the use of MAX+plusII with LWB.

Figure 1 - Overview of CAD System.

Architecture
Evaluation Tool

Multiprocessor

Definition

Manually Partition
into Multiple PCBs

Requirements for each PCB

Design Entry

(Cadence Concept)
at Board Level

Board- and System-level Simulation
(Cadence OpenSim (Verilog) Simulator)

PCB Layout
(Cadence Allegro)

Cadence Logic Workbench (version 9404)

Manually Partition Logic
into Multiple FPDs

Requirements

Design Requirements:
• High Performance
• Modular
• Cost-effective
• Easy to Program

Design Entry
at Logic Level
(Altera AHDL)

Chip-level Simulation
(Altera Simulator)

Altera MAX+plusII

Simulation model (Verilog)

Pin Assignments

Completed PCBs

...

Bit-patterns for programming
FPGAs and CPLDs

Hardware Specifications:
• Architecture/Topology/Hierarchy
• Memory model: NUMA/UMA, shared/distributed
• Caches, Coherence, Consistency
• Interconnect: buses, rings, meshes
• Communication protocols, Clocking, Packaging

of Architecture

Manually Partition each PCB into:
1. functional blocks (e.g., RAM, FIFO’s)
2. logical blocks for implementation in FPD’s

Logical blocks Functional blocks

Hand-tuning for
Area and Speed

Schematic Symbol generation
for each FPD

Logic Modelling
Smart Models

&
Custom-written

Verilog

for each FPD

Select Commodity Chips

Custom-built
converter



• Both combinational and sequential logic optimization is pro-
vided, and is useful; however, the generated state machine
assignments are usually not as efficient as manual ones.

2.3  Logic Modelling Smart Models Library

Smart Models is a library of simulation models for a wide assort-
ment of commercially-available chips. These models may be
incorporated into the LWB environment for simulation purposes.
The following list summarizes the problems that we encountered:

• It was difficult to obtain answers to technical questions on this
product (although there have been recent improvements, since
data sheets are now available on the WWW).

• For chips that are included in the library, simulation with
Smart Models is convenient. However, models are not avail-
able for recently-introduced FPDs. The latest FPD models in
our (1994) Smart Models library are from 1991, whereas the
parts we selected in our design were introduced in 1994-95.

• Furthermore, models for some commodity chips required in
our design are also not available in the Smart Models library,
as the models may lag a few years behind chip release.

3  The NUMAchine Multiprocessor

The system being designed is a large-scale shared-memory multi-
processor, called NUMAchine, comprising a number of processors
connected to one another in a tightly-coupled fashion. The multi-
processor implements a NUMA (Non-Uniform Memory Access
time) architecture in which the memory is physically distributed
and the amount of time needed for a particular processor to access
a specific memory module varies. The machine includes multiple
levels of cache memory with hardware maintaining data coherence
and consistency throughout the memory hierarchy. Designing a
computer of this class is challenging, but such machines are of
considerable commercial interest [4, 5].

The NUMAchine architecture consists of a hierarchical arrange-
ment of stations, where each station comprises a number of pro-
cessors (we chose the MIPS R4400), memory module(s), and I/O
sub-system(s), connected via a bus. Multiple stations are intercon-
nected through a hierarchy of bit-parallel slotted rings. Due to
space constraints we will not provide further details on the
NUMAchine architecture, but interested readers are encouraged to
refer to our technical report [6].

This discussion will focus on the design of a single station,
which comprises separate boards for each processor (including
cache), memory module, I/O subsystem, and station-to-ring inter-
face (with network-level cache). We selected the physical structure
of the FutureBus+ standard for the station bus because of its high-
speed transfer capability, but we devised our own bus control pro-
tocol. The physical appearance of a station is illustrated in Fig. 3.

Since there are many variable parameters in the system
described above, we developed a custom multiprocessor evalua-
tion tool, as mentioned in Section 2, to determine appropriate
parameters for a prototype machine. This stage was the only one in
which we did not use commercially available tools, because no
product existed that suited our particular needs. As illustrated in
Fig. 4, the inputs to the evaluation tool are of two types: (1) an
R4400 parallel program (i.e., a real or synthetic benchmark), and
(2) a file specifying speed, size and number of all system compo-
nents: processors, caches, memory modules, buses, rings, etc.

The evaluation tool uses a separate public-domain instruction-
level simulator called MINT [6] as a front-end to an architectural
simulator developed in-house. MINT generates memory access
and other traffic for the custom simulator, which then models the
system at a cycle level and simulates the processors’ actions,

Connection to Ring

Processor Boards
Memory Board(s)

I/O Board(s)
Station-to-Ring Board

FutureBus+ Backplane

Card Cage

Figure 3 - Partitioning of Prototype into Printed Circuit Boards.

STATION

Compiler

Altera or third-party
programming unit

automatically
select the “best” device

Figure 2 - Altera MAX+plusII CAD System.



latency to and from different parts of the memory hierarchy (mem-
ory, primary, secondary and network-level caches), arbitration for
shared resources (such as buses), and synchronization operations.
This allows measurement of both high-level parameters, such as
bus and network utilization and contention, and lower-level details
such as average and maximum queue depths for the various FIFOs
used in the system. These performance metrics guided our choice
of parameters for a prototype implementation.

4  Experiences in Logic Design

Our design strategy “on paper” for each PCB was done in a top-
down fashion: each board was first partitioned into two categories
of components: logical blocks for which we needed to design logic
circuitry (FPDs), and functional blocks for which commodity
chips could be used (e.g., RAM). The logical blocks were then fur-
ther refined into one or more FPDs, and the functional blocks were
partitioned into individual off-the-shelf chips. Our preference was
to implement this top-down strategy with the CAD tools, using
LWB to create a top-level schematic of each board, and then auto-
matically interfacing to MAX+plusII for design of the logical
blocks. Unfortunately, we were not able to use the tools in this
manner because of problems with their integration, which is dis-
cussed in Section 4.1. Therefore, our actual CAD flow was “bot-
tom-up,” as depicted in Fig. 1. Since the process was essentially
the same for all PCBs, our experiences will be related using the
processor board as a representative example. The block diagram of
a processor board appears in Fig. 5. It includes: (1) a MIPS R4400
processor with an external 1-MByte secondary cache, (2) a com-
plex circuit known as the “external agent” for interfacing the pro-
cessor to the rest of the system, (3) circuitry required to realize a
“local bus” that connects simple devices like EPROMs and serial
I/O ports to the processor, (4) special-purpose registers for inter-
rupts, barriers, and performance monitoring, (5) FIFOs, bus con-
trol, and FutureBus+ standard-compliant buffers to interface the
processor and the station bus, and (6) various connectors. In Fig. 5,
the shaded blocks are especially interesting because they corre-
spond to logic circuits that are implemented in FPDs. In particular,
the external agent encompasses the most complex control func-
tions which had to be implemented in FPDs for the processor
board, as will be described shortly.

All of the components on the processor board were intercon-
nected using Concept. Except for the sections to be realized in
FPDs, it was straightforward to obtain schematic symbols for each
chip, either by locating them in Cadence-supplied libraries, or by
creating them with a convenient utility called RapidPart. Much
difficulty was encountered, however, in integrating FPDs into the

MIPS R4400
Executable

MINT

(Produce Workload
for each Processor)

Multiprocessor
Evaluation Tool

(processors, memory,
caches, interconnections,

etc.)

timing parameters of
system components

Performance
Metrics

Figure 4 - Custom-built Multiprocessor Evaluation Tool.

size and schematic, where an automated approach was needed due to the
large number of I/O pins and variable pin-assignments. Recall
from Fig. 5 that there are four main sections of the board that are
targeted to FPDs; the process followed to integrate these sections
into the Concept schematic will be illustrated by using the external
agent as an example.

4.1  Implementation of the External Agent in FPDs

Our first choice for implementing sub-designs in FPDs was to
remain within the LWB environment as much as possible.
Cadence’s recommended technique is to use a tool called PIC
Designer, which is a framework within LWB that allows users to
target (sub)-designs to FPDs. Users may perform design entry
using schematic capture, Verilog, or VHDL, and PIC Designer
either maps it directly into FPDs for small devices such as PALs,
or exports more complex designs to a vendor-specific CAD system
for FPGAs or CPLDs. Our experiences with PIC Designer were
unsatisfactory. To implement designs in Altera FPD’s, we needed
to interface PIC Designer with MAX+plusII, but we were unable
to do so. In this respect, we could not obtain adequate technical
support from either Cadence or Altera.

Since PIC Designer was a failure for us, we attempted a more
basic approach that would still allow us to remain within LWB.
The idea was to use Concept for design entry, and then transfer
designs from Concept to MAX+plusII via EDIF. We were not able
to make this interface work either, because the vendor-supplied
interfaces were several software releases behind (and incompatible
with) the releases we were using. Our conclusion was to abandon
the publicized “seamless integration” between the tools.

Following the difficulty in using LWB with MAX+plusII, we
opted instead to perform design entry for the FPDs directly in
MAX+plusII. We needed to develop a custom procedure for using
MAX+plusII for FPD design, and then transferring the results back
to LWB for board-level simulations and PCB layout.

MIPS
R4400

1 MByte
Secondary Cache

128

External
Agent

20 (Control)(Address/Data) 64

FIFOout
FIFOin

20 (Cntl)(A/D) 128 30128

Connectors to Station Bus

Monitoring
Interrupts
Barriers

128 20

FutureBus+ Buffers

Local Bus
Interface

EPROM &
Local IO

Connector

Figure 5 - Block Diagram of a Processor Board.

Bus
Control



The FPD designs were done using AHDL, which proved to be
the most efficient method for both small and large designs. We did
not opt to use the other supported high-level languages, VHDL and
Verilog, because the state-of-the-art in compiling designs written
in such languages into FPDs yields results that are significantly
less efficient (by 30%, as an estimate) than designs specified in a
simpler language like AHDL, or created with a schematic.

Based on the number of I/Os connecting the external agent to
other components (see Fig. 5), and on the speed requirements, the
design was partitioned into multiple devices. Automatic partition-
ing in MAX+plusII was attempted, but this was abandoned
because it was more appropriate to manually assign the board-
level signals to individual FPDs. Since Altera offers many differ-
ent FPDs, with differing speed-grades, package types, cost, etc., it
was not obvious which ones should be used. To make the final
selection, it was necessary to perform design entry and allow
MAX+plusII to map the circuit into various chips, then assess the
resulting speed-performance through simulation. We found that
the entire circuit would fit into a single FLEX 8000A FPGA, but
speed-performance was insufficient for our purposes (a 50 MHz
clock rate is needed). On the other hand, using MAX 7000E
CPLDs would achieve the desired speed, but would require multi-
ple devices. We ultimately chose to implement the external agent
in six CPLDs, a MAX 7256E and five MAX 7096E’s, using the
fastest speed-grade available for each chip. (The choice of whether
FPGAs or CPLDs were more appropriate varied for the three FPD-
targeted sections shown in Fig. 5.)

The process of obtaining the speeds that we required was not a
simple matter of automatically mapping the design into the
selected CPLDs. For many parts of the external agent, such as
FSMs, we needed to carefully tune the design. The state assign-
ments were obtained by studying the structure of the machines
toward the goal of minimizing the amount of logic needed [8].
Also, extensive re-timing of sequential circuits was done. This is
an example of how a demanding set of design requirements can tax
the capabilities of today’s CAD algorithms.

5  Experiences in Logic Simulation

In a large project such as NUMAchine, it is crucial to perform
detailed simulations at both the chip-(FPD) level and board-level.
In terms of complexity, ensuring that a single FPD will function
correctly is a relatively minor task when compared to verification
of a full board comprising numerous FPDs and other components
such as buffers, FIFOs and memory. The key issue is that off-the-
shelf components often have behavioral quirks that are not readily
apparent from data sheets, and timing violations are extremely
hard to detect and fix after hardware has been fabricated. To avoid
long hardware debugging times, extensive effort was put into

board-level simulation1.

5.1  Simulation of Logic in Individual FPDs

We considered three possibilities for simulation and debugging of
logic mapped by MAX+plusII into CPLDs and FPGAs: (1) using
the simulation tools included in MAX+plusII, (2) using the stand-
alone Verilog simulator provided by Cadence, and (3) using Smart
Models.

1.  As an example of simulation effectiveness, our fabricated memory mod-
ules (8-layer PCBs) operated correctly with only ONE jerry-rigged wire
and a few iterations of re-programming of the logic in FPDs

Choice (3) was not successful for reasons discussed in Section
5.3, but both (1) and (2) proved to be good choices. Simulation
with MAX+plusII is more convenient because it provides better
access to all signals in a design, and its method of specifying test
vectors is more efficient. In addition, state machine flip-flop values
are displayed symbolically with meaningful names rather than as
binary bit patterns. As a result, MAX+plusII was used heavily for
simulation of both individual and multiple FPDs. Use of the
Cadence stand-alone Verilog simulator is also straightforward
because MAX+plusII can generate a Verilog file comprising a
module that encapsulates all timing details of a design after it has
been mapped into an FPD. It is then necessary to create a “testbed”
file which specifies test vectors, and link this file with the Verilog
output from MAX+plusII to perform the simulation. The advan-
tage of this scheme is that it supports simulation of Altera FPDs
with other types of chips. A drawback of the Cadence simulation
environment is that it cannot display state machine signals symbol-
ically, and it is more difficult to observe internal FPD signals.

A shortcoming regarding the simulation available with Altera’s
FPDs is that it is not possible to simulate the power-up loading of
programming-bits into SRAM-based FPGAs. This caused consid-
erable delays during our hardware debugging because we did not
properly design the FPGA programming circuitry.

5.2  Board-level Simulation

LWB provides a powerful back-plane simulator, called OpenSim,
that allows simulation of systems in which individual components
can be represented in different ways. For example, it is possible to
mix Verilog, VHDL, Smart Models, and other formats in a single
simulation. The strategy that we ultimately used was based mostly
on Verilog, but our first attempt was to rely heavily on Smart Mod-
els, hence our experiences with that tool will be described first.

5.3  Experience with Smart Models

Smart Models for FPDs can be configured for simulation by load-
ing a mapped design (via a JEDEC file) into the model. Unfortu-
nately, we found the library did not include models for the state-of-
the-art FPDs we selected for our design. Furthermore, other com-
modity chips, such as the FIFOs and the Futurebus+ buffers in our
design, were also not available in the Smart Models library. The
library did contain models for similar chips, but none sufficiently
close to the ones being used.

Besides simple buffers and gates, the only device for which we
ultimately used the Smart Models library was the MIPS R4000
processor, and that was applied only in a limited capacity. The
model was specified for 50 MHz, whereas our design required 200
MHz, but it proved useful for learning about details which were
not clearly documented, such as exactly how the processor
behaves when it is reset.

Since many of the chips used in our design were not available in
the Smart Models library, we opted to write custom Verilog models
to represent many of the chips on the board, including the MIPS
R4400, FIFOs, and Futurebus+ buffers.

5.4  Experiences with Verilog for Simulation

Our installation of LWB includes two configurations of Cadence’s
Verilog compiler: a stand-alone version, and a version integrated
into OpenSim. Use of the stand-alone version for simulation of
individual FPDs was straightforward, as discussed in Section 5.1.
However,  to incorporate the Verilog code generated by
MAX+plusII into the OpenSim board-level simulation, we had to
develop a custom procedure.



5.4.1  Importing FPD’s into LWB for Board-level Simulation

To complete the Concept schematic, we needed to generate sche-
matic symbols for the sub-designs implemented in FPDs. The
symbols must encapsulate the timing characteristics of the FPDs,
and must also specify the physical properties of the chips, for PCB
layout. The procedure that we developed for this purpose is illus-
trated in Fig. 6. After mapping of each sub-design the Verilog file
generated by MAX+plusII was imported into Concept. This was
done using a convenient command, called GenView, which can
read a Verilog file and automatically create a schematic symbol.
Using these symbols, a simulation model of the logic mapped into
each FPD was connected to the other system components. The
automatic generation of schematic symbols was crucial because
each FPD involved more than a hundred IO pins, implying that any
manual procedure would be prone to errors. To facilitate PCB lay-
out, each symbol in Concept has an associated physical description
that specifies package type, pin assignments, etc. To generate this
information for each FPD, we created a custom-built tool for pars-

ing MAX+plusII files, called Assignment Control Files (ACF)1,
and generating the equivalent information in Cadence format,
which is called chips_prt. In Fig. 6, the graphics symbols in the
Concept schematic are shown with two views: one is the logical
symbol (Verilog) used for simulation, and the other, normally not
visible in the schematic, is the physical symbol for specification of
IC-package details. Our utility for exporting FPD pin assignments
from MAX+plusII to LWB can be obtained at ftp://www.eecg.tor-
onto.edu/pub/software/acf2chip. Note that no such utility is avail-
able from either Cadence or Altera.

1.  The task of writing this converter was complicated by Altera changing
the format of the ACF files in new releases of MAX+plusII. Also, when
bugs were found in a new release it was difficult to retreat to the previous
version because the new ACF format was not readable by the older release!

Implementation in (multiple) FPDs
in MAX+plusII

Concept Schematic

logical symbols

physical symbols

Figure 6 - CAD Steps for Integrating MAX+plusII and LWB.

Automatically generate
schematic symbol from

each Verilog file
(Concept GenView)

Generate physical

package assignments

for each FPD

(custom ACF->chips_prt tool)

After connecting the FPD symbols to the rest of the board,
OpenSim was used to provide test vectors and verify board-level
operation. Although OpenSim is powerful and flexible, we found
that the graphical interface provided for entry of test vectors is
awkward. Fortunately, however, LWB on-line documentation also
describes a powerful scripting language for specifying test vectors.
We invested considerable time to learn this language, but consider
this to be time well-spent.

6  Layout of the Printed Circuit Boards

PCB layout was accomplished with Cadence Allegro. The main
difficulty here was in exporting pin assignments from MAX+plusII
into LWB, and the solution to this problem was described in the
previous section. It was easiest to hand-place all chips, and then
use the automatic routing algorithms offered in Allegro; routing of
the processor board took several days (on a SPARCstation 10),
after which the approximately 5% of nets that could not be auto-
routed were completed by hand. The final board has 12 layers in
total, alternating power/ground and signal layers, which greatly
reduces noise and cross-talk in our 50 MHz system. A final com-
ment on PCB creation is that we tried to perform noise analysis on
the PCB using the tools included in LWB. Unfortunately, these
tools require detailed I/O buffer characteristics, called IBIS mod-
els, for the pins on all chips, and after contacting the manufacturers
we were unable to obtain such models for most of our devices.

7  Final Remarks

This paper has related our experiences with design of a high-per-
formance computer system using advanced CAD tools, targeting
all control circuitry to FPGAs and CPLDs. Comments have been
provided on the usefulness of several CAD products for our pur-
poses, including Cadence Logic Workbench, Altera MAX+plusII,
and Smart Models. Besides the difficulty of achieving the required
50 MHz system clock rate in FPGAs and CPLDs, the main stum-
bling blocks were the lack of availability of simulation models for
recently introduced chips, and the problems that we encountered
with the integration of Cadence LWB and Altera MAX+plusII.

Our preference for the CAD flow was “top-down” for design of
each PCB. However, our experience is that, although published
marketing suggests otherwise, the tools are not sufficiently inte-
grated to support this. We feel that CAD providers should focus on
their strengths and encourage designers to use the properly sup-
ported flow: in our case, “bottom-up” design with MAX+plusII for
FPD-targeted circuits, and LWB for board-level integration.

8  References
[1] Cadence Logic Workbench, release 9404, Cadence Design Systems

Inc., 75 West Plumeria Drive, San Jose, CA 95134.
[2] Synopsys Smart Models, Synopsys, 700 East Middlefield Rd., Moun-

tain View, CA 94043
[3] 1995 Data Book, Altera Corp, 2610 Orchard Parkway, San Jose, CA

95134
[4] Convex Exemplar Systems Overview, Convex Computer Corporation

(Hewlett Packard), 3000 Waterview Parkway, Richardson Texas
75080.

[5] Kendall Square Research. KSR1 Technical Summary, 1992
[6] Z. Vranesic, et. al., “NUMAchine Technical Report,” available on the

WWW at http://www.eecg.toronto.edu/~brown
[7] J. E. Veenstra. Mint Tutorial and User Manual. Technical Report 452,

Computer Science Department, University of Rochester, May 1993.
[8] Zeljko Zilic, Guy Lemieux, Kelvin Loveless, Stephen Brown, and

Zvonko Vranesic, “Designing for High Speed-Performance in CPLDs
and FPGAs,” 3rd Canadian Workshop on Field-Programmable
Devices (FPD’95), May 1995, pp. 108-113.


