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ABSTRACT
Circuits implemented in FPGAs have delays that are dom-
inated by its programmable interconnect. This intercon-
nect provides the ability to implement arbitrary connec-
tions. However, it contains both highly capacitive and re-
sistive elements. The delay encountered by any connection
depends strongly on the number of interconnect elements
used to route the connection. These delays are only com-
pletely known after the place and route phase of the CAD
flow. We propose the use of Clock Shifting optimization
techniques to improve the clock frequency as a post place
and route step.

Clock Shifting Optimization is a technique first formal-
ized in [4]. It is a cycle-stealing algorithm that allows one
to reduce the critical path delay of a synchronous circuit by
shifting the clock signals at each register. This technique
allows late arriving signals to be sampled at a later point in
time by intentionally introducing a skew on the clock input
of the sampling register. Typical FPGAs contain a num-
ber of special purpose global clock networks that distribute
clock signals to every register in the chip. Unused global
clock lines in FPGAs can be used to distribute a finite set
of clock skews to the entire circuit. We propose an efficient
integer programming method to find the optimal circuit im-
provement for a finite set of clock skews. This technique
is modified to consider inherent uncertainties present in the
timing models. The uncertainty controls the aggressiveness
of the optimizations as we must take great care in ensuring
functionality for any range of possible timing characteristics.

Our results confirm intuition that more aggressive speed
optimizations can be performed as timing models become
more accurate. We also show that providing 4 skewed ver-
sions of the nominal clock signal results in the best delay–
area tradeoff. This result is evocative as it may suggest
future FPGA architectures that contain greater numbers of
global clock lines, as we tradeoff gains in speed for greater
power requirements from increased clock network flexibility.
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Figure 1: Clock Shifting Example.
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Figure 2: Clock Shifting Waveform.

1. INTRODUCTION
FPGA designers face the dilemma that their designs are

dominated by connection delays routed along programmable
interconnect elements. For many designs, these delays are
impossible to predict until the actual placement and rout-
ing steps are complete. If a design does not meet timing be-
cause of these interconnect delays, many iterations of adding
placement constraints or re-synthesizing logic may be nec-
essary to reduce critical delays. In this paper, we propose
the use of a clock shifting circuit optimization technique
that can be automatically applied after the circuit has been
completely placed and routed.

In a conventional FPGA architecture [1] [9], the length
of the longest stretch of interconnect used can be a sig-
nificant factor in determining the maximum operating fre-
quency. Strategies to cope with these delays include the
use of rescheduling techniques for data flow so that signals



are allowed one or more clock cycles to traverse these long
stretches of interconnect. One method of rescheduling these
operations is through the use of sequential retiming along
with registers within the routing fabric of the FPGA. Stud-
ies such as [8] proposed methods for moving registers around
the FPGA after the place and route phases of the FPGA
CAD flow.

Another approach of rescheduling is that of clock shift-
ing optimization. This optimization moves clock signals in
time rather than moving registers in the space of the cir-
cuit netlist. Figures 1 and 2 show an example of this op-
timization on a simple synchronous sequential circuit. The
circuit in Figure 1 has a critical path delay of 2ns. However,
the circuit can be clocked with a period of 1ns if we shift
the clock backwards by 0.5ns at the leftmost registers and
shift the clock forward by 0.5ns at the rightmost registers.
For the circuit to function correctly, the inputs must arrive
early enough so that we may steal the extra 0.5ns of time on
the input side. Similarly, the external circuitry must have a
small setup time so that we are allowed to wait an additional
0.5ns before clocking the rightmost register. Thus, the abil-
ity to reduce the clock period does not come for free. We
must steal bits of slack from inputs and outputs and then
propagate it through the circuit.

FPGAs seem like a natural environment to implement this
type of optimization since they contains several prefabri-
cated global clock nets that connect to every register in the
circuit. This paper seeks to explore the feasibility of apply-
ing clock shifting for circuits implemented in FPGAs.

The rest of this paper is organized as follows: Section 2
briefly provides background information on synchronous clock-
ing in the presence of clock skew. Section 3 describes how
clock shifts can be introduced in FPGAs. Section 4 describes
the fundamental uncertainties in the timing models for var-
ious components within FPGAs. Sections 5 and 6 describe
an algorithm to find a set of clock shifts compatible with the
FPGA architecture such that the clock period of the circuit
is optimized. Section 7 details our experimental methodol-
ogy along with a discussion of the results. Section 8 presents
our conclusions and plans for future work.

2. SYNCHRONOUS OPERATION
WITH CLOCK SKEW

In this section, we briefly review the fundamentals of syn-
chronous circuits operating in the presence of clock skew.
Consider two registers ri and rj that are connected by some
combinational path. Let the clock skew at ri be desig-
nated by SKi and the clock skew at register j be designated
by SKj . In addition, let MAX(i, j) represent the maxi-
mum combinational path delay from ri to rj . Similarly, let
MIN(i, j) represent the minimum delay from ri to rj .

The Zero-Clocking constraint is represented by Eq. 1.

SKi + MAX(i, j) ≤ Cp + SKj (1)

This equation expresses that the signal from ri propagates
to rj at SKi + MAX(i, j) relative to the active clock edge.
The signal is sampled one clock period Cp later plus the
skew SKj at rj . Clearly the arrival time must be less than
or equal to the sampling time for correct synchronous oper-
ation.

The Double-Clocking constraint is represented by Eq. 2.

SKi + MIN(i, j) ≥ SKj (2)

In a zero skew environment, synchronous circuits operate
correctly because they rely on the combinational elements
between registers to hold its value for a small amount of
time after the clock arrives. This allows the register to latch
its input value reliably on the clock edge. In the presence
of clock skew, a situation may occur where we wait too long
and the input value that was to be sampled has disappeared.
Eq. 2 formalizes this constraint. The time where the input
value could disappear is the time at which ri changes its
value plus the minimum propagation time to get from ri to
rj or SKi + MIN(i, j). For correct operation, the register
rj must sample its input before this time.

3. APPLICATION TO FPGAS
FPGAs are unique architectures in that they have several

prefabricated global clock networks that can distribute sig-
nals to every register in the circuit. Several networks are
necessary so that multiple clock domain circuits could be
efficiently mapped to the FPGA. These clock networks can
also be used to distribute skewed versions of a single clock
to the various registers in the circuit. This concept is illus-
trated in Figure 3. However the number of distinct skewed
clock signals is limited by the number of clock lines that are
available in the target architecture. This number is denoted
by L throughout this paper.
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Figure 3: Typical FPGA Logic Block.

The circuitry that would provide the clock shifts is shown
in Figure 4. This circuit provides only positive clock shifts
(skewed versions of the clock arrive only after the nominal
clock). The PLL along with the divider is a commonly used
structure to multiply the frequency of the clock. The mul-
tiplied version of the clock is used to drive a simple shift
register that samples a clock operating at the input clock
frequency. In this way, we can tap various shifted versions of
the clock by sampling outputs of the shift register. Variable
taps are implemented by the multiplexer circuitry connected
to the shift register. The system shown is very similar to the
internals of many digital PLL implementations. It is un-
clear whether the extra shifting circuitry could be operated
reliably at high speeds when implemented in programmable
logic. Specialized hardware may be required. Notice also
that the asynchronous reset line for the circuit is also con-
nected to the phase shifting mechanism. Whenever the reset
signal is activated, the phase shifting flip-flops are also reset.
Resetting these flip-flops ensure that once the reset signal
is de-asserted, the registers in the circuit are clocked in the
correct order. Active edges of the shifted clocks are only
asserted after the first active edge from the nominal clock.
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Figure 4: Phase Shifting Circuitry.

4. TIMING UNCERTAINTIES
One of the great problems in utilizing Clock Shifting Op-

timization for FPGAs are the uncertainties present in the
timing models. The exact timing of the chip fabricated in
silicon is determined by a number of factors. Among these
are operating temperature, supply voltage, and the variance
of parameters in the fabrication process. For example con-
sider the situation shown in Figure 5. Although any stretch
of metal interconnect has a value for its width, height and
thickness, there can be significant deviations during the fab-
rication process. These deviations affect the equivalent resis-
tance and capacitance for this stretch of metal, and hence
the signal propagation time. Similar variations also affect
gate delays as transistor drive strengths and parasitic capac-
itances also vary; however, these metal lines have a larger
impact on the final delay.
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Figure 5: Fabrication Uncertainties.

We propose the use of a simplistic lumped uncertainty
model for timing in FPGAs. The delay of any path T (P )
can be characterized using average or expected parameters.
However because of the various effects discussed above, it
is possible for the actual delay to deviate significantly from
this nominal value. We introduce two parameters p and q
that govern the uncertainty bound for the timing on any
given path. The best case timing for a particular path is
given by p · T (P ), while the worst case timing is given by
q · T (P ). This relationship is expressed in Eq. 3.

(Tmin = p · T (P )) ≤ T (P ) ≤ (Tmax = q · T (P )) (3)

The difference between p and q provides an indication of

the timing model accuracy. If p and q are both close to 1,
then there is little deviation from the delay predicted by the
timing model. We will define the timing uncertainty U as

U = 1 − p

q
(4)

This quantity simply represents the percent difference be-
tween the worst case bound and the best case for any given
combinational path. We choose this parameter because FPGA
vendors often present us with conservative values for this pa-
rameter.

5. FPGA CLOCK SHIFT
DECISION PROBLEM

This section introduces the decision problem that can be
utilized to optimize the maximum operating frequency of a
circuit implemented in a FPGA. The parameters passed to
the decision problem are:

• The timing uncertainty parameters p, and q.

• The target clock period Cp.

• The number of global clock lines available L.

• An array containing the clock shifts on each of these
clock lines V [0] . . . V [L − 1]

Given these parameters, the decision function will return a
single boolean value. The value is true if the target clock
period can be realized given the uncertainties, clock lines
and shifts available. First we will show how this decision
problem can be expressed, and then show an efficient algo-
rithm for solving it.

5.1 Decision Problem Definition
For every register i, we associate an integer shift identi-

fier s(i). This shift identifier indicates which clock line the
register will be clocked from. This also implies that valid
solutions of s(i) lie between 0 and L − 1. For example, a
shift identifier s(i) = 2 indicates that the register i will be
clock from global clock line number 2. From our previous
definitions, the actual clock shift at register i will be V [s(i)].
The value of s(i) actually provides us the select configura-
tion bits for the clock multiplexer shown in Figure 3.

The circuit must obey a number of clocking constraints
if it is to operate properly. These constraints are simply
modified versions of those formalized by Fishburn [4]:

V [s(i)] + q · MAX(i, j) ≤ V [s(j)] + Cp (5)

V [s(i)] + p · MIN(i, j) ≥ V [s(j)] (6)

Equations 5, 6 are the new zero and double clocking con-
straints. They are identical to the original formulation ex-
cept that the individual skews can now take on only certain
discrete values. If we can find a labeling for each s(i) such
that it satisfies the clocking constraints, then the decision
function is true. More formally:
Problem CSDP

• Let p,q, and Cp be positive real numbers that represent
the timing uncertainties, and target clock period.

• Let R be a set of registers in the synchronous circuit
under consideration.



• Let V be a clock shift mapping function from integers
to positive real numbers.

Find a mapping function s from R to integers, such that
Eq. 5, 6 are satisfied, or determine that no such mapping
function exists.

5.2 Solving the Decision Problem
For a given set of clocking constraints, the decision prob-

lem can be solved as a special case integer program based on
a discrete version of the Bellman-Ford algorithm. It uses an
iterative relaxation based approach. Notice that constraint
Equations 5, 6 both have the following general form:

V [s(i)] ≥ V [s(j)] + Kij (7)

We shall denote this constraint in the form C(i, j, Kij). The
core algorithm is shown in Figure 6. The parameters p,q,
and Cp are used to create a set of clocking constraints S.

function CSDPcore( ConstraintSet S, Skews V )
begin

Order the skews in non-decreasing order
V [0] ≤ V [1] ≤ · · · ≤ V [L − 1]

1: ∀i, slb(i) = 0
do

2: C(i, j, Kij) =
{any unsatisfied constraint in S|s(i) = slb(i)}

3: rhslb = V [slb(j)] + Kij

4: Increment slb(i) until V [slb(i)] ≥ rhslb

until all constraints are satisfied OR slb(i) ≥ L

if all constraints are satisfied
then

∀i, s(i) = slb(i)
return SOLUTION EXISTS

else
return NO SOLUTION

end if.
end function.

Figure 6: Clock Shift Decision Problem

Definition 1. Let smin(i) denote the minimum value of
s(i) among values of s(i) which participate in feasible solu-
tions of the CSDP.

Theorem 1. If the CSDP has a solution, then every itera-
tion of the CSDPcore algorithm maintains the loop invariant
that ∀i, slb(i) ≤ smin(i).

Proof. First assume that CSDP has a solution, then we
may use an inductive argument to prove the invariant. The
base case is trivially true as all values of slb are initialized to
0 in line 1 of CSDPcore. To prove the inductive hypothesis,
assume that bound condition holds on the previous itera-
tion of the loop. This assumption implies that the rhslb

variable on line 3 is a lower bound on the value of the right-
hand side of the chosen constraint since slb(j) is a lower
bound on any feasible value of s(j) and V is ordered in
non-decreasing value. Suppose that incrementing the slb(i)
variable on line 4 violates the loop invariant. This implies

that smin(i) < slb(i). However the exit condition in line 4
enforces that any value of s(i) < slb(i) has a value that vio-
lates the condition that V [s(i)] ≥ rhslb (i.e., V [s(i)] is lower
than the lower bound on the right-hand side of the constraint
C). Thus this value of s(i) could not possibly participate
in any feasible solution to the CSDP. This contradicts our
proposal that line 4 violates the loop invariant.

Theorem 2. If the CSDP has a solution, then the algo-
rithm CSDPcore returns a feasible solution. If the CSDP
has no solution, then the algorithm CSDPcore returns no
solution.

Proof. Case I: CSDP has a solution implies CSDPcore
returns a feasible solution. Assume that CSDP has a feasi-
ble solution, and that CSDPcore returns no solution. This
is only possible for some value slb(i) ≥ L. However from
Theorem 1, we know that slb(i) is a lower bound on all fea-
sible s(i) values. A value slb(i) ≥ L contradicts the fact that
feasible solutions range from 0 ≤ s(i) ≤ L − 1.
Case II: CSDP has no solution implies CSDPcore returns
no solution. If the CSDP has no solution then it is impos-
sible that the all conditions satisfied condition can be
satisfied in CSDPcore. Hence after at most, |R| · L itera-
tions, some value of slb(i) will be greater than or equal to
L. This will cause CSDPcore to return no solution.

The CSDPcore algorithm runs in O(|R||S| ·L) time. This
computation includes |R| · L iterations along with the fact
that finding an unsatisfied constraint (line 2) may require
a search of all the skew constraints S. For conventional
FPGA architectures the value of L is fixed, so the execution
time is O(|R||S|). We have implemented our algorithm in
such a way that searching for an unsatisfied constraint takes
at most O(|R|) (and typically O(1)). Thus the worst-case
total run time is proportional to the square of the number
of registers in the circuit.

6. FPGA CLOCK SHIFT OPTIMIZATION
PROBLEM

In this section, we use the CSPDcore algorithm to find the
set of skews that find the optimal clock period achievable
with L available global clock lines along with the skews that
would realize this period.

6.1 Binary Search for Best Clock Period
Figure 7 shows how the optimal clock period for a given set

of skews V can be found. The algorithm performs a binary
search for the best clock period Cp in the range (0 . . . Tcrit).
Tcrit is the post place and route critical path delay. The
CSDPcore algorithm is used to check if a feasible solution
exists for the given skews and the constraint set generated
from the uncertainties and the clock period. Each result
cuts the following search space in half.

6.2 Finding The Optimal Skew Set
To find the optimal skew set, we simply exhaustively enu-

merate all possible skew combinations for a given number of
available clock lines L. The binary search function described
above is used to evaluate each set of skews. To make the
search space reasonable (and account for hardware limita-
tions), we impose a minimum granularity on the skew set.



function CSOBinarySearch( p, q, Tcrit, V )
begin

ubound = Tcrit

lbound = 0
while(ubound − lbound ≥ searchthreshold)

Cp = (ubound + lbound)/2
create constraint set S using p,q,Cp

if CSDPcore(S,V )
then

ubound = Cp

else
lbound = Cp

end if.
end loop.
return ubound

end function.

Figure 7: Binary Search for Best Clock Period

The only skews examined are those that are multiples of
the minimum granularity. Our studies have used a granu-
larity of 1

32
of the target clock period. Since a small set of

clock lines is usually available, this algorithm is extremely
efficient. For example 4 clock lines means the examination
of ( 32

4
) = 35960 skew sets. Clearly this algorithm does not

scale well, but our experiments show diminishing benefit in
using extra global clock lines. In addition, these lines are
extremely power and area hungry so FPGA manufacturers
would be reluctant to provide architectures with an abun-
dant set of global clock lines.

7. EXPERIMENTAL RESULTS
Our experiments used the circuits described in Table 1.

Each of these circuits was mapped into a netlist of LUTs
using FlowMap [3]. The resulting netlists were placed and
routed using VPR [2]. The delay models were produced
from SPICE simulations of a 0.18 micron fabrication pro-
cess. Each netlist was routed assuming a low-stress envi-
ronment. This term indicates that chip has 20% percent
more tracks than the absolute minimum required to route
the circuit. The clock shifting optimizations were applied
directly to the post-routing netlist.

Figure 8 plots average speedups for the circuits shown
in Table 1. The average speedup is plotted against two
axes. The X-axis represents the timing model uncertainty
Kuncertain. The Y -axis represents the total number of clock
lines available to use, L. The average speedup is plotted on
the Z-axis. Also shown, is an estimate of the area penalty
from adding extra lines to a FPGA in comparison to the
base case of FPGAs with 1 clock-line.

This plot confirms that lower values of timing model un-
certainty increase the achievable speedup. As well it shows
that increasing the number of clock lines available allows
for larger speedup. However, it seems that going beyond
3− 4 lines provides a diminishing return considering the ex-
tra area and power that they would consume and that typi-
cal uncertainty values are in the 60 − 70 percent range [10].
Given these 4 extra lines with an uncertainty of 60%, the
average speedup obtained is approximately 14%.

Table 1: Circuit Characteristics

Circuit Size (LUTs)
bigkey-mcnc 1707
dsip-mcnc 1370
daio-rec 315

diffeq-mcnc 1497
ecc-mcnc 331

elliptic-mcnc 3604
frisc-mcnc 3556

s38417-mcnc 6406
s9234.1-mcnc 505
tseng-mcnc 1047
cordic-oc 1513
hc11-oc 3877
des-fip 15509
fir-filter 921

mult10x10 1162
sisc8 1434

8. CONCLUSIONS
We have shown that clock shifting can be an effective

technique to optimize synchronous circuits implemented in
FPGAs. In extremely speed-intensive applications, users
routinely use logic cell delays to manually shift clock signals
at registers with late arriving signals. Our method can auto-
mate this procedure using more reliable clock shifts provided
by PLL circuitry.

The largest barrier in implementing this technique for
FPGAs is that few FPGA manufacturers provide access to
the minimum delays through their various components. If
numbers are provided, they are usually only conservative es-
timates. This situation is understandable as there have been
few optimization techniques that actually require minimum
delay information.

An open question is deciding when clock shifts should be
used and when sequential retiming [5] [6] should be applied.
The disadvantage of retiming is that it may introduce extra
registers in order to reduce the clock period. The granular-
ity of a retiming solution is also determined by the largest
delay element in a circuit. For example, it is impossible in
conventional architectures to physically move a register in
between a long segment of routing. However, clock shift-
ing may be able to deal with this situation because we can
flexibly change the register’s sample point.

In the context of post placement FPGA optimization, a
number of factors must be considered. For example if the
chip is almost fully utilized, shifts on the global clock lines
is perhaps the only form of retiming that will be effective.
If the clock lines are all used in a particular design but
there are number of unused LUTs, then sequential retiming
is probably our only viable rescheduling alternative. Per-
haps some combination of these techniques can be applied.
Sequential retiming provides a coarse rescheduling of the
circuit, while clock shifting methods perform the fine tun-
ing. Our future experiments will focus on the combination
of these two techniques.

In addition, we must consider the FPGA architecture it-
self when determining whether to use retiming or clock shift-
ing. If routing delays can be accurately estimated from
placement parameters, then retiming and incremental place-
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Figure 8: Speedup as a function of Clock Lines and Uncertainty.

ment solutions [7] can be effective. However, if the routing
delays cannot be accurately predicted (perhaps because of
congestion) then clock shifting is one of the few algorithms
that can be effective after the entire place and route flow
has been completed.

Finally, the timing model presented in this paper is ex-
tremely simple and intended only to show the effects of
timing-uncertainty. All of the techniques described can be
easily extended to handle upper and lower timing bounds
derived from simulation. Effects such as clock jitter and the
small amounts of skew present on the global clock lines have
also been neglected.
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