The Case for Registered Routing Switches in
Field Programmable Gate Arrays

Deshanand P. Singh
Dept. of Electrical and Computer Engineering
University of Toronto
Toronto, Canada

singhd @ eecg.toronto.edu

ABSTRACT

FPGAs are characterized by a programmable interconnect
that contains highly resistive and capacitive elements. While
the configurable structure of the interconnect allows for the
implementation of arbitrary circuits, it has also become a
significant bottleneck for high-speed circuits. Even if there
are only a few signal paths that run along long stretches
of interconnect, it is these paths that may determine the
maximum operating frequency of the circuit.

In this paper we investigate architectural features that
could allow us to automatically pipeline the delay associated
with long routes without an excessive area penalty. The goal
is to reschedule circuit operations in such a way that a signal
may use multiple clock cycles to traverse a long route, rather
than requiring a single long clock period. This rescheduling
would not effect the timing of the visible outputs (no latency
is added to the overall system).

Specifically, we analyze the effects of adding a small num-
ber of registered routing switches to an FPGA architecture
with segmented routing resources. A parameterized FPGA
architecture is studied where the percentage of registered
routing switches is varied and the speed improvement and
area penalty is evaluated. Novel algorithms are presented
that allow a circuit to best utilize an architecture with a
given percentage of registered switches. We believe that
this is the first study that attempts to evauate the tradeoffs
associated with switches required in FPGA architectures.

Our experiments indicate that the architectural features
introduced can produce significant speedup for high speed
circuits without excessive area costs. We believe that these
techniques will become increasingly important in the future
as deep sub-micron process technologies shrink, and wire
delays become even more significant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

FPGA 2001, February 11-13, 2001, Monterey, CA, USA.

Copyright 2001 ACM 1-58113-341-3/00/0002 ..$5.00

161

Stephen D. Brown
Dept. of Electrical and Computer Engineering
University of Toronto
Toronto, Canada

brown @eecg.toronto.edu

1. INTRODUCTION

Designs implemented in FPGAs are often dominated by
the delay associated with its configurable interconnect. This
phenomenon is also true for ASICs; however, it is more
pronounced for FPGAs because the interconnect contains
programmable switches such as pass transistors, tri-state
buffers and multiplexers in addition to the metal lines them-
selves.

In a conventional FPGA architecture [1] [13], the length
of the longest stretch of interconnect used can be a sig-
nificant factor in determining the maximum operating fre-
quency. There is no opportunity to traverse the intercon-
nect in multiple cycles. One method of achieving this is to
add registered routing switches into the interconnect. While
this idea has been proposed before [12] [7], these studies
were presented without a detailed exploration on exactly
how many of these registered switches are needed to pro-
vide good speedup without excessive area penalties. Effec-
tive timing driven placement algorithms generate a place-
ment where there are many more short nets in comparison
to long ones, because this objective reduces both congestion
and critical path delay. Hence we attempt to characterize an
architecture such that it has just enough registered switches
so that long routes can be pipelined.

The addition of registered switches to the FPGA archi-
tecture is only effective if there is a CAD tool to support
these features. A novel new algorithm is presented to al-
low us to map circuits to different architectures with varied
registered switch population. The core of our mapping al-
gorithm is the development of a new Sequential Retiming
algorithm. Retiming is an optimization technique that at-
tempts to pipeline long combinational paths with no effect
on the perceived behavior of the inputs and outputs to a
given circuit.

The rest of this paper is organized as follows: Section 2
briefly provides background information on the method of
Sequential Retiming. Section 3 describes a new FPGA ar-
chitectural features needed to pipeline long routes. Section 4
provides a description of the parameterizable target archi-
tecture used in our experiments. Section 5 describes an algo-
rithm that retimes a circuit such that it can take advantage
of the registered switches. Section 6 details our experiments
in searching for a new architecture that would allow us to
pipeline interconnect delay. Section 7 presents our conclu-
sion and plans for future work.

ﬂ Critical Path

(a) Original Circuit

FFs moved forward across gate

(b) Retimed Circuit FF moved backward

C I: Flip Flop |:> = Input Pin = Output Pin >

Figure 1: Sequential Retiming

2. BACKGROUND
2.1 Retiming

Sequential Retiming is a powerful logic optimization tech-
nique for synchronous circuits which uses the property that
flip flops can be taken from the outputs of gates and moved
to their inputs, or vice versa, without changing the per-
ceived behavior of the circuit. Using these moves in com-
bination, one can attempt to minimize circuit area, speed
and/or power. This technique was first introduced in the
early 1980’s in various works by Leiserson and Saxe [4] [5].
They describe several retiming algorithms to minimize the
critical path delay by relocating the registers in synchronous
circuits without any change in functionality.

Consider the circuit shown in Figure 1(a). Assuming that
the delay of each gate in the circuit is a single time unit,
then the critical path delay of this circuit is 3 time units.
Retiming theory allows us to reduce the critical path de-
lay by moving flip flops either forward or backward across
a gate as shown in Figure 1(b). It is easy to verify that
the retimed circuit has the same functionality to the outside
world as the original circuit. However we can also see that
this circuit contains no path with a delay greater than 1 time
unit, and the retiming technique reduced the critical path
delay with no changes to the circuit other than redistribut-
ing the registers. Thus retiming is suitable to be applied at
any step in the CAD flow where a gate-level netlist exists
that is annotated with all relevant delay information. The
main problem in applying retiming algorithms to FPGA ar-
chitectures is that once we obtain the final netlist it is not
possible to move registers around in an arbitrary manner
because conventional FPGAs only contain registers within
a logic block. Even if it were advantageous to move a reg-
ister into the middle of a long route, the architecture could
not physically realize such a circuit. We believe this is one of
the main reasons that retiming is rarely used in commercial
FPGA tools.

2.2 Notation and Definitions

Retiming algorithms usually require a unique representa-
tion of synchronous circuits. These circuits can be repre-

Figure 2: Retiming Circuit Representation.

sented using a directed graph of the form G(V, E). V is the
set of all combinational cells within the circuit. E is a set
of directed edges e,, which denote the connection of cell u
to cell v via zero or more registers. Each of the directed
edges is associated with a corresponding weight w,,. This
weight indicates the number of registers on the connection
from u to v. Figure 2 illustrates this concept of the new rep-
resentation for a cell u connected through a single register
to a cell v. The new representation erases the register, and
the connection has a directed edge from u to v with weight
Wyp = 1.

A retiming of a circuit can be expressed as a labelling on
each combinational cell. A label r(v) is associated with each
cell v. This label indicates the number of registers that are
moved from the inputs of the cell v to its outputs. Thus
for a given retiming, the number of registers on each wire is
given by:

Wr,yy = Wyv + T(u) - 1"(1}) (1)
This equation simply expresses that in addition to the origi-
nal registers on ey, which is denoted by wy., 7(u) registers
are moved onto the wire and r(v) registers are removed.

Given these definitions, the problem of retiming synchron-
ous circuits can then be expressed as finding a label for each
combinational cell such that the delay of the longest com-
binational path is less than a target clock period ¢. This
problem can be formally expressed as:

o All retiming labels r(v) must be integer. It is impossi-
ble to move fractional numbers of flip-flops from inputs
to outputs.

o After retiming, all weights must be non-negative. That
is Wy uv > 0 or:

r(u) > T'('U) — Wyv (2)

This equation exists to ensure that retiming is physi-
cally possible or negative numbers of registers may be
produced by the retiming algorithm.

e Let P represent a path from u — v in directed graph
representation of the synchronous circuit. Every path
in the circuit with delay D(P) greater than ¢ must
have at least one register along that path.

DP)>¢ — W,p>1
DP)>¢ — r(u)>r(v)—Wp+1 (3)

The quantity Wp represents the sum of the weights of
the edges along the path P. Note that this formulation
is slightly different than that described by Leiserson
and Saxe. However it is more appropriate for the later
discussion on Architecturally Constrained Retiming.

This formulation can be solved by a solution to a set
of constraint equations. Since these equations have simple
structure, they can be efficiently solved by algorithms such
as Bellman-Ford.

3. REGISTERED ROUTING SWITCHES

Previous works [12] on the addition of registered routing
switches have based their architectural proposals around the
characteristics of the simple retiming algorithm discussed
previously. Circuits are retimed, and enough architectural
resources are provided to cover the possible outputs of the
simple retiming algorithm. For example if the simple re-
timing algorithm produces an output where six consecutive
registers fanin to a LUT, then the architecture is created so
that the logic block has 6 extra registers per input.

We feel that this problem should be approached in a sig-
nificantly different way. We should be able to propose an
architecture and create a mapping algorithm that retimes
optimally given the constraints of that architecture. In this
way we can accurately explore the area-delay tradeoffs as-
sociated with various different architectures.

In this section, we will first explore the basic building
blocks associated with an architecture that supports reg-
istered routing switches. These include registered routing
switches themselves as well as extra input registers per LUT.
The elements can be added to conventional FPGA architec-
tures in varying quantities and positions. A mapping algo-
rithm is then discussed which evaluates the effectiveness of
an architecture which contains these basic elements.

3.1 New Architectural Features

Figure 3 shows an architectural-level description of a regis-
tered routing switch. Notice that the switch has both a mul-
tiplexer and a register. This allows for routes to be pipelined
at arbitrary points or completely unpipelined. The regis-
tered switch is shared amongst three tristate driving buffers
that connects to other horizontal/vertical segments. The
registered switches in our experiments connect only to the
ends of the segments. Registered switch connections in the
middle provide us with minimal speed gain.

Our circuit-level simulations with SPICE indicate that a
registered switch in transparent mode can be made just as
fast as a purely buffered switch by sizing the transistors
appropriately. This is an important characteristic because
this architectural feature should never slow down a circuit
in comparison to a conventional architecture.

Figure 4 shows that an extra input register per LUT is
added to the architecture. Most modern FPGAs incorpo-
rate a hierarchical structure where logic blocks are clustered
together in groups and connected by a high-speed local in-
terconnect. The local routing usually takes the form of a
fully populated crossbar. This is tremendously useful for re-
timing purposes. Notice that a single register is placed only
the D input of the LUT. However, since the inputs to the
LUT are fed from a fully populated crossbar, the inputs to
the LUT can be permuted in any way. The truth table in
the LUT can also be permuted arbitrarily. These character-
istics allows us to register any one of the four LUT inputs.
The extra input register is similiar in concept to the variable
depth retiming-banks described in [12].

The need for an extra input register per LUT is depicted in
Figure 5. If a retiming algorithm needed to move a register
from cluster #1 into the long route from #1 to #N, then the
algorithm must also move the registers to all of its fanouts
to ensure correct operation. Thus a placeholder is needed
to enhance the probability that a register can be moved to
its fanouts.

An alternative to the LUT-input register is shown in Fig-

163

/Registered Roti ngsinEh\‘
|

LUT

.
Cluster #N

e /Registered Routing SNitCh\‘
* ey DQ ‘
! - / | \
A [Iy , A
=] N
oot [T i ol Lut
D Qrer=t==L1/|
D | ‘ D
| |
_____ i R SR YA
| | A
1 e
S pum— |E
\‘ J ~_
uster #1 Cluster#2 e ¢ o Cluster #N

EXTRA WIRING SEGMENTS NEEDED

Figure 6: Alternative to LUT-fanin register.

ure 6. If each logic element is allowed to output both a
registered and combinational output, then one could split
up the net such that one routing tree distributes a com-
binational signal and the other would carry the registered
version. While this is an attractive solution, it requires us
to rip-up existing routes and re-route every time registers
are moved into the interconnect. This is not only complex,
but the number of routing resources must increase for this
technique to be successful since less wires can be shared.

4. TARGET ARCHITECTURE

Figure 7 shows a high-level description the parameteriz-
able target architecture that is used to evaluate the bene-
fits of registered switches. The FPGA contains logic blocks
that are clusters of four 4-LUTs. The routing architecture

BUFFERED
RACKS

REGISTERED
RACKS

Figure 7: Parameterizable Architecture.

ConfigurationI
Select ¢

A E EEETE

Figure 4: Extra Input Register.

164

U0 w> |
—
(e
_|
o
=1

Q

Select

contains only length 4 wiring segments. The topology of
the switch blocks is planar: segments are arranged in sep-
arate domains called track planes. For example, segments
in Tracko connect only to other segments in Tracko, seg-
ments in T'rack: connect only to other T'rack; segments, etc.
This statement holds both for tracks within horizontal or
vertical channels and track segments that connect between
the horizontal and vertical channels. This style of switch
topology was popularized in the Xilinx XC4000 FPGA [13].
The internal points along a segment only connect to other
segments via pass-transistor switches. A parameter N indi-
cates the number of track planes in the architecture. The
key parameter for the architectural experiments is R, which
denotes the number of Registered Tracks. All segments
on a registered track have registered switches at the ends of
the segments. The remaining N — R tracks are referred to
as Buffered Tracks because these segments have buffered
switches at their ends. There is no difference between a reg-
istered track and a buffered track except the switches at the
ends of the segments. All of the connectivity remains the
same. We also assume that registered switches have been
sized in such a way that the speed is exactly the same as
that of the buffered switches.

5. NEW MAPPING ALGORITHM

The typical CAD flow involved in mapping a circuit to an
FPGA involves the steps of Synthesis, Technology Mapping,
Placement and Routing. We propose a modified CAD flow
to map circuits to FPGAs that contain the new architectural
features discussed in the previous section. This flow breaks
the routing phase into two separate steps:

e Retiming Aware Routing - This routing phase at-
tempts to place long connections onto tracks that con-
tain registered routing switches. It is retiming-aware
because the router does not actually do the retiming,
but rather assigns the nets in such a way so that a
retiming algorithm can take advantage of the assign-
ment.

e Architecturally Constrained Retiming - This al-
gorithm actually retimes the circuit to achieve a tar-
get clock period ¢. However, the retiming can only
be achieved within the constraints of the architecture.
For example since we have chosen that there should
only be a single LUT-fanin register, then the retiming
algorithm must respect this constraint when attempt-
ing to solve for the optimal clock period. Registers can
only be moved to discrete positions within the inter-
connect. These constraints must be satisfied to make
the retiming valid for an architecture.

5.1 Architecturally Constrained Retiming

The ACR algorithm will be discussed first. Several steps
are performed by this algorithm. The input to ACR is
a post-route netlist that describes LUTs and the specific
routing resources used to connect them. This includes the
specific switches and segments used to achieve each connec-
tion. It is also annotated with all relevant delay information.
Netlist Conversion is the first step that is executed to change
this input netlist into a form that is usable by the ACR algo-
rithm. After conversion, New Architectural Constraints are
generated which characterize the limits of register moves in
the target architecture.

165

LUT

LUT#1g///’
ETAL SEGMENT

LUT#2

PASS TRANSISTOR SWITCH

O 0w >

LUT

v

=

LUT#3

REGISTERED
SwWITCH

LUT

Figure 8: Post Place and Route Netlist.

w <1
Z r,uv LOGICAL BUFFERS
ue Fl(v) \
L{Q \Y \) A
A 4‘
5 W oLt
N C LUT —* D
‘\;: _ o _\/J CUT#3
Uy LOT# Vrow=YH
% X
REGISTERED
SwITCH POINT Wr, Xy =1
LUT#2

LUT

Figure 9: Netlist Representation.

5.1.1 Netlist Conversion

Figure 8 shows a graphical description of the type of netlist
that may be passed to the ACR algorithm. Figure 9 shows
how it is converted for use by ACR. Notice all delays as-
sociated with routing elements are represented by logical
buffers. Each LUT contains both fanout and fanin buffers.
The weights on the connections between these buffers and
the LUT represent the state of the fanout and fanin registers.
For example, a weight of 1 on the connection between the
LUT and its fanout buffer indicates that the output signal
from the LUT propagates through a register before reach-
ing its fanouts. A weight of 0 indicates that the register is
bypassed or transparent.

The delay associated with a route through a registered
switch is separated by logical buffers at the source and sink
of the switch. The weight of the wire in between these two
buffers is directly associated with the state of the corre-
sponding registered switch.

5.1.2 New Architectural Constraints

Once the netlist has been converted, ACR must impose
additional constraints to ensure that a given retiming does
not violate architectural restrictions. The major constraints
added by ACR are detailed below:

¢ Single Fanin Register Constraint — The total num-
ber of registers on the fanin wires to the LUT must be
one or less. This can be expressed in the following
manner for every LUT v:

Z Wr,uv S 1
u€FI(v)
> (rw-r@) < 1
weFI(v)
(Zugpl(v) r(u)) —1
I I

Note that this derivation assumes that wy, is initially
0 for all fanins, as we assume that the fanin registers
are only used by the ACR algorithm.

e Single Fanout Register Constraint — The number
of registers on the output of a LUT must be one or less.
Let v represent the LUT under consideration, and w
represent its logical fanout buffer. Then the constraint
is expressed as follows:

Wr,vw

r(v) + wyw — 1

INIA

¢ Registered Switch Constraint — At every regis-
tered switch point along a route, the register may be
turned on or transparent. This is equivalent to stating
that the number of registers must be one or fewer at
the registered switch points. This constraint has ex-
actly the same form as the single fanout register con-
straint. If z and y represent the source and sink of the
registered switch point, then the constraint becomes:

1
r(y)

Wr,zy

r(z) —1

INIA

(6)

e Default Constraint — Every wire ab that is not a reg-
istered switch point, LUT-fanin, or LUT-fanout must
have no registers. This constraint is expressed as:

=0

r(b)

Wr,ab

r(a)

5.1.3 Constraint Satisfaction

After ACR has enumerated all of the architectural con-
straints, the only task remaining is to determine if these
constraints can be satisfied. Figure 10 shows an algorithmic-
level representation of the steps utilized by the constraint
satisfaction algorithm. The variable C' represents a set of
constraints that must be satisfied. At the start of the al-
gorithm, C' is initialized to contain the basic constraints
defined in equation(2), and all of the new architectural
constraints discussed previously.

After initialization, C' contains all of the architectural con-
straints to ensure that a retiming respects the architectural
constraints of the FPGA. We have not addressed the issue
of timing constraints. If we were to enumerate all possible

(7)

166

proc ConstraintSatisfy(¢)
begin
C = {Basic Legality Constraints, eq 2}
C = C U {Single FI Reg Constraints, eq 4}
C = C U {Single FO Reg Constraints, eq 5}
C = C U {Registered SW Constraints, eq 6}
C = C U {Default Constraints, eq 7}
OldTimingC = {}
do loop
1: ¢ =C — OldTimingC
2: NewTimingC = CombPaths(¢)
3: C = C UNewTimingC

4: SOLVE set of constraints.
5: OldTimingC = NewTimingC

until Converged or Infeasible
end

Figure 10: Constraint Satisfaction Algorithm.

[teration #1

2

lteration #2 ’_/L‘ -
D Q D Q D Q

P
Iteration #3 -
D Q D Q D Q

>

L1y

Figure 11: Iterative Timing Constraint Generation.

timing constraints, then the memory requirements needed
to hold all of these constraints would grow extremely large.
This is the case since every path in the directed graph with
delay greater than ¢ must be stored. However, there has
been extensive work detailing methods to reduce the num-
ber of timing constraints [6] [11] that must be stored. While
these works show significant reductions, the number of tim-
ing constraints can grow extremely large for large circuits.
We have found that our largest circuits require hundreds of
megabytes of memory to store these constraints, even when
using these pruning techniques. Thus we introduce an iter-
ative method of solving the retiming problem that requires
much smaller memory requirements.

The basic idea behind our algorithm is to iteratively solve
a partial retiming problem. On each iteration, the algorithm
only constrains the paths that are violated. Consider the
simple example shown in Figure 11. On each iteration, the
paths with delay greater than 2 time units are constrained

and the circuit is retimed until convergence. Clearly, the al-
gorithm that solves the partial retiming must exhibit special
properties for this scheme to function correctly. Specifically,
our partial retiming algorithm makes only forward moves of
registers (moves from the outputs back to inputs are allowd
if legal), and always makes the minimum possible number
of moves.

The ACR algorithm incorporates these ideas of iterative
partial retiming. In step 2, the algorithm calls a routine
called CombPaths($). This function returns constraints
on all of the combinational paths that have a delay that
is greater than ¢ in the current netlist. These constraints
have the form described in equation(3) and are added to
the set C'. A constraint satisfaction routine based on the effi-
cient solution of a special case integer programming problem
is called, to find if the constraints of the partial retiming
problem can be satisfied. If the constraints are satisfied,
then the next iteration of the loop removes the the old tim-
ing constraints (step 1) and adds constraints for the newly
violated paths. It is possible to show that there is a bound
on the maximum number of iterations necessary for the algo-
rithm to converge. If more iterations are executed, then the
constraints cannot be satisfied. It is also important to note
that all of the legality and architectural constraints must be
included in every iteration of the algorithm. These ensure
that the partially retimed solution is legal.

5.2 Retiming Aware Routing

The objective of a retiming aware router is to make sure
that long routes are routed through registered switches. Our
current retiming aware router consists of a two-step ap-
proach.

5.2.1 Timing Driven Routing

All registered switches in the architecture are treated as
if they are simple buffered switches. Registered Switches
are used only in transparent mode. Since registered and
buffered switches have the same speed characteristics, there
is no error in calculating relevant delays. The circuit is
then routed using a timing driven router. Our router is
based on the Pathfinder [8] algorithm and attempts to min-
imize the Penfield-Rubinstein delay [10]. We also penalize
the use of circuitous routes that use pass transistors. This
penalty ensures that long routes go through many registered
or buffered switch points along its path.

5.2.2 Permuting the Routes

At this point all connections in the circuit have been
routed. However there has been no attempt to make sure
that long connections are routed through registered switch
points. We can now use a special property of planar archi-
tectures to modify the routes without changing the current
timing, as shown in Figure 12. We can easily permute all of
the connections on track 3 with those on track 1 since the
configuration of these two planes is exactly the same with
the exception of the switch types. Again, it is important to
note that registered switches can be made to have the same
delay characteristics as buffered switches by sizing appro-
priately. Note that track planes are not identical because
they are usually staggered in some way to enhance routabil-
ity and to create a tileable architecture; we define two track
planes to be compatible if they are staggered in the same
way.

167

WN =

Figure 12: Permuting of Routes.

A track plane permutation can be expressed as:

7n}

This notation indicates that after the permutation Tracko
will contain all of the routes originally on Track;, Track:
contains the routes originally on T'rack;, etc. A permutation
is legal if and only if Track; is compatible with Tracko,
Track; is compatible with Track:, etc.

Let us assume that a given architecture has R registered
tracks Tracko,Tracki,...,Trackr—1 and N total tracks.
After the routes have been completed on the N tracks from
the Timing Driven Router; we need an algorithm to com-
pute a permutation that moves long routes onto tracks with
registered switches. A simple strategy is shown in Figure 13.

The first stage of the algorithm is called the Analysis
Phase, which identifies the tracks which have critical routes
that could utilize registered switches. This phase operates
as follows. We first ”pretend” that all buffered switches
(BSWs) on buffered tracks are actually registered switches
(RSWs). The FPGA now appears to consis entirely of
registered tracks. Next we choose one track, T'rack;, and
"pretend” that its RSWs are BSWs. Thus the all of the
routes on T'rack; have no opportunity to go through reg-
istered switch points. The circuit is now retimed while re-
specting the constraints of this ” pretend” architecture. The
value of the critical path delay after retiming is assigned to
a criticality metric Crit;. Clearly if Track; contains long
routes, then Crit; will be high since there are no registers
available to pipeline the long routes. This procedure is exe-
cuted for each track with i =0... N — 1.

The second stage is the Permutation Phase. This stage
attempts to map to a FPGA architecture where the first
R tracks are registered tracks. The first step is to sort the
tracks by criticality in non-increasing order. Next, the algo-
rithm attempts to permute the most critical track T'rack.,o
with one of the R registered tracks. This can only be done
if there is an unassigned registered track that is compatible
with Track.o. This process continues in the same way for
the remaining tracks.

P={ij,...

6. EXPERIMENTAL RESULTS

Figure 14 shows a plot of circuit speedup vs. the fraction
of registered tracks f, = % over a suite of various pipelined
circuits. These circuits represent a crossection of the bench-
marks that were tested. They include pipelined versions of
the combinational MCNC benchmark circuits, digital filters,
piplined mutlipliers, and microprocessor/alu cores. The size

0.4

o
w
a

o
w

[coot

o
V)
o

o
(V)

o
—_
(6)]

Speedup, Area Penalty

o
-
|
i

Rl ‘ 1|
: |
Al
ii 1
== :
i
0.15 0.2

0.05

|
)
l
il
I\
Al
il
=
HN

0.05 0.1

B €002
[ECC
[JFIR

B9 MULT10
M32A
i TABLE
[] VDA
ALU

[l COoRDIC
[Coo3
[]siscs
W AVG

B AREA

1l
o
1
L

085 09 09 1

Registered Track Frequency

Figure 14: Experimental Results.

proc PermuteTracks
begin

/* Analysis Phase */

Save type information for all switches

Replace all BSWs with RSWs

foreach track ¢; do loop
Replace all RSWs on ¢; with BSWs
Crit; = SearchForBestClockPeriodWithACR()
Replace all BSWs on ¢; with RSWs

end for

Restore switch type information

/* Permutation Phase */
Sort tracks: Crite,o > Crite,i > -+ -
Rassigned =0
for j=0...n—1
if Rassigneda < R and
there exists an unassigned Reg track t,
that is Compatible with tc ;
then
add t.; — t, to the permutation
Rassigned = Rassigned +1
else
let ¢, represent any available, compatible
buffered track
add t.; — t, to the permutation
end if

end for

Z C’r‘itc,n_1

Figure 13: Track Permutation Algorithm.

168

of these circuits ranged from 100 — 7500 LUTs. These cir-
cuits were mapped to LUTSs using FlowMap [3] and placed
using VPR [2]. For each circuit, the smallest FPGA in which
the circuit could acheive a fit is computed. The number
of tracks used to run the experiment is 20 percent greater
than the minimum required. This test exercises our algo-
rithm with low stress routes. When there are relatively few
wiring tracks available, there is a greater chance of find-
ing extremely long circuitous routes. The performance of
these circuits could be greatly enhanced by moving registers
along these routes. However, we feel that analyzing these
results would be overly optimistic. This testing methodolog
also allows for a size independent comparison of small and
large circuits. If one small circuit were mapped into a large
FPGA, then virtually all nets could be routed on registered
tracks. This would provide misleading results as very small
fr ratios could appear to provide tremendous speedups.

Since we are using a retiming algorithm with the new ar-
chitecture experiments, one would expect that some portion
of the speedup is due just to the retiming algorithm and
not because of the new architectural features. To compen-
sate for this phenomenon, we define the speedup in a unique
manner. A quantity named Tpqse is defined as:

Tpase = BestClockPeriodwACR(Orig Arch) (8)

This quantity refers to the critical path delay after ACR has
been run with the original architectural constraints. ACR
runs without being able to move registers into the intercon-
nect, or utilizing the extra fanin register. ACR will actually
produce modest speed improvements for selected circuits
even without architectural improvements. Next Trctime iS
calculated by running ACR constrained to the new archi-
tecture.

Tretime = BestClockPeriodwACR(New Arch) (9)

The speedup can then be given by:

T _ Tbase
speedup — T
retime

(10)

An estimate of the area penalty (the line graph in Fig-
ure 14) is included with our results. This area estimate is
obtained by summing the silicon areas required by individual
switches over the FPGA. The silicon area of the individual
switches was obtained from layouts in a 0.35 micron process.

The results in Figure 14 show that for f, = 0.25, the
speedups obtained are generally in a bin from 12 — 25 per-
cent. The area penalty slightly exceeds 10 percent.

7. CONCLUSIONS

The use of registered switches within the routing fabric
combined with an architecturally constrained retiming al-
gorithm can be extremely beneficial to many circuits. We
do not claim that this is a general optimization technique,
but rather that it can improve the speed performance of
high-speed pipelined circuits. Specifically a lower bound [9]
on the best obtainable speed of a circuit implemented after
retiming is given by:

Zvec delay(v)
Y wvec Tegs(u — v)

This metric provides us with the largest delay-to-register
ratio around any sequential cycle in the circuit. Clearly,
retiming cannot do any better than evenly distributing the
delays around the cycle. Let T,oute be the delay associated
with the worst route in the circuit. If Toyte constitutes a sig-
nificant portion of Tpest, then it is likely that the registered
routing switches can help to distribute the delay associated
with the poor routes. We have observed that circuits that
exhibit the characteristic TT""“” > 0.5 usually can benefit

es

(11)

Thest = max
[e]

from the registered switches.

We speculate that better results can be obtained by con-
sidering a more integrated approach to retiming aware rout-
ing. The router should be able to automatically assign
long/critical routes to the registered tracks. This technique
would eliminate the need for a post processing step that
considers routing permutations. Better results could be ob-
tained because several long routes could be assigned to one
track plane rather than spread out over several planes. Thus
greater speedup might be attained at lower values of f,. Our
technique of permuting routes is only valid for a subset of
planar architectures. A true retiming aware router would
target any architecture by adjusting the cost function so
that long routes benefit from going through registered switch
points. The great challenge of this approach is to ensure
that the worst-case critical path (ACR cannot help) is not
increased in comparison to a conventional router.

169

8. REFERENCES

[1] Altera. Altera 2000 Databook. Available from:
http://www.altera.com /html/literature/lds.html.
[2] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
Publishers, 1999.
J. Cong and Y. Ding. FlowMap: An optimal
technology mapping algorithm for delay optimization
in lookup-table based FPGA designs. IEEE
Transactions on CAD, pages 1-12, Jan 1994.
C. Leiserson, F. Rose, and J. Saxe. Optimizing
synchronous circuitry. Journal of VLSI and Computer
Systems, pages 41-67, 1983.
C. Leiserson and J. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5-35, 1991.
N. Maheshwari and S. S. Sapatnekar. Efficient
retiming of large circuits. IEEE Transactions on VLSI
Systems, 6(1):74-83, 1998.
A. Marshall, J. Vuillemin, T. Stansfield, I. Kostarnov,
and B. L. Hutchings. A reconfigurable arithmetic
array for multimedia applications. In Proceedings of
the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, pages
135-143, Monterey, CA, Feb. 1999.
L. McMurchie and C. Ebeling. PathFinder: A
negotiation-based performance-driven router for
FPGAs, 1995.
M. C. Papaefthymiou. Understanding retiming
through maximum average-weight cycles. In 3rd ACM
Symposium on Parallel Algorithms and Architectures,
pages 338-348, July 1991.
J. Rubinstein, P. Penfield, and M. Horowitz. Signal
delay in RC tree networks. IEEE Transactions on
CAD, 2(3):202-211, 1983.
N. Shenoy and R. Rudell. Efficient implementation of
retiming. In ICCAD 1994, pages 226-233, November
1994.
William Tsu, Kip Macy, Atul Joshi, Randy Huang,
Norman Walker, Tony Tung, Omid Rowhani,
Varghese George, John Wawrzynek and André De
Hon. HSRA: high-speed, hierarchical synchronous
reconfigurable array. In Proceedings of the 1999
ACM/SIGDA seventh international symposium on
Field programmable gate arrays, pages 125-134,
Monterey, CA, Feb. 1999.
Xilinx. Xilinz 2000 Databook. Available from:
http://www.xilinx.com/partinfo/databook.htm.

3]

[13]

