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ABSTRACT

Retiming is a synchronous circuit transformation that can
optimize the delay of a synchronous circuit by moving reg-
isters across combinational circuit elements. The combi-
national structure remains unchanged and the observable
behavior of the circuit is identical to the original.

In this paper, we address the problem of applying retiming
techniques to circuits implemented in Field Programmable
Gate Arrays (FPGAs). FPGAs contain prefabricated and
configurable routing elements that allow us to easily im-
plement a variety of circuits. However this interconnect
contributes greatly to the overall delay in the implemented
circuit. If a circuit is retimed prior to the placement and
routing phases of the CAD flow, then it has no information
about the delays introduced by the configurable intercon-
nect. Our fundamental experiment is to determine whether
there are any gains in tightly coupling retiming and place-
ment so that the retiming algorithm has some estimate of
the routing delays.

Specifically, we introduce a post-placement retiming al-
gorithm that understands how to take advantage of FPGA
architectural features. This retiming algorithm may intro-
duce extra registers into the circuit. These new registers
need to be placed in some location in the FPGA. Retiming
register placement is accomplished by a novel incremental
clustering and placement algorithm. The incremental algo-
rithm builds upon the placement of the non-retimed circuit
to intelligently sift in the newly-introduced registers.

In addition, we explore making the placement algorithms
“retiming aware.” These placement algorithms try to place
logic blocks in such a way that the subsequent retiming pro-
duces better speed results. These techniques include the
identification of retiming-critical cycles during placement.

Our experiments show that the integration of retiming
with placement results in 19% better clock periods in com-
parison to the application of retiming before the place and
route steps.
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1. INTRODUCTION

Designs implemented in FPGAs [1] [15] are often domi-
nated by the delay associated with its configurable intercon-
nect. While this phenomenon is also true for ASICs, it is
more pronounced for FPGAs because the interconnect con-
tains programmable switches such as pass transistors, tri-
state buffers and multiplexers in addition to the metal lines
themselves. This trend is ever increasing as deep submircon
technologies shrink, and the wire delays themselves increase.

One of the most powerful delay optimization techniques is
Sequential Retiming [7] [8]. This technique moves registers
across combinational circuit elements to reduce the length
of timing-critical paths. Circuit optimization techniques,
such as retiming, are typically applied to a gate-level netlist
before the placement and routing steps of the CAD flow.
We question if this is the correct approach, since the circuit
delay is dominated by the flexible FPGA interconnect.

In this paper, we compare the conventional application of
retiming at the gate level with a novel retiming process that
happens after placement. Application of sequential retim-
ing after the placement step gives us reasonably accurate
estimates of the connection routing delays; however, it in-
troduces many new challenges. For example, retiming may
introduce several additional registers in the netlist. We need
to find an appropriate place for these registers, but the place-
ment phase has already been completed. If the placement
phase were to be rerun, then we would pay an extremely high
price in terms of compile time. If the compile time is not
an issue, this process still does not guarantee convergence
since the new placement may be completely different than
the original placement. Hence a totally different retiming
might be needed.

To overcome these problems, we introduce a new retiming
algorithm along with an incremental clustering and place-
ment tool. The new retiming algorithm tries to change the
post-placement netlist as little as possible. If this minimally
placement-disruptive retiming algorithm does find it neces-
sary to create additional registers in the netlist, the incre-
mental clustering and placement tool is used to find places
for these retiming registers. This process may involve mov-
ing non-critical sections of logic so that we can place delay
critical registers in their preferred locations.

We also identify certain circuit configurations that make
post-placement retiming ineffective, and show how FPGA
placement algorithms can be modified to be aware of these
retiming-limiting cases.
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Figure 1: Sequential Retiming

The rest of this paper is organized as follows: Section 2
briefly provides background information on the method of
Sequential Retiming. Sections 3,4,5 and 6 describe the algo-
rithms in the order that they appear during a typical CAD
flow. Section 3 describes circuit structures that limit the
benefit from retiming. Section 4 shows how the placer can
be improved to reduce these potential bottlenecks. Section 5
describes the minimally placement disruptive retiming algo-
rithm. Section 6 introduces a high-level description of the
incremental clustering and placement algorithm. Section 7
details our experiments and show a cross-section of the re-
sults. Section 8 presents our conclusion and plans for future
work.

2. BACKGROUND
2.1 Retiming

Sequential retiming is a powerful logic optimization tech-
nique for synchronous circuits which uses the property that
flip flops can be taken from the outputs of gates and moved
to their inputs, or vice versa, without changing the perceived
behavior of the circuit. Using these moves in combination,
one can attempt to maximize circuit speed and minimize
area. This technique was first introduced in the early 1980’s
in various works by Leiserson and Saxe [7] [8]. They de-
scribe several retiming algorithms to minimize the critical
path delay by relocating the registers in synchronous cir-
cuits without any change in functionality.

Consider the circuit shown in Figure 1(a). Assuming that
the delay of each gate in the circuit is a single time unit,
then the critical path delay of this circuit is 3 time units.
Retiming theory allows us to reduce the critical path delay
by moving flip flops either forward or backward across a
gate as shown in Figure 1(b). It is easy to verify that the
retimed circuit has the same functionality to the outside
world as the original circuit if we assume that the initial
state on each register is 0. However we can also see that
this circuit contains no path with a delay greater than 1 time
unit, and the retiming technique reduced the critical path
delay with no changes to the circuit other than redistributing
the registers.

Figure 2: Retiming Circuit Representation.

2.2 Notation and Definitions

Retiming algorithms usually require a unique representa-
tion of synchronous circuits. These circuits can be repre-
sented using a directed graph of the form G(V, E). V is the
set of all combinational cells within the circuit. E is a set
of directed edges ey, which denote the connection of cell u
to cell v via zero or more registers. Each of the directed
edges is associated with a corresponding weight wy,. This
weight indicates the number of registers on the connection
from u to v. Figure 2 illustrates this concept of the new rep-
resentation for a cell u connected through a single register
to a cell v. The new representation deletes the register, and
the connection has a directed edge from u to v with weight
Wyp = 1.

A retiming of a circuit can be expressed as an integer la-
beling on each combinational cell. A label r(v) is associated
with each cell v. This label indicates the number of registers
that are moved from the inputs of the cell v to its outputs.
Thus for a given retiming, the number of registers on each
wire is given by:

Wy uv = Wy + 7(0) — 7(v) (1)

This equation simply expresses that in addition to the origi-
nal registers on ey, which is denoted by wy., 7(u) registers
are moved onto the wire and r(v) registers are removed.

Given these definitions, the problem of retiming synchronous
circuits can then be expressed as finding a label for each
combinational cell such that the delay of the longest com-
binational path is less than a target clock period ¢. This
problem can be formally expressed as:

e All retiming labels r(v) must be integers. It is im-
possible to move fractional numbers of flip-flops from
inputs to outputs.

e After retiming, all weights must be non-negative. That
is Wrue > 0 or:

r(u) > r(v) — Wuo (2)

This equation exists to ensure that retiming is physi-
cally possible or negative numbers of registers may be
produced by the retiming algorithm.

e Let P represent a path from v — v in a directed graph
representation of the synchronous circuit. Every path
in the circuit with delay D(P) greater than ¢ must
have at least one register along that path.

D(P)>¢ — Wep>1
DP)>¢p — ru)>r(v)—Wp+1 (3)

The quantity Wp represents the sum of the weights of
the edges along the path P.

This formulation can be solved by a solution to a set
of constraint equations. Since these equations have sim-
ple structure, they can be efficiently solved by single source
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Figure 3: Critical Cycles.

shortest path algorithms such as Bellman-Ford. Many more
efficient techniques have recently been developed for mak-
ing retiming practical for large circuits [14]. Note that solv-
ing these constraint equations does not optimize the clock
period, but rather it gives us the answer to a binary deci-
sion problem that asks if the target clock period ¢ can be
achieved by retiming. In order to optimize the clock period,
a binary search is performed to check individual values of ¢.

A fundamental retiming concept used in this paper is that
the number of registers around any cycle in the retiming
graph cannot be changed by the application of sequential
retiming. The registers may be redistributed around the
cycle but the total number cannot be changed. Consider
any cycle of the form v — ... — wv. At the beginning
of the cycle r(v) registers are added, and at the end r(v)
registers are taken away. Hence the number of registers on
the cycle must remain unchanged. A more formal proof is
given in [7] [8].

3. CRITICALCYCLESANDCYCLESLACK

Our experiments with retiming have shown that retiming
solutions are often limited by critical cycles in the netlist.
This situation is depicted in Figure 3. The critical path A-
B-C-D can be reduced by moving the registers at D and F
backwards. However there is no way of reducing the delay
around the cycle B-C-F-G. Thus it is this cycle that may
limit the performance of retiming. In a conventional placer,
there is no reason that the delay around the cycle B-C-F-G
should be minimized. As long as it is less than the critical
path, the placer can organize the nodes on the critical cycles
to optimize wirelength or other objectives. However if the
placer had knowledge that the critical path A-B-C-D could
be broken up, then it may be able to reduce the critical cycle.
Hence, our objective is to develop a strategy that would give
the placer awareness of the retiming possibilities.

Figure 4 shows another factor that limits retiming effec-
tiveness. A retimed circuit may have multiple near-critical
paths. In the example, the critical path A-B-C could not
be retimed because moving the register at the output of C
backward would cause the near-critical path to become crit-
ical. Again, if the placement engine understood that the
circuit would be retimed then it might be able to reduce the
delay of the near critical path D-FE.

To provide the placer with knowledge of the retiming so-
lutions, a special graph is constructed from the netlist being
mapped. This graph will be termed the cycle rate graph.
To our knowledge, this type of representation was first dis-
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Figure 4: Near Critical Paths.

cussed in [13]. However, it has since been used in many
applications [11] [12] which couple retiming with other op-
timizations.

Let ¢ represent the clock period after the application of
retiming. A retiming netlist can be transformed into a cycle
rate netlist by creating a new graph with the same vertices
as the retiming netlist. For every edge e, in the retiming
graph, we create an equivalent edge in the cycle rate graph.
However the weight of the edge in the cycle rate graph is
equal to wyy * ¢ — d(v) — d(uv), where d(v) is the combina-
tional delay of the node v, and d(uv) is the combinational
delay of the edge from u to v. A special vertex called the host
is added to the cycle rate graph. The host node is used to
model the connections to the external system for the circuit
under consideration. Otherwise the retiming algorithm may
reduce the critical path while increasing clock-to-output or
input-to-clock delays. Zero weight edges are added from the
host to each primary input. Edges with the weight of ¢ are
added from each primary output to the host vertex. The
idea behind the cycle rate graph is that every register al-
lows for ¢ units of combinational delay. Every vertex v uses
up —d(v) units of combinational delay. If there is a delay
associated with ey, then it also consumes —d(uv) units of
combinational delay. Since the number of registers around
any cycle remains unchanged, the sum of the weights around
any cycle C' gives us ¢ * Nowyy — Bed(v) — Led(uv). This
quantity can be thought of as the total amount of combina-
tional delay allowed by the registers, minus the total amount
of combinational delay used. Setting this quantity to zero
provides us with the balance point where the registers allow
as much combinational delay as used by the combinational
elements. Equation 4 shows that this equality can be used
to solve for a bound on the target clock period. ¢ is lim-
ited by the delay around the cycle divided by the number of
registers available. This quantity is known as the delay-to-
register ratio (DRR) for the cycle. The operating speed of
a circuit is limited by the largest DRR for any cycle in the
circuit.

PEcWyy — Bed(v) — Bed(uwv) =0

Yed(v) + Xed(uv)
¢ = >
C Wy

(4)

Notice also that all paths from primary inputs to primary
outputs participate on a cycle because of the connections to
the host vertex. The connections from the primary outputs
to host have a weight of ¢ because we assume that the circuit
will allow us up to ¢ units of combinational delay before it
samples its the values at the primary outputs.

These concepts are easiest to understand by looking at an
example. Figure 5 shows a retiming graph, and Figure 6
shows the cycle rate graph that corresponds to this netlist.
Assume unit delays for each gate in the netlist, and that each
edge has a delay of 0. Note that the cycle rate graph has all
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Figure 5: Cycle Rate Netlist.

of the vertices in the retiming netlist. It also contains the
host vertex connecting to the inputs and outputs. Examine
the edge eap in the cycle rate graph. In the corresponding
netlist, there is a single register connecting from A-to-B.
Thus wap = 1, and the weight of the edge in the cycle rate
graph is wap¢ — d(B) = ¢ — 1. Consider the cycle A-B-C-

Figure 6: Cycle Rate Graph.

D-E-Host. The sum of the edge weights around this cycle is
3¢ — 3. Setting this quantity to 0 and solving for ¢ indicates
that this cycle may be clocked at a single unit delay if we
can successfully retime the circuit. Indeed this is true as we
can move the leftmost registers one unit to the right and the
rightmost registers one unit to the left.

Thus far we’ve looked at individual cycles and found the
DRR that limits the value of ¢. To find the maximum
DRR (MDR) cycle in the cycle rate graph, we re-express
the problem as one of finding the minimum value of ¢ that
does not cause a negative weight cycle to be created in the
graph. For example, in Figure 6 a value of ¢ = 0.5 would
cause the cycle A-B-C-D-E-Host to have a negative weight
3% 0.5 —3 = —1.5. A simple technique for finding negative
cycles is to run a single source shortest path algorithm, such
as Bellman-Ford, on the graph. If the solution does not con-
verge, then a negative weight cycle is present in the graph.
However, the techniques described in [4] [14] can be used
to more efficiently detect the presence of negative weight
cycles.

The techniques described above allow us to find the cy-
cles that limit our target clock periods. To apply it to the
placement algorithm, we now define a concept called the
cycle-slack. We first find the limiting value of ¢ using the
techniques described above. For this value of ¢, the cycle-
slack of a connection is the maximum amount of delay that
can be added to the connection without creating a negative
weight cycle. Suppose that we target ¢ = 1 in Figure 6, then
we can tolerate an extra one unit of delay on the connection

from G-to-D without creating a negative cycle. Hence the
CycleSlack(GD) = 1. Notice that the cycle-slack for con-
nections on the critical cycle is 0. If the connection delay
from B-to-C were increased at all, then the cycle A-B-C-D-
E-Host would have a negative weight. It is these cycle-slacks
that can be used to inform the placer about which connec-
tions are critical, given that we will perform retiming after
placement.

We do not know of an efficient (less than O(n?)) algorithm
that solves the cycle slack problem exactly. Here we give an
overview of an approximate algorithm for solving the cycle
slacks. Consider finding the cycle slack for a connection
ewv- Choose an arbitrary source vertex s in the cycle rate
graph. Find the shortest path from s to v and call this Pk,
find the shortest path P,s from v to s. Figure 7 depicts
this situation. The cycle-slack for ey, can be approximated
as Pys + wyv x @ — d(uv) + Pys. The situation depicted in
Figure 7 is typical, but the paths P,s and P,s may intersect
at a common vertex c as shown in Figure 8. In this case the
cycle slack is computed for the cycle c-u-v. This scheme only
an approximate solution to the cycle slack problem because
we only look for cycles that contain s. We can improve
our approximations by repeating this procedure for other
randomly chosen source vertices s and retaining the smallest
slack computed for the different sources. Note that the host
node is always one of the source vertices considered since
many cycles contain this vertex.

u

\'

Figure 7: Finding the Cycle Slack.

u

Vv

Figure 8: Intersecting Paths.

Cong and Lim [6] use a strategy similar to cycle-slacks



to couple partitioning, floorplanning and retiming for ASIC
designs. However, their reported procedure behaves differ-
ently than our approach for circuits that contain critical
sequential cycles.

4. RETIMING AWARE COST FUNCTION

We add retiming awareness to the VPR [2] placement and
routing tool for FPGAs. VPR is based on simulated anneal-
ing optimization of wirelength and timing cost functions.
The VPR timing cost uses connection criticalities to weight
the delay of connections. Critical connections are encour-
aged to be placed closer together. VPR uses the formula in
Eq. 5 for converting slacks into criticalities. Note that T,
represents the delay of the critical path in the circuit.

Slack(c)
Tm‘it (5)

We use an adaptive strategy to convert cycle slacks into
criticalities as shown in Eq. 6.

Crite = 1.0 — BCycleSlack(c) (6)

Crite =1.0 —

The value of 8 controls the criticality distribution as shown
in Figure 9. This figure shows the cycle slack criticalities for
two different values of 8 computed for a single benchmark
circuit. Larger values of 3 flatten the tail section of the criti-
cality distribution. We choose a value of 3 that ensures that
the tail of the criticality profile is relatively flat. This en-
sures that the placer is not “confused” by too many critical
connections. The value of 3 is initially set to m,
and it is iteratively adjusted by examining the criticality
profile histogram associated with previous (8 values. The
goal of the adjustment is to constrain the number of edges
that are 90%-100% critical to no more than 5% of the total
number of edges.

Percent Edges

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Criticality

Figure 9: Criticality Profile.

5. MINIMALLY PLACEMENT DISRUPTIVE

RETIMING

Once the placement is completed, the next step is to actu-
ally do the register moving to retime the circuit. For a given
clock period, several different sequences of register moves
may achieve the target period. In this section, we develop
techniques to find a sequence of register moves that will
minimally disrupt the post-placement netlist. This step will
make the job of the incremental clustering and placement
algorithm much easier.

5.1 Costing Logic Duplication

Out
LUT L D Q

Configuration
Select

O 0O wm >

Figure 10: Simplified FPGA Logic Block

(c) Both Registers Moved Forward

Figure 11: Costing Logic Duplication.

The first challenge is to model the registers at the out-
puts of FPGA logic blocks correctly. Figure 10 shows a
simplified version of the logic block used by most commer-
cial FPGA architectures. The block contains a lookup-table
with an optional flip-flop to register the output if needed.
Our model assumes that only one signal can be output from
a logic block. Therefore if both the combinational and reg-
istered version of the signal at the lookup table is needed,
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then we must replicate the logic block. One block would
be chosen to send out the combinational version of the sig-
nal, while the other would send out the registered version.
Obviously it would be extremely beneficial to find a retim-
ing solution that minimizes the amount of logic duplication
needed to realize the target clock period.

Figure 11 shows our scheme for minimizing logic duplica-
tion during retiming. Figure 11(a) shows extra nodes added
in the retiming graph to model the logic block. First an
extra node is added on each fanout from the lookup table
output. In the Figure, these nodes are labeled F'1; and
F2;. A source node SRC; and sink node SN K; are added
for each LUT. Wires are added from SRC; to each fanout
node, and from each fanout node to SNK;. There is a vir-
tual connection added from SRC; to SNK;. We now claim
that minimizing the number of registers on the virtual wires
minimizes the amount of logic duplication.

This claim can be explained fairly informally. Consider
the situation shown in Figure 11(b). In this case we move
only one of the registers forward from the fanout of LUT;.
There is now a single register on the virtual connection from
SRC; to SN K;. Note that this is only possible by moving a
register from the fanins of SRC;. Since it has no fanins, this
move is perfectly legal. There is no way of removing the reg-
ister on the virtual connection, if the LUT provides both a
combinational and registered output. In Figure 11(c), both
registers are moved to the fanouts. Notice now that there
is still a single register on the virtual connection. However
it can be removed by pushing the registers on the fanins
of SNK; to its output. So minimizing the number of reg-
isters on the virtual connection again gives us the correct
cost as no logic duplication is needed. Note that SRC and
SNK vertices serve similar purposes to the mirror vertices
described in [7] [8].

5.2 Costing Pipelined Routes and
Fanin Registers

Figure 12 shows how we cost pipelined routes and fanin
registers. It is occasionally very useful to pipeline a long
route, to allow a signal multiple clock cycles to traverse a
long stretch of interconnect. In a conventional architecture
this is quite expensive. An ideal architecture might allow for
the perfect division of routing delay by inserting a register.
However inserting a register in the middle of a long route
always has some overhead cost of going into the register
and coming back out. In addition, there are reduced op-
portunities for register sharing amongst the various fanouts.
Hence we try to avoid this situation as much as possible for
both area and delay reasons. Thus placing a register in the
middle of a connection is costed 8 times higher than logic
duplication.

The figure also shows the situation where a register must
be added at the fanin of LUTj. This situation is the most
expensive because each register on a fanin is assumed to be
fairly close to LUT;. However architectural constraints (dis-
cussed in the next section) imply that only a limited num-
ber of fanin registers can be placed physically close to their
associated LUT. It would be difficult for the incremental
clustering and placement algorithm to come up with a good
solution for netlists with too many fanin registers. Thus,
these fanin edges are costed at 64 times the cost of logic
duplication.

The values discussed above were discovered through ex-
perimentation. However they are not very sensitive. Many
different values work well. However the relative cost order-
ing of duplication, pipelining registers and fanin registers
must be kept for effective retimings.
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Figure 13: Simple Model of FPGA Cluster.

5.3 SolvingtheMinimum Cost Problem

The previous discussion established a modified retiming
netlist and a cost for placing a register on certain edges. This
problem is equivalent to minimizing Y., , cost(Wyv) * W ue
while satisfying the constraints described in Equations 2, 3.
This problem is the dual of the minimum cost network flow
problem and can be solved via the Network Simplex algo-
rithm. The techniques in [9] [14] are used to eliminate the
redundant timing constraints defined by Eq. 3. Our imple-
mentation of the network simplex algorithm is extremely
fast, as it takes less than 1 minute for even the largest cir-
cuits.

6. INCREMENTAL CLUSTERING AND
PLACEMENT

The incremental clustering and placement algorithm (ICP)
is used whenever the minimally placement disruptive retim-
ing algorithm decides that it must add extra registers to the
netlist. These extra registers must be placed at some lo-
cation in the FPGA. Ideally these registers could be sifted
into existing unutilized areas of the chip. However these re-
timing registers are added sparsely at random locations in
the netlist, and placement algorithms tend to pack logic in
tight clumps (little white space) to minimize delay and wire-
length. Hence the ICP algorithm must try to create space
for the newly inserted registers by moving the locations of
non delay or wirelength-critical logic elements.

Moving logic elements in modern FPGAs is not necessar-
ily a trivial process. Logic elements are typically organized
into groups or clusters. Figure 13 shows a simplistic model
of a FPGA cluster. Each cluster contains Nryrs logic el-
ements, Nrnpyt input lines, Neiocr global clock inputs and
NReset global asynchronous set/reset inputs. In academic
literature [2], typical values for clusters are Nryrs = 4,
Ninputs = 10 and Neiock = NReset = 1. These constraints
mean that even if there is a free space in the FPGA, we
must check that there are enough input, clock, and reset
lines available. For example a cluster using 4 LUTs but
containing registers from two different clock domains is ille-
gal.

The basic idea behind the ICP algorithm is to place these
newly created registers (or duplicated logic) into their pre-
ferred locations even if it violates architectural constraints.
For example if a particular LUT LUT; must be duplicated,
then the preferred location of LUTY is the same cluster as
LUT;. We then iterate on this starting point to try to re-
move the various architectural violations by moving non-
critical logic.

The ICP algorithm is based upon an iterative improve-
ment technique that moves logic cells in an attempt to min-
imize a cost function. This cost function includes the sum-
mation of three distinct parts:

e Cluster Legality Cost - Each cluster is penalized if
it contains an illegal configuration. The cost is pro-
portional to the amount of illegality.

e Timing Cost - The timing cost is used to ensure that
critical regions of logic are not moved into places that
would drastically increase the critical path delay.

e Wirelength Cost - Wirelength estimation is used to
ensure that the circuit is easily routable after the logic
element moves.

6.1 Cluster Legality Cost

There is a cluster legality cost associated with each cluster
C;. This cost can be calculated as shown in Eq. 7.

ClusterCost(C;) = KL; x overuse(Cs, NLurs)  +
KI; * overuse(Ci, Ninput) +
KR; x overuse(Ci, Nreset) ~+
KC; x overuse(Cs, Nciock) (7)

The notation overuse(C;, Npurs) represents the number of
extra LUTs contained in the cluster configuration C;. The
overuse function is defined similarly for input, clock and
reset lines. The coefficients KL, KI, KR, and KC regu-
late the importance of the various types of overuse. These
constants are all initialized to a value of 1, and gradually
increased as shown in Section 6.5.

6.2 Timing Cost

One of component of the timing cost is based upon the
cost used by the VPR placer. This cost is shown in Eq. 8.

Tcosty pr = Yecrit(c) * delay(c) (8)

This function encourages critical connections to reduce de-
lay, while allowing non-critical connections are used to op-
timize wirelength and other optimization criteria. The ICP
algorithm is not intended to improve the critical path de-
lay of the circuit after retiming, but rather to preserve the
delay by moving non-critical logic as little as possible. An
aggressive cost function can cause non-critical connections
to become critical. This is acceptable in a non-incremental
placer because many moves can be made to correct this oscil-
lation. However, ICP tries to make as few moves as possible
because the retiming corresponds to the original placement.
Hence we introduce a damping cost to prevent too many
aggressive moves. It is shown in Eq. 9
Tcostpamp = Xemaz(delay(c) — mazdelay(c),0.0)
mazdelay(c) = delay(c) + a * slack(c)  (9)
The value of mazdelay(c) is updated every time a timing
analysis is executed. Its value is constant otherwise. The
purpose of mazdelay(c) is to control the delay expansion

of a given connection. A delay that exceeds the maximum
allocation is penalized while all other values are not costed.

6.3 Wirelength Cost

Figure 14 shows a high-level description of how the wire-
length is monitored. Horizontal and Vertical cutlines are
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Figure 14: Local Congestion Estimation.

e Move-to-Space - Attempt a move to any random free
slot in the FPGA.

e Move in Direction of Critical Vector - The critical
vector for LUT; is show in Figure 16. The direction of
the critical vector is computed by summing the direc-
tions of all the critical connections attached to LUT;.
An attempt is made to move to a random cluster along
the critical vector. This move helps to correct any
mistakes when unexpected paths have become criti-
cal because of moves in previous iterations. Note that
the critical vector move is similar to the move types
attempted by iterative force directed placement algo-
rithms.

Although move selection is random, the selected move is
always biased in the direction of free slots.

Non-Critical

placed in each horizontal and vertical channel of the FPGA.
The expected crossing count across each of these lines is
monitored during each move. The average crossing count for
every net can be computed using the techniques described
in [3]. Monitoring the usage on these cutlines allows the
measurement of localized congestion. In this way, the algo-
rithm attempts to make sure that the new registers do not
create any “hot-spots” that result in circuitous routes.

6.4 MoveProposals

Fanin Fanin

Critical

Critical

Critcal Vector

Figure 16: Critical vector.
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Sibling

Sibling

Figure 17 shows a parent-move for a particular LUT. A
register is inserted into a cluster causing it to violate ar-
chitectural constraints as only 4 LUTs are allowed in each
cluster. In this cluster, the LUT with the least timing crit-
ical connections is moved to a cluster containing one of its
fanins. Although both of its fanin clusters has an extra free
space, only one can possibly take this extra LUT since one
of the clusters has already used up all of its input lines.

Fanout

Fanout
Figure 15: Fanin, Fanout and Sibling relationships.

Each iteration of the ICP algorithm chooses a candidate
logic element LUT; to move. Several different move types
are selected in a random fashion. The various moves are:

e Move-to-Fanin - Attempt to move LUT; to a cluster
that contains a fanin of LUT;.

e Move-to-Fanout - Attempt to move LUT; to a clus-
ter that contains a fanout of LUT;.

e Move-to-Sibling - Figure 15 depicts the sibling re-
lationship to LUT;. Choose a sibling and attempt to
move to the cluster that contains the sibling.
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Figure 17: Example of ICP Move to Parent.
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6.5 ThelCP Algorithm

proclCP
begin
while there is overuse remaining
choose any LUT; from an overused cluster;
select random move-type;
evaluate change in cost AC;
ifAC < 0 then
accept move;
end if.
every K iterations do
run TA update crit(c) and mazdelay(c).
call UpdateOveruseCoefs;
end.
if loopIterations > Threshold then
return NO-FIT;
end if.
end loop.
end ICP.

Figure 18: Top Level ICP Algorithm

The basic cost function and move proposal schemes have
been discussed above. Figure 18 presents the entire ICP
algorithm. The algorithm simply chooses LUTs that partic-
ipate in illegal clusters and tries to move them to improve
the cost function. Notice also, that simple Timing Analy-
sis (T'A) is performed every K iterations. This call updates
the maxdelay and connection criticality values to reflect the
current configuration. The value of K is adaptively updated
based on the amount of overuse remaining.

procUpdateOveruseCoefs
begin
foreach overused cluster C; do
KL, = KL; + overuse(Ci, NLurs);
KI;, = KI, + overuse(Ci, Ninput);
KR; = KR; 4 overuse(C;, Nreset);
KC; = KC; + overuse(Ci, Nciock);
end loop.
end UpdateOveruseCoefs

Figure 19: Updating the Overuse Coefficients

Only moves that improve the cost function are accepted.
Hence our algorithm is essentially greedy. The drawback
with this approach is that the algorithm could easily get
trapped in a configuration where it cannot find moves that
decrease the current cost. To combat this problem, the
UpdateOveruseCoefs, shown in Figure 19 is called every
K iterations. It increases the overuse coefficients for every
cluster that is illegal. This procedure actually reshapes the
cost function to make it more favorable to move a logic el-
ement in an overused cluster since the overuse importance
coefficients have been increased. This approach is similar to
the Pathfinder [10] algorithm used for FPGA routing. How-

ever in this case LUTs “fight” for preferred cluster locations,
by negotiating legality, timing and wirelength.

7. EXPERIMENTAL RESULTS

We conducted three experiments to compare different ap-
proaches. Our first approach is to retime the netlist at the
LUT level (created by FlowMap [5]) and then perform the
place and route steps. The retiming in this experiment is
done with a unit delay model assuming that each LUT has
unit delay. Our second experiment is to apply minimally
placement disruptive retiming after the placement step. The
placement engine uses conventional slacks rather than cycle
slacks. The ICP algorithm is then run, and then the design
is routed. Our third experiment goes through the entire
flow proposed in this paper. Retiming-Aware placement is
executed using cycle slacks. From this point the ICP and
routing steps are executed. We show results on a cross sec-
tion of circuits that we have studied in Table 7. Included
are the largest of the sequential MCNC circuits and a few
circuits gathered from free IP-core projects that were syn-
thesized and mapped to simple LUTs and registers.

The target architecture for each circuit was selected so
that the chip would be no more than 90% utilized. This
number was chosen so that extra space would be available
for the addition of retiming registers. In addition, a low-
stress environment is assumed so that the router is given
20% more tracks than the absolute minimum required to
route the circuit. The number of tracks is computed for
the non-retimed circuit and not changed regardless of the
number of registers that are inserted into the circuit.

The average improvement from integrating retiming with
placement is approximately 19%, in comparison to retiming
before placement, after going through the entire flow pro-
posed in this paper. Notice that the cycle slack technique
does not produce huge gains, but seems to consistently pro-
duce a slightly better clock period. This seems to be the
case because most of the critical cycles in these circuits are
close in delay to the critical path, so the unmodified VPR
placer tries to keep them close together. The cycle slack
technique seems to ask the placer to “try-harder” to keep
the cycles close together. In addition to reducing the delay
around the critical cycle, the delay of the near-critical cy-
cles also seem to be reduced because there are fewer critical
paths produced after retiming. This provides tools like the
VPR router more freedom since it has fewer paths that must
be routed on their preferred resources.

The minimally placement disruptive retiming algorithm
has a run-time that is similar to conventional minimum-
area retiming algorithms. However the actual execution
time is strongly dependent on efficient implementation tech-
niques [9] [14]. The execution-time of the incremental place-
ment algorithm, is dominated by the timing analysis steps
that take place every K iterations. However, if the timing
graph is initially topologically sorted, then simple Timing
Analysis can be accomplished in O(n) time. Hence the ICP
algorithm also runs in O(n) time as the number of iterations
attempted is bounded.
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Table 1: Experimental Results

Circuit Size (LUTs) | Retime First (ns) ICP (ns) Cycle Slack +
ICP (ns)
bigkey-mcnc | 1707 8.45 8.23 7.84
dsip-mcnc 1370 7.87 6.95 5.87
diffeq-mcnc | 1497 15.65 14.83 15.01
elliptic-mcenc | 3604 14.57 15.11 13.48
frisc-menc | 3556 15.41 14.36 13.85
$38417-mcnc | 6406 20.81 19.14 16.97
tseng-mcnc | 1047 11.57 11.17 10.58
hcll-oc 3877 31.91 25.84 23.19
des-fip 15509 17.33 14.1 13.69
sisc8 1434 16.62 14.23 13.60
Average 4000 16 14.4 (+11.1%) 13.4 (+19.4%)

CONCLUSIONS

In this paper, we’ve shown that significant speed gains
can be obtained by integrating retiming with placement al-
gorithms for FPGAs in comparison to retiming at the LUT-
level. The circuits that we’ve explored are fairly small in
comparison to industrial standards. We feel that the small
size actually hinders our experiments as larger circuits may
experience larger routing delays in comparison to logic block
delays because of the long distances that some paths must
traverse.
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